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The formalism of the coherent-potential approximation is extended to include the two-band case. The
single-site energy of the one-band case is replaced by a 2 X 2 matrix which varies randomly from site
to site according to the occupancy of the site. The Kubo formulas for transport are also extended for
the two-band model giving a nonvanishing vertex correction as opposed to the zero vertex correction
for the single-band model. The cases treated explicitly correspond to fully disordered binary

semiconducting alloys. The band gap and bandwidths are chosen as representative of typical
semiconductor values, and concentrations, band gaps, gap centers, and band mixing are all varied

systematically. Results are reported for densities of states, parentage, dc conductivity, and the imaginary

part of the dielectric constant e~(co). The analytic behavior of c2(co) near threshold corresponds to
several experimental situations.

I. INTRODUCTION

Recently, much experimental and theoretical
work has been done on'~ amorphous and alloy
semiconductors. In the crystals the energy of ex-
citations can be described by a dispersion relation
E(k), where k is the wave vector. In the disor-
dered materials k ceases to be a good quantum
number, and the simplicity is lost. Nevertheless,
experiments indicate that many of the electronic
properties of disordered materials resemble those
of pure crystals.

There is a large class of alloys which exhibit
well-defined electronic, optical, and transport
properties which vary continuously with composi-
tion between those of the pure components like
Si-Ge (elemental), (ln„Ga, )As, (Hg„Cd, ,)Te, and
(Pb„sni )Te. The similarity of these alloys to the
perfect crystals can presumably be explained by
the fact that the difference of pseudopotentials of
the components is small compared to the over-all
bandwidths and they exhibit lattice periodicity.

The resemblances bebveen amorphous and per-
fect crystalline semiconductors are primarily due
to the fact that the short-range order is not affected
greatly in going from the crystalline to the disor-
dered form. However, band edges cease to be
sharply defined, with tails of localized states form-
ing in the band gap, and mobility edges appear. A
coherent physical picture of these materials is yet
to emerge. Theories, like the Mott-Cohen
Fritzsche-Ovshinsky (CFO) model, ' are just the
beginning. Nevertheless, there are certain key
features of the electronic structure of disordered
materials which are quite universal, and one can
therefore hope to learn about these basic features
by studying models of substitutional binary alloys,
in which the disorder potential can be made arbi-
trarily large, much larger than in typical real al-
loys and comparable to that in amorphous solids.

Motivated by these facts, we study substitutional
binary alloys both for their intrinsic interest and
for a deeper understanding about amorphous semi-
conductors.

For simple substitutionally disordered binary
alloys, the coherent-potential approximation (CPA)
has been demonstrated to be superior, for prac-
tical quantitative calculation, to other known the-
oretical techniques. The effects due to lattice dis-
order or clustering, such as appearance of tails of
localized states and the mobility edges, lie outside
its scope. However, Economou et al. have gen-
eralized the CPA to obtain information about mo-
bility edges in disordered materials. In brief, the
CPA provides an excellent practical computational
scheme for disordered binary alloys.

In this paper we generalize the CPA to include
two bands with arbitrary band mixing and thereby
study various electronic properties of semicon-
ducting alloys. It is well known' ' that the gross
features of the optical and photoemission properties
of spe hybridized, tetrahedrally bonded semicon-
ductors of zinc-blende and diamond structure can
be described by a two-band model. Semiconductors
are characterized by a large bandwidth and a small
band gap; the effects of band mixing in alloying
are very important and are properly taken into ac-
count. Since the scattering strength and hence the
degree of disorder can be made large, we can hope
to mimic characteristics of amorphous and liquid
semiconductors as well.

