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We calculate the contribution of the free-carrier absorption due to scattering of electrons by two
nonpolar optical phonons. An effective H~~i&tonian is formulated for the interaction between the
electrons and two phonons. Using the previously calculated values of the two-phonon effective
deformation potential, we find that significant contributions to the absorption coeKcient occur because
of two-phonon processes. The absorption coeflicient due to two nonpolar optical phonons varies with

wavelength X of the incident radiation as X". The resultant calculated absorption coefficient varies as
X~' while the experimental value varies as X2. Thus the agreement between theory and experiment is

improved if two-phonon processes are taken into account. The variation of the absorption coe%cient
with temperature is also calculated.

I. INTRODUCTION

Studies of free-carrier optical absorption in

semiconductors have proved to be useful to gain un-
derstanding of the carrier interactions. Free-car-
rier optical absorption can only occur through scat-
terings by impurities or lattice vibrations. Lattice
scatterings make both the conservation of energy
and momentum possible. Detailed measurements
have been performed on many semiconductors.
Theoretical calculations taking into account various
forms of scattering have also been provided. For
some well-characterized semiconductors, such as
InSb, there have been considerable efforts to
achieve accurate quantitative calculations of the
free-carrier absorption near ~= 9 pm. These cal-
culations' considered intraband electron scat-
tering by optical phonons. The results do not agree
with experiment either in the wavelength ~ depen-
dence or in the magnitude of the absorption coef-
ficient e. Experiments show that o is proportional
to &, whereas theoretically 0. =c& ' . To improve
agreement with experiment, Haga and Kimura' in-
cluded a contribution to n due to scattering by
acoustic phonons. However, they have to assume
a very large value for the acoustic-phonon defor-
mation potential D = 30 eV, much larger than the
accepted value of D = 7 eV. Demidenko3 included
the effects of band nonparabolicity but did not find
any significant contribution in the frequency range
(8-15 pm) of interest. Jensen~ included both non-
parabolicity and contributions from the intermedi-
ate states in other bands. He found an increase in
the absorption coefficient n. Nevertheless, n was
still 30%%u~ smaller than the experimental value and
further, the & dependence of e was poorer, @ax:~s.

These calculations quoted above have exhausted
the usual carrier-scattering mechanisms, and the
outstanding disagreement that exists between theory
and experiment is still puzzling.

Recently, Ngai and Johnson, henceforth referred

to as I, have shown that the effective two-optical-
phonon deformation potential in InSb is very large.
In I, it was demonstrated by a resonant carrier-
phonon coupling experiment that two nonpolar-opti-
cal- (NPO or TO) phonon scatterings cause split-
tings in the magneto-optical spectrum of compara-
ble size to that due to polar-optical (I.O) phonons.
It is natural, in view of this new information, to
consider the contribution of 2NPO-phonon scatter-
ing to free-carrier optical absorption in Insb. In

this work we show that good agreement with experi-
ment is obtained if contribution to n from 2NPO-
and LO-phonon scatterings are both included.

In Sec. II we derive the effective carrier-2NPO-
phonon deformation-potential-interaction Hamiltoni-
an. In Sec. III we calculate the frequency-depen-
dent conductivity due to two-phonon processes by
extending the Green's-function theory of Gurevich,
Firsov, and Lang for one-phonon processes. The
magnitude of the 2NPO deformation potential used
in the present calculation is consistent with the
value determined in I.

II. TNO-PHONON DEFORMATION POTENTIAL

The Hamiltonian H of the system is given by

H = Hp+HoR+Ho

The unperturbed Hamiltonian Hp is the sum of the
following three terms:

If' = Q Egc1cg g

)l

Xse

c~ (c„) is creation (annihilation) operator for elec-
trons in state &. Vfe will assume isotropic para-
bolic bands for electrons with energy E;„=S k /
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2m*, where m* is the effective mass of the elec-
trons in band c and k is the quasimomentum. w"„;
is the frequency of photons with wave vector g and
polarization &. &~ @ denotes the frequency of pho-
nons with wave vector q, branch index n, and po-
larization j. At (A) and a~ (a) are the creation
(annihilation) operators for photons and phonons,
respectively.

H, R is the electron-photon interaction given by

c/a

X

states from a11 bands. The results and conclusions
of I remain unchanged if the deformation potential
determined therein is taken pertaining to the ef-
fective Hamiltonian H~" as defined immediately
below. This persistent inference of matrix ele-
ments is most conveniently handled by defining an
effective carrier-two-phonon interaction Hamilto-
nian H2 . The procedure is illustrated diagram-
matically in Fig. 1 and corresponds to the follow-
ing expression:

H2 ——Z E Z V~„g ~.„.g ~

u, ' gnat q'n')'

&&Cgi C),AX g+ C ~ C ~ y (3)
Mxi(Q)ci ci@;ny@g ny ~ ~

where E„is the high-frequency dielectric constant,
0 is the volume of the crystal, e is the electronic
charge, p is the momentum operator of the elec-
tron, and

~ &) is the electron wave function in state
X.

Electron-phonon interaction H,~ is usually given
as an expansion in its atomic displacements u„of
the eth atom in the nth cell:

H„=Q VV u„

+ —Z u„.l. ~ VVV. u„~+ ~ ~ ~

n, o
tf, a'

=Hq+Hp+ ~ ~ ~ (4)

As was indicated in I, an electron interacts with
two phonons either by Hz or by a repeated applica-
tion of H, through intermediate states. The latter
process is formally written as H, (1/E H) H, , -
where H is the entire Hamiltonian for the electrons
and the lattice. Interference of matrix elements
between H~ and H, (1/E —H) H, may result in some
cancellation and weaken the resultant electron-
two-phonon interaction. For the case of long-wave-
length acoustic-phonon modes, the results of in-
terference and cancellation are dramatic as shown

by Holstein. D the limit of long wavelength, an
acoustic phonon is equivalent to translation of the
lattice. The detailed cancellation in this special
case reflects the translational invariance of the
crystalline lattice. However, for two NPO pho-
nons, in spite of interference, reasons have been
advanced to show that cancellation is believed not
to be serious. It was argued in I, that, for near-
zone-edge optical phonons with large momentum
transfer, translational invariance of the crystal no

longer enforces detailed cancellation of H~ and

H, (1/E —H)H, as happens for the case of long-wave-
length acoustic phonons. However, the assumption
made in I that only H& gives rise to the observed
resonant electron-2NPO-phonon coupling is not
necessary. In general, finite contributions to
H, (1/E —H)H, exist with all possible intermediate

Vg„q,g „I =W(gnj, g n j )/pQcP(&ug„& &u-.„.&.)'~, (6)

Mx'x(Q) = 9'v
I

e" (7)

FIG. 1. Diagram for the effective electron-two-pho-
non-interaction vertex. The solid and the wavy lines
represent, respectively, electron and phonon propagators.

where (F&) is the envelope function of electron
states.

4;„&=a~„&+a~„& is the field operator for phonons
of branch n and polarization j, and Q = q+ q'. p is
the mass density and a is the lattice constant of
the crystal. S is the two-phonon effective defor-
mation potential and is a function of qnj, q'n'j'.
It depends also on the electronic quantum num-
bers &, &' because it must involve transitions be-
tween these states and various intermediate states.
Since in this work, we consider only the case when
both states belong to the same band, this depen-
dence is not important. Hence we have suppressed
the labels ~ and ~' in Q. It is expected to be small-
er than the value if determined. from the H~' term
alone.

It will be found convenient to rewrite Bz' in a
form that resembles ordinary electron deforma-
tion-potential interaction with one phonon. This
is accomplished by first replacing the sums over
q and q' by sums over Q and q. For a fixed Q, let
the set of critical points in the joint energy density
of states for all combinations of two phonons nj q
and n'j'q' with the sum of their wave vectors q
+q =Q be indexed by -". Further, denote the en-
ergy of these two-phonon critical points by K&@~(Q).