The present paper is divided into the following
sections: In Sec. II A we present a general formal-
ism for extending the CPA to include two bands.
In Sec. II B we work out several limits and discuss
the parentage of states and the density of states.
In Sec. III, we generalize Velicky's formalism for
the transport coefficients to include two bands.
The transport properties are given by the average
of a product of two Green's functions, a generaliza-
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u. CPA

A. Generalization to Include Two Bands

In this section we generalize the CPA to include
two bands with arbitrary band mixing. The single-
electron Hamiltonian is written in tight-binding
form as

t 1 0
+ m n

m~ I 0 t~) (2. 1)

or

H=D+N . (2. 2)

I n& is the Wannier orbital at site n. We will as-
sume, in the spirit of the CPA, that the elements

(i,j = 1, 2) are random from site to site and that
the elements t~ (i=1, 2) are independent of the oc-
cupancy at sites m and n. D denotes, again, the
random part, which is diagonal in the site index
but off-diagonal in the band indices, while W de-
notes the periodic part, which is diagonal in the
band indices but off-diagonal in the site indices.
%e have chosen the representation where t&~ is di-
agonal. If we restrict ourselves to real matrix
elements, Hermiticity requires that

t~=t'„~ (i=1, 2) for all m, n,
for all n .

(2. 3)

(2.4)

The one-electron Green's function for the alloy for
a complex energy Z is given by

tion of the Kubo' formula. Velicky ' ' showed that
in the CPA this average can be decomposed into a
product of two average Green's functions and anoth-
er term which contains so-cal1.ed vertex correc-
tions. In the one-band model, the v6rtex correc-
tion vanishes. 3 The vertex correction turns out
to be nonzero and important for a two-band model
even in the single-site approximation. In Sec. IV A
we introduce and )ustify a model which we use for
numerical examples for binary semiconducting al-
loys. In Sec. IV B we present the densities of
states, parentages, and band gaps for the various
values of the parameters. Ne also point out qual-
itative agreement with the general experimental
trends. ' In Sec. IVC we present the results of the
calculations for dc conductivity and for the imagin-
ary part of the dielectric constant &2(&u). We con-
clude in Sec. V by discussing the significance of
our results.

1 1
Z —~ —g' Z —g —E(Z)

(2. 6)

At each site the deviation from the effective medi-
um, &„-E„(Z),defines a local t matrix t„:

I
n& t.(Z) &n

I
=

I
n& [& —Z„(Z)]

x(1 —&n
I

G(Z)
I
"&[~ E (Z)]]' '&n

I

(2. 7)
The CPA equation for E, which is now a 2X 2 ma-
trix equation in the band indices, is given by re-
quiring (t„&=0:

Z(Z) = ~ —[2" —Z(Z)]E(Z)[~' —Z(Z)] . (2. 6)

Here E is a 2 ~ 2 matrix in the band indices and is
given by

E(Z) = (n
I

G(Z)
I
n) = —Z(k

I
G(Z)

I
R),

(2.0)
where I R& are Bloch states and band indices are
implied;

f =xC +yfA B (2. 10)

where x and y stand for the concentration of A and
B components, respectively. In Eq. (2. 8) we have
dropped the superfluous subscript n. The average
density of states for the alloy p(E) is given by

p(E) = —(I/w)Im TrG(E+iO)

= —(I/v) 1m[E«(E+ iO) + Ezz(E+ iO)],
(2. 11)

B. Limiting Cases of CPA, Parentage, and Moments

Let us define the Green's function for what we
shall call the pure crystal by G (Z), where &"= e
= 0, i.e. , Gz = (Z —W) '. Then the Dyson equation
for Z is given by

G=G'+G'Z G . (2. 12)

If the dispersion relations for the energy bands in
the pure crystal are given by E,(k) and Ez(f) for the
valence band (band 1) and conduction band (band 2),
respectively,

E 0 ) g !e(a1yl ag)

tlat

~ I 2
$8ztt

Some of the averaged properties of alloys are given
by the ensemble average of the Green's function
G(Z) over the alloy configuration. G is defined
through a self-energy Z(Z), which stands for an
effective potential felt by an electron of energy S.
We denote the average over alloy configuration by

~ ~ ~ ~

G(Z) = Z-H Z-D-~ (2. 5)
then the densities of states of the pure crystal for
bands 1 and 2 are
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Ai = ~ ~5(E -E~)), f = I~ 2 .
R

(2. 13)

Z- &+xy6F, 5,

E, = —Z(k g, k)

Dilute Alloy Limit r «1
One obtains

Z ~ e+ (1 —5F,s) «5F,a5 .

(2. 15)

(2. 16)

Split Bund Limit 5» 1

Velicky, Kirkpatrick, and Ehrenreich~ (VKE}, by
considering moments, were able to obtain the limit
5» 1 and were able to find a necessary and suffi-
cient condition for the appearance of a pole in Z
which corresponds to a zero of F and indicates the
splitting of the band. We have obtained some anal-
ogous criteria, only for certain cases, for the
model we used in numerical examples (see Sec.
IV S).

Virtual Crysta/ Approximation (UCA)

See Appendix A for details. In this limit the
Hamiltonian is replaced by an average Hamiltonian
and Z becomes equal to E identically. The similar-
ity of substitutional semiconductor alloys to those
of pure crystal suggests that might be reasonable.
Van Vechten et a/. ' have shown that this is not
true.

Parentage

The total density of states in the pure crystal is
given by Eq. (2. 11), where p, G, and F are re
placed by p, G, and F . The energy spectrum of
the quasiparticles will coincide with the poles of
the continuation of G(k, Z) in the second sheet.
Such poles will be given by the solution of

det
I
E -e(k) -Z(E ) I

= o . (2. 14)

The lifetime of these quasiparticles will be related
to ImZ(E) which has all k vectors mixed in.

Moments. One can write down the moment ex-
pansion for G(Z, k); the explicit evaluation of these
for our case is laborious and seems to give no fur-
ther insight. In scalar case Velicky, Kirkpatrick,
and Ehrenreich6 were able to demonstrate that the
CPA gives more exact moments than the rigid-
band or virtual-crystal approximation.

Weak-Scattering Limit 5 ~0

Let us define a quantity 5 by the 2x 2 matrix

5=fA 8

It can be shown easily then from (2. 8) that, as 5- 0,

(Lifshitz limits). We can obtain significant in-
sight in relation to these limits when the contribu-
tion to the total density of states originating from
each component is explored. To this end we seek
a decomposition into components as follows:

p(E) =«p" (E)+yp'(E) . (2. 17)
p" and p can be obtained by replacing one site,
say n, by a specified atom or molecule A or B in
the effective medium while the potential at the rest
of the sites is given by Z(Z). If G" and G are the
corresponding Green's functions, then we have

F"' (Z)=(n
~

G"' (Z)
~
n)

=(I -F(Z)[c"' —Z(Z)]f 'F(Z) . (2. 1&)

Using the equation (t) = 0, we see that (2. 1&) be-
comes

F(Z)=«F"(Z)+yF (Z) . (2. 19)

Then Eq. (2. 17) follows immediately from Eq.
(2. 19) by the use of Eq. (2. 11)with p"' defined by
substituting F"' for F in (2. 11).

Noting that as «- 0, Z(Z)- f and using (2. 10)
and (2. 16), we get

p,z- —(I/v)lm Tr[1 —F,e(e" —a }]'F,e(Z) .
(2. 20)

This is exactly the Koster-Slater ' formula for
the density of states at a single impurity site oc-
cupied by an A-type atom embedded in a pure crys-
tal made of B atoms. The density of states at an

impurity site can be a 5 function in the Koster-
Slater problem, corresponding to a localized state.
In the CPA, the 5 function is smeared due to the fi-
nite imaginary part of the self-energy.

III. TRANSPORT AND INTERBAND OPTICAL PROPERTIES

o(E) = Tr, (j5(E —H)j 5(E —H) );
then

(3.1)

Velicky reexpressed the Kubo' formula for the
transport coefficient in terms of a product of two
Green's functions and showed how to average it in
the framework of the CPA. In this section we gen-
eralized Velicky's work for the two-band model.
The conductivity tensor o„„(&o)at a frequency + is
given, in the long-wavelength limit, by the current-
current (j-j) response function. After some sim-
plification assuming cubic point symmetry (o„„
= q„,etc. ). We can rewrite the dc conductivity c
and &~, the imaginary part of dielectric function,
in the following way: Let

The bounds of the spectrum of the alloy are those
of the union of the spectrum of pure components

a(v = 0) = o= v dE —o(E), —sf (3.2)



5616 P. N. SEN

and

4m
&~((g) =

~
dE [f(E) -f(E+(u)]

(d & on

x Tr, (j5(E —H)j 5(E+u —H)&,

6(E -H}= —(I/2vi)[G(E') —G(E )] . (3 3)