Second, the summation over q is transformed to
integration over the variable ~„which depends
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on the parameters njn'j', and is the sum &„f~
+~&j.~. . Let

y(q; nj, n'j', Q) = S)(qnj, q'n 'j')/(«d;„, apq, ~,.)"'
Then

Z f(q;nj, n'j', Q)
nf, ffej' q

dq f(q; nj, n'j', Q)
nl, n')' ~

(8)

xM„,„(Q)c„.c„4(l),&4(~~),n. (13)

We have rewritten the product of pn(Q) 5)a(Q) as
(Qp )Q z The product 4 (f) n 4 «~, ()) n symboli cal-
ly stands for the totality of all pairs of phonons
that constitute ". Since Q~ = —,'a for InSb, we have
an alternative expression for H2" as

IPq = Z (0/«oAe~(o~) dn(Q)

~

N(«d, )f((f(o),);nj, n'j', Q)d(o, . (9)
2'F .g(, n'(i g

with

x M „a~(Q)c„.c„O(~) n 4 (~,o) z, (14)

N(&o, ) in Eq. (9) is the joint density of states of
phonon pairs njq and n j q with q+q = Q. We re-
place g„z,z&.N(&d, ) by

Z N((o.) = [(2v}'/A. 1~ p*(Q) ()4.—&*(Q))

Here 0, = volume of the primitive cell. For a crys-
tal with zinc-blende structure and lattice constant
a such as InSb, Q, = —,'a. Note that the indices nj
and n'j' are subsumed in ". Hence -" can be de-
fined as an index for the critical points of the com-
binations of two phonons Injq) In'j'g- q). From
Eq. (10) we see that the quantity pn(Q) has the
meaning of the fraction of the Brillouin-zone (BZ)
volume that constitute the critical point " for a
fixed Q. This meaning can be brought out clearly
by considering a hypothetical case of a lattice with
two totally dispersionless phonons n„j„and ng~
with constant frequencies ~„and td~, respectively.
Let:"~ be the critical point made up by combining
these two-phonon branches with critical-point en-
ergy Stion=)I&o„+)I&L)~. Then from Eq. (10), we
must have Pn~(Q) = 1 for any Q.

Continuing from Eq. (10), we substitute into Eq.
(9},

&f(q; nj, n'j', Q)
n j,n'f' q

= —„ZP*(Q)f(~*(Q);nj,n'j', Q).
C

The quantity f(&on(Q); nj, nj, Q) is an average of

f(q, nj, nj, Q) over all sets of phonon pairs {(nfq),
«n'j, q')) that constitute ". If we define «on by

&o~n= Av{«d;~o)«f as the average over " of the prod-
uct &of„&&d;„z, andassumethat X)(qnj, qnj) depends
on:" and Q only, then

Pf(q; nj, n'j', Q) = (A/A, ) Q P, (Q) S,(Q)/&, .
n jeff'j' Il

(12)
Substituting back into Eq. (5) gives,

H"'= Q (A/A, )' gf/pAa~(u )(ap"')o
issues
QsQf

dn(Q) = (4&/()«)'«dn)"'(&p"')o, x.
This last form of IP~" resembles a one-phonon
deformation potential interaction with deformation
potential dn(Q). In the present formulation of car-
rier-two-phonon interaction, properties of the lat-
tice normal vibrational modes that are necessary
to describe the interaction are the ensemble {:",
&dn(Q), pn(Q}j. The first two quantities, " and

&o&(Q), can often be estimated by inspection of the
phonon dispersion curves. On the other hand,
P~(Q) can only, in principle, be obtained if we
know the phonon spectrum over the entire BZ.
This information is generally not readily available
from present day lattice-dynamics experiments
or calculations. One advantage of the effective-
Hamiltonian formulation is that this information
is absorbed into the observable quantity (5)p' )o,n
of dn(Q) which are directly related to experimental
observations.

III. TELO-PHONON CONDUCTIVITY TENSOR

Reo(I(«d )

=2(e )I /Am* ) Q (k(k&/&d)imp„-"~, («d},
&t

where (I)f1.((o) is the Fourier transform of the
retarded Green's time function

'Q'l, I'(&)= f„e Qf, f (f)«ff

(15)

qg~ (f) (je' /h -( ~ /a t

We derive the expression for the frequency-de-
pendent conductivity tensor o(&(«d) by extending the
formalism of Gurevich et al. ' to the 2NPO pro-
cesses. The absorption coefficient 0t is related to
the conductivity by

a = 4v Reo/cn„,

where n„ is the refractive index and c is the veloci-
ty of light in vacuum. Hence in the following we
calculate only the real part of o(«o). Gurevich et
al. ' have shown that the general expression for
Reo(«o) can be written
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=0t

/AH tf 5 g~ g g-jH t/a y
k Iy

f& O. (16)

Here H'=H- fN, f is the chemical potential. The
symbol ( ~ ~ ) denotes thermal average. Equation
(15) can be expanded in powers of the electron-
phonon interaction. In Ref. 5 it is shown that the
zero-order term does not contribute to Reo&f and
the contribution to Rea,f is calculated from the next
nonzero term involving electron scattering by one
LO phonon

~ "."~ lly -«l& (ly -zl)+(y+«)& (ly+«I)j,
(I'7}

where K, is the modified Bessel function of the first
order, n is electron density, y = ff(d/2k«T, z = k(d& /
2kBT, and w, is the frequency of LO phonons.