(a) 0--

0-"

m'p ~(E)
il

Here f is the usual Fermi function, j the current
operator, Tr, denotes the trace over single-parti-
cle states and ( ~ ~ ~ ) denotes the average over alloy
configurations. It is clear that we have to compute
quantities like

i

"2.2 -2.0
I

-1.0
i i-202

Q sA~(
Width ~2w

20 2.2
J

K(Z„Z~)= (G(Z, )jG(Z~)& . (3.4)

G is the full Green's function given by (2. 5). Fol-
lowing Velicky, one defines the vertex correction
I' as follows:

K(Z), Zq) = G(Z, )jG(Zq)+G(Z))1'(Z), Zm)G(ZO) . (3.5)

It can be shown, following Velicky, w that in CPA
I can be written as

.-0

I =BI n&y&n
I

(3.6)

r(Z„Z,)= (x/y) t"(Z, )[(n I
G(Z )jG(Z ) I n&

+ &n
I

G(Z )r(Z Z )G(Z ) I
n&

—(n
I
G(Z, ) I

n& y(Z„Zz)
x(n

I
G(Zz) I n)]t (Z&), (3.7)

where we used (t) =0. Equation (3.V) is a 2X2 ma-
trix equation which can be solved for y. Velicky 0

has shown that y vanishes for one-band model.
When band mixing is zero, the situation is analo-
gous to that of two independent single-band CPA's.
However, even then the y's do not vanish (see Ap-
pendix 8).

IV. MODEL CALCULATION: NUMERICAL ILLUSTRATION

A. Model

E (k)+E (k)=0 . (4. 1)

In order to evaluate p(E) we need to know F(Z).
In the one-band model F(Z) is related to F (Z) by a
simple equation. The present case is more com-
plicated, requiring an explicit integration over k
space to evaluate F(E). For simplicity we assume

FIG. 1. Dispersion relation (b) (schematic) for the
pure crystal ~ =& =0, and the corresponding Hubbard
model density of states Q.).

of states for these bands;

p'„(E)= (2/w'w)[wm —(E+-,' E, +w) ]'~~,

p~(E) = (2/w v)[w~ —(E —,E, -w) ] i— (4. 2)

Here 2w is the bandwidth and E~ the band gap.
These have critical points at the band edges of the
correct Mo and Ms types. We will show later that
(4. 2) gives an cm(&u) dominated by one peak. The
optical spectra of most of the semiconductors are
known to be dominated by one major peak (Phil-
lips'4), and for a study of the systematics of az(&o)
for alloys the above model density of states is good
enough. A model calculation by Sak~5'~ and three
model densities of states (Hubbard model, simple
cubic tight binding, and a density of states having
all kinds of Van Hove singularities, composed of
segments of parabolas) yielded the same gross fea-
tures for E2 in three. After some algebra one ob-
tains the following 2X 2 matrix form (using a nor-
malization of w = 1 henceforth) for Il:

g=C —4E' —E (4. 3)
In the reduced-zone scheme this relation for semi-
conductors is at least qualitatively reasonable'5'
(Fig. 1). All quantities now can be expressed in
terms of E„andF22 which are again related to
p„and p22 through Eq. (2. 13). Thus we need not
know the explicit form for E,(k) or Ez(k), and all
we need to know are the densities of states po«(E)
and p~o(E). We assume the Hubbard model density

Z —~E~ —1f '

12)

F~m f

where
(Z+ ~ E~+ I

('F„
F

(4. 4)

(4. 5)
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Equation (4. 3) can be further simplified to a 2X2
matrix equation

4E'= 16[C -e+{ -y)6] —[4(e —C+y6)+E']

xE[4(a C x6)+E']. (4. 6)

This equation involves only F and E' which do not
have singularities.

S. Density of States: Parentage

We have shown in Figs. 4-6 the densities of
states and parentage for several values of the pa-
rameters. For these examples we have used with-
out any loss of generality,

A
E =g5,

B =-25,
e =-,'(x-y)6.

(4.7)

(E)
8~~.+.=~ 8'e=0

I (1 I I I II
-lO 0 lO

3~2=0

8)2 =I.2
~,2 =1.6
&)2 =2.O

8(( =82go

l.2 "
I.I-
I.o-
0.9 "
0.8-
0.7-
0.6-
0.5-
0.4—

Gap Increases With 8)2

X eO. I

x 0.2
Xeo.5
x ~ 0.4
X so.5

0 O.2 04 O.6 O.s i.O ~.2

FIG. 2. Densities of states for various values of 5~2,
where 62g=6q2 and g~q=&22=0. The gap is plotted for
various values of 6~2 and keeping off 622 0.

The system of nonlinear equations (4. 6) was solved
by the Newton-Raphson'7 method. The quantities
we are interested in are evaluated at energy E+iO.
For the pure crystal we took E~=0.4(w= 1), which
represents a typical value for semiconductors. In
the one-band CPA there are two cases of major
interest: split band and amalgamation. In the for-
mer, there are two subbands in the alloy density
of states. In the latter there is a single band where
the densities of states of the individual components
have amalgamated. The term "band" used in this

1 4-

1 .2-

10.
09-

Gap 0.8-

0.7-

0.6-

0.5.

0.1 0.2 03 0,4 0.5

FIG. 3. Gaps for 6)f —$22 =0 for various values of &
and &~2 are compared for the CPA and virtual crystal
approximation {VCA). The dashed line is for the CPA
and the solid lines correspond to the VCA. The various
lines correspond to /~2=0. 2, 0.4, 0.6, 0.8, 1.2, and
1.4. The lines are plotted upwards as an increasing se-
quence of Qq2, the lowest lines corresponding to g f2 0.2
and the highest ones to P f2 1~ 4.

context implies well-defined regions in the density
of states. In the two-band model, five mixed cases
arise: conduction subbands and valence subbands
can be separately amalgamated or split and further-
more they all can overlap forming a semimetal
with no gap (Fig. 8).

Since the off-diagonal element 6» plays a ma)or
role in our study, we consider its effect alone in
Fig. 2. The gap increases almost quadratically
vrMh 5,~. The quadratic dependence is reminiscent
of elementary perturbation theory where the level
separation of two levels increases quadratically
with the perturbation mixing them. The outer
edges of the bands are affected relatively little
compared to those near the gap. From a perturba-
tion theory point of view, this can be attributed to
the smaller energy denominator for the states near
the band gap, In Fig. 3, we contrast some of the
values obtained from CPA, with nonzero 5» only,
with those from the VCA as a function of composi-
tion (cf. Appendix A). The quadratic bowing of the
energy gap with composition is typical in many
semiconductors. ' The bowing of gap as a function
of composition is obtained even in the VCA when

512 is nonzero.
Next we show the density of states for varying

5g2 in Figs. 4-S. These correspond to the strong
scatteri. Ilg regime. The values of x, 5», and 5~~
were kept fixed to illustrate the effects of band
mixing 5» which was varied systematically. The
values of x, 5«, and 5» were so chosen that in the
absence of band mixing (6»=0), the conduction
band is in the amalgamation regime and the valence
band is in the split band regime. This allows us
to encompass all the trends in a brief series of nu-
merical calculations. With increasing 5,z subbands
start to split off, and eventually all bands split
from each other. In all these cases the band gaps
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Gop Closure 7 '-(& —C)(&+C) '(&" —C) . (4. 8)
Split bond~"

IO

R
O.S-

8fP&D5

I I I

0.5 0.5 O. l

m'p(F)

I

8I2=0.5 =82I

822 8II

Hence the poles occur at the energies given by
det I C+E I =0. At these energies, F-0 as Z-~,
and therefore p-0 and hence we have split band.
The above equation has two roots. Only the poles
in the first Riemann sheet are relevant. This pro-
vides the necessary condition, namely,

p(E+iO)~ 0 .
Equation (4.9) implies for 5,3=0 and 8«=8~&, that

ID 2.0 E xy8f( ——,
' (i=1,2), (4. 10)

and when 5 is purely off diagonal the necessary
condition is

I.o 2.o E

~ 2.0

iR
I.o 2.o E

Ia 2.0

FIG. 8. Densities of states are plotted for four rep-
resentative points in the phase diagrams for 5f2 0 5.

are found to be smaller than those given by VCA
(the values are given in the figures).