In the Appendix we calculate Rea'~f', the contri-
bution to Reo&f due to electron scattering by two
nonpolar optical phonons. It is shown that

e g ~ I ((I + q ) sinh(g(d/2k«T)
sinh(g&(), ,/2k«T) sinh(k&(), /2k«T)

x Z s'nh ' ' rm));, ;.( ~l, +me, )I.I(()) +f(g, +m~;)
f,m~-1, 1 B J

Here j stands for both branch index and polarization of phonons and

(
1 p ng~~. -n~
0 - (d+(Ef —E„-;-.)/)I+iS '

(18)

(19)

where nf is the Fermi function of Ef and S=0'. V;;, =KB/pQaz(((), &o,.)'~«characterizes the two-phonon de-
formation potential as defined in Eq. (6).

After changing the variables q and q' in Eq. (18) to Q= q+ q and q, we get

e g5) p Q sinh(g&u/2k«T)
2m*«(() p 0 a u -&

~ &. &()~&()e~ sinh(tl(d, /2k«T) sinh(Ku&o, /2k«T)

lem 1,1 ~ k B

As shown in Eq. (8)-(ll) we can write

N
s

(,

d'q= —
Jig(~,)d~„

s asff

where N is the number of unit cells and g(&o,) is the density of phonon states. Assuming that

g(~.) =Z P((d&) 5(&u, —~,),

where (d3 are the frequencies at critical points, the following expression for a' ' is obtained:

e + tf(~ps'~«/0, '~«)«sinhOI~/2k«T)R~ (2)
2m~ (d s pza &o~ [sinh(g(d«/2k«T)]z

"d«q g . «e «p IIo((o+l(u«(+m(u~)
(2w)'„.. . s' h[O) ~),+,)/2) T]) (21)

The total conductivity o» is the sum of cr„'„" and
o' '. We next calculate o for Boltzmann and Fer-
mi statistics.

Boltzmann Statistics

In the case of Boltzmann statistics,

sf=no(2«ji /m"k«T) ~ exp(-5 k /2m*k«T),

where no is the concentration of electrons. Sub-

stituting this in Eq. (18) we get

~m+: '~2
Imilo((d)=no

2 Q '(1-e ""~'«)
B

Scu m*(d I Q . ( )

From Eqs. (21) and (22) after performing integra-
tion over Q and using the relation'
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f;dT/)}e-~~/4" = -,' zzff2(1 Z
I )

=(-,'ZIZI')"'e-', z»1
z«1, (23)

where K2 is a modified Bessel function of order 2,
we obtain

e2 yl/2 (~pl/Sill/2)2
Re/m ~ 3&s/2 &2 p2 e4(g )2/2

sining Sco S3, @co~
sinhylsinhy2 2kzT ' 2k TS' 2kZT

with

5'(z, y, , y2)=z ' I'2(z-yl ») 2(I -»-»I)

+ 2(Z —yl+y2) KS(1 Z —yl+y21)

+2(z+yl —ys) +2(Iz+yl y21)

+2(z+»+y2) Jfz(l z+»+» I)i (25)

23/2 n e2 g1/2~2„
(2) ~ nQ m

Reo'xg ~ 3 2 4 2 0w p are~

x (g(d) (I —2(o /(oP (26)

This shows that a- &' as in the case of scat-
tering by acoustic phonons. ' o varies as & ' in
case of one LO phonon. The total conductivity o„„
is the sum of o„'„"and cr„','. With the two-phonon
deformation potential determined in Sec. II, the
resultant cr is found to vary roughly as X ' ~.