The band gaps in mixed crystals measured ex-
perimentally are usually found to have lower val-
ues than those predicted by VCA ie In some other
cases like in Ga(As„P, ), the highest gape have
values higher than those for the VCA. Earlier,
Stroud has tried to explain these, combining the
CPA and the goMen rule. In our study, both cases
arise naturally, depending on the values of the pa-
rameters. This is illustrated in Fig. 3. For the
situation shown in Fig. 4, x= 0.7, 5» = 1.2, 522
= 0.8, and 6» = 0, we obtain a gap of 0.32 using the
VCA as opposed to no gap in the CPA.

Again for the situation in Fig. 5, which is simi-
lar to that in Fig. 4 except here 5,~=0.8, the VCA
gives a gap of 0.36 as opposed to no gap in the
CPA. If one increases 5~2 further, as shown in
Fig. 6, with 5»=1.6, one obtains a gap of 0.72 in
the VCA again large compared to gap in the CPA.
On the other hand, in the situation for Fig. 7,
there is no gap closure in the VCA. The range of
parameters which will give a zero gap in the CPA
is shown in the same figure.

Using (4. 3) it is easy to prove that around the
pole for Z,

(4. 11)

In Fig. 8, sequences I-III show how the subbands
split, eventually closing some gaps and opening
others going through a semimetallic phase. The
opening and closing of gaps as a function of compo-
sition are well known in alloys like Pbi „Sn„Teand

Hg~ „Cd„Te.'
The parentages of the states are illustrated in

Figs. 5 and 6; it is obvious that we can unmistake-
ably identify which band arises from which materi-
al. The vestiges of conduction and valence band
structures are also obvious. The latter result re-
inforces the hypothesis in the Mott-CFO ' model
about the retention of parentage by the localized
states in the gap. In Fig. 6 we see that even in the
presence of large band mixing, which causes bands
to split, p and p individually show the valence
band and the conduction band parentages.

Let us define the quantity nq as follows:

(4. 12)

According to Economou et al. ' the pseudogaps oc-
cur near where there is a sharp discontinuity in

n&, or where nq is large compared to the concentra-
tion of the ith component itself. Such possible
pseudogaps are indicated by arrows in the dia-
grams. p denotes the density of states at a site
occupied by A, and when p" is large compared to
p, we can say, semiclassically, that the states
corresponding to these energies are formed mainly
by channels of A with B fluctuating in the path. A

sudden drop in n& would imply that these channels
are blocked by fluctuations of high local B concen-
tration.

C. dc Conductivity and e2 (w)

In order to evaluate the transport properties ex-
plicitly, we need to know the expectation value of
the current (or equivalently dipole) operators. The
interband matrix element of the dipole moment is
very often assumed constant over the Brillouin
zone, with some justification. 2~ Accordingly we
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shall take it as a constant. Time reversal requires
that (ki I j I

-k'i') = —(Ri I j I fbi); so we can
write,

8E2 (k
Bk.

S

ED�(k)
ek„

j„(k)= e
)

(4. 13)

~p(E)

/

/
/

where e is a real constant and e the electronic
charge.

ln order to obtain o and c~(~), it turns out that
we do not have to know 8E,(R)/8R or 8E2(R)/8% ex-
plicitly; al1 we need to know are quantities like

k

We assume, following Velicky, 20

2

r „a)=E(~,' o(~-~, (r))

= 5[1 —()+1+,'E,P)3+,—

~,.(r) =P, ;~,[ I)(& -E.%))

=b[1 —(( —1 —2Ei) ] i

(4. 14)

where b is a real constant. We have estimated us-
ing the f-sum rule that cP/5- $. When we compare
the numerical illustrations given by Velicky 0 using
an approximation like (4. 14) for a single band with
the calculations of Levine et al. 2' using a simple
tight-binding model for E(R), and corresponding
exact forms for P» and P», we find that the gross
features remain the same in both cases, justifying
our use of (4. 14). The reason being that the M,
and Mz Van Hove singularities missing from the
Hubbard density of states, tend to smooth out in an
alloy.

Numerical examples for the dc conductivity a(E)
as a function of the energy E are presented in
Figs. 9(a) and 9(b). The contribution to o(E) from
the part which involves (j,z) is not plotted sepa-
rately because this is small compared to the intra-
band part, as expected. (Similarly, the vertex
correction turns out to be very small in this case
and is not shown in the figures. )

c(E) shows a tailing near the band edges and is
much smaller in the minority subband compared to
that in the majority subband. In other words the
states with lower o(E) correspond to lower mobili-
ty. ' On the other hand, from the density-of-states
considerations alone this is not obvious. At a fi-
nite temperature, when there is a minority subband
adjacent to the band gap we expect that dc measure-
ments will indicate through the form Ofx e &/ a
larger band gap than that estimated from density-
of -states plot.

However these states in the minority subband are

I
I

, i, , l
-I

r iP(E)
/ x *02

SII IO

a„a o.s,II

cr (E)

b
O
lO

82

2i

P(E)r~~/
/

a'(E~)

-- P(E)

/
/

(T(E)

FIG. 9. Density of states and 0(E) are plotted. A sig-
nificant drop of a(E) occurs near the energy where the
bands split (possible pseudogap, see Fig. 5).

perfectly accessible to optical transition and opti-
cal measurements will indicate a gap identical to
that in the density of states, provided that the di-
pole matrix element does not change. This is
clear from the plot of cm(&u) given in Fig. 10. When
623-—0, 5»-0, and 5,2=0, the analytic behavior for
&u 42(&u) in the alloy is found to be linear in ~ —E„
whereas in the pure crystal it goes as + -E,. (See
discussion in Appendix C. ) For the reason of com-
putational time and expense we did not plot ea(&o)

for large u& where 1/&g~ will dominate the structure.
We do not find any tailing in cu c& as in some early
experiments on amorphous materials by Tauc. '
Recent experiments by Wood and Tauc" on three
bulk semiconductor glasses report a weak absorp-
tion tailing near the absorption edge. These tailing
effects are due to a transition from localized states
to itinerant states and beyond the scope of a CPA
calculation. In most of the semiconductors (e.g. ,
selenium and silicon) one observes a sizable de-
crease in the peak of ca(~) in going from crystal-
line to amorphous form. '~ We have plotted a~(&u)

for a perfect crystal with the gap adjusted to that
of the alloy in Fig. 10. In Fig. 11, we see that
~ ca goes as (&u E,) near the gap-for I)„=1.0,
5»=0. 5, and x=0.2. This kind of dependence is
seen in some amorphous materials. [We refer to
the book by Mott' for more details about the vari-
ous forms of the analytic behavior of &o cz(w). ]
There is a sizable drop in going from the crystal
to the alloy. We should mention that Krammer et
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The effect of the vertex correction can be seen
to increase the peak in et(&o). This is obviously the
result of taking into account the effect of correla-
tions of the electron and hole. The completely cor-
related case corresponds to that of the pure crystal
with a larger hump. The behavior at the edge is
similar to that where y is neglected (Fig. 11).

V. CONCLUSION

%san

4

3
cv 3

2:
I—

I I I I I I I I

0.2 0.4 0.8 0 1.0 1.2 13 1.4
QJ

FIG. 10. &2{co) is plotted against & for an alloy:
l5$$ 1 0 6 f2 622 0 ~ 5. The vertex correction

enhances the peak. For comparison we have plotted &2{(d)

for a pure crystal with its gap adjusted to that of the al-
loy given by the CPA.

It is clear that CPA illuminates qualitatively
many features of disordered media: the size of the

gap, the edges of the optical spectrum, and the
question of parentage. The formalism revealed an
important analytical result that the vertex correc-
tion is not zero as we go beyond one band, even
when there is no band mixing. Eggarter et al. 3

proved exactly that the average of a single Qreen's
function cannot give the transport properties and a
considerable amount of information is simply lost
in averaging the single Green's function. In this
respect, the generalization of the CPA for trans-
port properties is quite good: It obtains an average
of a product of two Green's function. The vertex
correction corresponds to the additional correction
over the simple averaged Green's function, i.e. ,
(GjG) = GjG+GrG. Nevertheless, the CPA pro-
vides only a single-site approximation for I'. In
our model calculation it has turned out that I' is
given solely as a functional of G(Z):

r(z„z,) = rg(z, ), G(z,) ) .
Thus the calculation of I' using the CPA is in-

complete. It would therefore be interesting to
al. , using a convoluted density of states and re-
laxing the k-conservation selection rule for inter-
band transitions, obtained a remarkable agreement
with the experimental curve. ea(+) for the convo-
luted density of states with the relaxation of the k-
conservation rule is given by

4nc,(co)~, p,~ (E) pco( E+(u)dE. (4. 15)

For the CPA we can extract a factor M(E, &u) such
that

4m n
es(~)cc p&&(E) pat(E+m)M(E, &u)dE .