(ii) If )i(d «miry~, then

S/2 2 g1/2202R~(2) Q 2 s0 e ~ P& (ff )-2/2
p+ c

)( (~ /~ 1)s/2 e-Sh uz/SZT (27)

(iii) if (lf((d —2(dz)( «keT, then

In order to compare the frequency and tempera-

turee

dependence of o'" and o' ', the contributions
to o due to one LO phonon and 2 NPO phonons,
respectively, we first consider the limiting cases
as in Ref. 5 at very-low temperatures (ff(dz» kzT)
when the optical phonons are not excited and elec-
tron scattering takes place through phonon emis-
sion.

(i) When)I+» 2g(dz, Eq. (14) gives

Here cr' ' varies as T, whereas in the case of
one LO phonons it varies as T'/ .From Eqs. (27)
and (28) it is seen that at sufficiently low tempera-
tures, Ree(2)(&o) shows an abrupt increase in the
frequency range where fl((d —2&@&)

-k2 T.
The results of detailed computation from Eqs.

(24) and (17) are shown in Figs. 2 and 3 for Ingb.
We assume that the optical-phonon frequencies
are independent of branch indices. Then the sums
over branch indices give a factor of 4 for the two
TO branches. In Figs. 2(a) and 2(b), the con-
ductivities a, o"', and o' ' at room temperature
are plotted as function of wavelength & of the in-
cident radiation. From magneto-optical data,
Ngai and Johnonson estimated the two-phonon de-
formation potential ~P~/ to be in the range of 104-
1.5x10 eV. We show conductivities for two values
of zp~ '=10' and 1.5x104 eV. All other relevant
material parameters at room temperature are tak-
en from Ref. 2, e.g. , 1~3 =265'K, m*=0.0116m„
&0=18.V, a„=15.7, refractive index n„=3.3 at
~= 9 p,m. Our calculations in the wavelength re-
gion 8-30 p,m show that

fOr IDp1/2= 1, 5X]p4 eV

for ~p1/2- 10& eV

This frequency dependence is in better agreement
with experiment (o()- & ) than the previous calcula-
tions. '~ The absorption coefficient as calculated
by Jensen for ~= 9-pm and T= 298 'K using only
one-phonon scattering is smaller than experimental
value. For this wavelength and temperature we
find that the ratio o (2)/o "' varies between 0. 8 and
I.8 depending on the value of QP~&/2. Thus both the
magnitude and the frequency dependence of o show
that the two-phonon processes are significant for
free-carrier absorption in InSb.

Figures 3(a) and 3(b) are plots of o', o'l', and
o' ' as functions of temperature for incident radia-
tion of wavelength &= 9- p,m. In this calculation
the temperature variation of the material parame-
ters are neglected and the valueg at room tempera-
ture are used. At low temperatures o "dominates,
but as the temperature increases a ' increases in
strength and ultimately becomes larger than o"'.
The crossover temperature depends on the two-
phonon deformation potential. For P = 10 eV,
the crossover temperature is 350 K. Further ex-
perimental studies of the temperature dependence
of the absorption coefficient will serve to confirm
the importance of 2NH3 scattering in free-carrier
absorptions.

Fermi Statistics at T= 0

(2) g 32 nse m~ Q Pe
3z (2s)' p'(2'fl (d ( ff (o

(28)

In this case with nI=1 for Ikl ~ kr (Fermi mo-
mentum) and n2=0 for (k() kT, we find from Eq.
(18) that
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FIG. 2. (a) Conductivity versus wavelength of incident light at T=300'K and S P =10 eV. o. is the total conduc-
tivity. cr ) and 0 ) denote, respectively, the contributions from one-phonon and two-phonon scattering. (b) Conductivity
versus wavelength at T= 300'K and SP' =1.5 X 104 eV.

g2 2 2

hnII ((d) = k — ' —— g(q —2'/ I/ ((1+-'$) —(1+$)'/')'/2)
4SQ I Q 4 I

Q2 2 2

X g(21/2y ((1+ 1])+ (1+ ])1/2)1/2 q) P2 q
E 2

&( g(q 21/2 f1 01 & g) (1 $)1/2)1/2)g(21/2)t ((1 1$) ~ (1 $)1/2)1/2 q) (29)

5~ 2m*~
EJ Kk~

and 8 is the step function

g(x)=1, x&0

=0, x&0.