(4. 16)
In Appendix C, for a simple case where 5» and

5» are zero and 5» small, we obtain analytically

xy5~

[2E+v —ReZ»(E)]s + [ImZ»(E)]s

l5—

(t)44' (ft))' io

c .5

h

Ch

With Vertex Correction

ithout Vertex
Correction

X.o.z

8(,*(.o
8,~ 8«o.s

I I I

and &o &t(~) has a linear edge. However, in amor-
phous selenium Davis' observed the linear depen-
dence, arses(co) vs &o -E,. The similarity of our
et(&o) spectrum for the alloy to that of selenium is
rather remarkable.

0.209 0.2I9 0.229
0.2I4 0.224

QJ-gap

FIG. 11. Set(~) is shown to behave ciuadratically with
cu —E~ for &2{co) with and without vertex correction, near
threshold.
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study the behavior of ( G aa G) itself and to be able
to obtain a self-consistent approximation for it us-
ing a method like the Cohen-Freeds extension of
the CPA to go beyond the single-site approxima-
tion.
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APPENDIX A: GAP IN THE VIRTUAL CRYSTAL

The Hamiltonian for the pure A and B crystals
can be written in the same fashion as (2. 1):

Note that if «»=0, i.e. , when there is no band mix-
ing, the gap varies linearly with x. Calculations
by Van Vechten et al. ' yield a linear variation of
gap with x in the 7CA. However the experimental
gap they quote varies quadratically with x. ' This
clearly demonstrates that interband scatterings are
very important for 5» &0, when we indeed get the
characteristic bowing of the gap even in the VCA.

APPENDIX B: REMARKS ON VERTEX CORRECTIONS

When 5» =0 the situation is analogous to two in-
dependent one-band CPA's, yet y does not vanish.
Let us demonstrate this using (3.5) and remember-
ing that when 5»=0, t, E, Z, and G reduce to di-
agonal form in the band indices. Then invoking the
usual argument about oddness of 8E/ala and even-
ness of G(Z, k) in k space, we get from (3.7)

To obtain the gap E~ in the relevant crystals, we
have to diagonalize H„,. In the model calculations
we have taken E,(k)+Ea(k)=0. This gives the gap but

yll{ 1 2) = yaa{Z1 Z2)

where

x t„(Z,) tas(Z2)(an)011 22(Z„Z2)
y 1+ (x/y) t 1,(Z, )[F„{Z,)Faa(Za) —All, aa(Z1, Za)] '

1
All 2, = — Gl l(Z„k)Gar{Za, k) .

APPENDIX C: ANALYTICAL PROPERTIES OF e2

In a simple case where 5»&0 but 5g2=52g= 522=0 it can be shown that since t=0 and t»=0, &&0 for this
case. Writing Z,a=Z2, =Z22=0 in this case, we have from (3.3)

2 ImF22(E+ld)lmgll(E')
[2E+ld-ReZ(E')] +[ImZ(E')]2

' (Cl)

Now in the weak scattering limit when 5» -0 we obtain (2. 15):

() dE xy511paaN+ld)tlll{E
[2E+ld —ReZ„(E')]+[xyef, spla, (E —a)]2

Ald = ld —(Ea —2), Z = E+(O —2 Ea;
then

[Z(A~ —Z)]' (sxy5 )

(C2)

The center of gravity of pgy has been shifted by «»,
whereas the p~2 was unaffected. Hence the effective
gap is now E, —«». Let

When 4(d-0 but 6»4&, we get

ld &2(ld)~ A(d =(d —Ea+E .

When b, &-0 but 5«4~, we get

& ca(&d)~ (&u —E ) (crystalline case) .

For the pure crystal when e"= e = 0, Ell. (3. 3)
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