In the second term inside the square bracket of Eq.

(2) SS 8 Q PI,Q2 2 2

Res ( )=Z

~E 1 S(al 2I(d~

where
(30)

(29) $ & 1. Using E11. (29) in (24), we get the fol-
lowing for o' '(&u):



5660 A. K. GANGULV AND K. L. NGAI

loo loo

50
COI-
z

20
I:
Cl

loz

0'

O

2O

R

g lo

5- +pl~2 l.5 x I04 ev

I

70
I

120
I

170
I

220
T toK)

I

270
I

Mo 570
I

70
I

l20
I

l 70
I

220
T( K)

I

270
I

520 370

FIG. 3. (a) Conductivity as a function of temperature at X= 9 pm for Sp' =104 eV. (b) Conductivity versus T at A

= g pm and Sp ~2 = 1.5 x 104 eV.

1+$) i (1 ~)sS

= (1+()sit,

$(p

(31)

P 0 q ~fsln+g rn m

From Eq. (31) when Iftu/Er» 23'a&s/Er, we have

s 3Ãp s Azlds

// ~ / // j//I
(84)

(32)

This agrees with Eq. (26) obtained from Boitz-
mann statistics for the case If(tu —2u| )/y 2'» 1

(b)

FIG. 4. Sketch of topologically distinct diagrams of
all two-phonon processes that contribute to the conduc-
tivity. The solid and wavy lines are, respectively, the
electron and phonon propagator. The phonon vertices
where two wavy lines appear represent H2 and the verti-
ces with one wavy line represent H~. FIG. S. Diagrams for computing Qss. (a&g.



TWO-PHONON DEFORMATION POTENTIAL COUPLING: ~ ~ ~ 5661

IV. CONCLUSIONS

In summary, we find that 2NPO scatterings oc-
cur with significant strength in a weakly polar
material such as InSb. Their contributions to the
free-carrier absorption coefficient are comparable
to that caused by polar interaction. The compari-
son between theory and experiment is improved
when both polar-optical and 2NPO-phonon scatter-
ings are included. We have used the 2NPO defor-
mation potential as determined earlier by a mag-
neto-optical-resonance experiment. The agree-
ment achieved here gives further evidence for the
published size of the 2NPO deformation potential.
We have also calculated the temperature depen-
dence of the absorption coefficient. At higher tem-
peratures (- room temperature) where 2NPO phonon

scatterings dominate, the predicted temperature
dependence is noticeably different from what is ex-
pected for LO-polar scatterings only. We suggest
this to be checked experimentally. The results
and conclusions of this work for InSb should also
be applicable to either nonpolar or weakly polar
semiconductors with a simple band structure such
as Ge.

Qfjs (Gp ) =
Q he (- X(g + S ) ~

where

(A1)

APPENDIX

Q~. (&a) is the analytic continuation of the thermo-
dynamic Green's function on the upper half-plane,
1.e. y

p1/ @BE'

01&(&s) 2 0 g/g re + Qff (tv)dT,

Qff (v) = (T,(e""c).c";e ""cfcg)}.

T, is the ordering operator with respect to the
variable v.

We used the diagrammatic technique of many-
body theory to evaluate contributions to graf. (&og
from two-phonon processes. The totality of these
contributions consists of the sum of the diagrams
shown in Fig. 4. Only topologically distinct dia-
grams are displayed in this figure. The effective
electron-two-phonon-interaction vertex as de-
fined in Fig. 1 permits partial summations of
these diagrams. The diagrams that appear in the
first row in Fig. 4 when summed give rise a
single diagram, diagram A in Fig. 5. The elec-
tron-two-phonon-interaction vertex depicted as
a heavy dot in the figure corresponds now to the
effective Hamiltonian of Eq. (14). In exactly the
same manner, summing the diagrams in the sec-
ond (fourth) row in Fig. 4, we obtain diagram 8
(C) in Fig. 5. The remaining diagrams of Fig.
4 are not expressible entirely in terms of H~".
They have the common characteristics that in the
process, which any one of these diagrams de-
scribes, either the electron or the hole have to
scatter with large momentum change only. Con-
tributions from these classes of diagrams to
Qffi(&u J can be estimated individually. They are
found to be negligible compared with those of Fig.
5 for InSb, and hence will be dropped.

The contributions from the three diagrams are, respectively,

I g (0) (0)
Qa (&3= (- ke~) ~ 5f', f~~ I

I'ii'I gf' (&n+r+m~ )A- (~i..)
t ~ haft e lS

(0) (0) (0) (0)
~fbi (&&)g& (&t ~ )d~ (& } pI' (& '}

c,a

(A3)

(A4)

where gP'(m, ) is the Fourier transform of the zero-order finite-temperature Green's function given oy

gf '(a) g)
= 1/(NI(u, —Ef + 0 }, Ns), = (2 I + 1)vk e T

=0, t = 2lgkBT, (A5)

and d '(~ ) is the same for phonons:

(&o )= —2ff~4/[(ff&ug) +(}f&o„) ], K&@ =2vmksT

=0 }ho =(2m+1}vkeT (A6)
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Substituting (A5} and (A5) in (A2)-(A4) and after performing fractional decomposition of the product of four
5mctions g'0', the sum over l is done using the identity

Q I/(i}I~, E—„-)= n;/ks Z'. (A7)

Thus we obtain

k~T ~

'4 (~4= „» ~ II're I'~a, i~~ (nI-&I)&;"'(~ )d,i"(&o .}
~n)

1 1 2X +@+~+m' +Ex Ee &Sm+m' +Et Eb ZS(o ~ +E~ E (A8)

II 111 ke T 2
2 . (0)QR'(&s)+ Qg~(+n) I I 5I,I' &

I &.-; I '(shaw —nI}dg (& ) dc (& }yT(0 msms

Hence

X
~S+m+ms +Ef~~s Ek ++m+m'-n+E-qs Ek +m+m'+n+Ek~~'

(A9)

Q k, k„'Q„. "((g)J=( Q Z dg '(&o }dg.'(a& .)+ ~
Rek

(S&n g ' mme~Qsg s

~t ~imam s ~leC&sk,~k +g, +g, g +.+» ~'+n+E f, Ei+e~' +&m+m'-n+ Ek ER~~'

2 Sf~~& Sg @hz7-a'+ .
iS~m~"n+EC~~ -Er +~ ~ -.+Et~ q -E~

+2k (k +q, +q').
Z (dmus +

2k" +&m+m'+ Ei~~' Ei (A10)

In Eq. (A10) make the following replacements: (i) in the third and sixth terms k- k+q+q; (ii) in the sec-
ond terms-k-q-q', and then q -q, q'--q', m--m, m' —m'; and (iii) in the fourth term q--q,
mt mt t t
q --q, m--m, m --m . Then we have

x Q . ' " ' +(areal term).
m, m' ~~mern'en+ Ek Ek+aw'

(All)

Since in the calculation of Reo~(&o) we need Imp@i(z), the real term in Eq. (All) will be ignored. The
sums over m and m' in Eq. (All) can be converted into integrals over E and E using the relation'

de' (&~~)
~ iso~, +EI —Eg~~

~+

2xkBT g „
t

dE coth
B

x (E +gjfQ)~~~+E j Ef~~t) Im~ g . + EtSi. +E +csS Sar~"-E -mS

(
1 1 1

S~, -E'+iS~ S& s+E' -iS(ar~ E'+Eg -Eg~~. +isS

The integrals over E and E' can be easily done using the relation Im[(@+is) ') = —v5(x). From Eqs. (A12)
and (A11) we finally obtain (after making the analytic continuation, i. e. , replacing &u„by —i&a+ s)
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= (2ke T) sinhg&u/2ks T) [sinh(fjord; /2ks T) sinh(jf~. /2k sT')] '

1(d + Iso, +g~, ,
Im(t (o + jf(o, +K(o,, +E~ —E~;-.+ Zs jf}

B

+ sinh Im(ji&o+jfv, - jf&o .+Eg —Eg~;~. +Is@)
Sv+ 5+, —1(d,. ~ 1

2k~ T

I& —5('dq +Svq~ ~ 1+ sinh ' ' Im(I&a —jf&u, + jf~,, + E; —E;~+-,.+ssjf)
2k~ 7

8 (d —Sco~+sinh
2p

' ' Im(jf~-jf~, -a~, , +Ei-E; ~+isjf)-' .
B

Equation (18) then follows from Eqs. (A13), (All), and (18).
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