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The energy spectrum of tightly bound electrons in a uniform electric field is studied for finite systems. It
forms the Stark ladder for almost all states except those near the band edges (these can be understood as
surface states) and in the case of extremely low fields such that the potential drop across the entire sample

is of the order of the bandwidth. This fact is independent of the boundary conditions. A two-band

tight-binding model is solved, taking into account the interband coupling, and it is found that the spectrum
is that of two interspaced Stark ladders. The experimental situation is briefly reviewed and the limitations

and feasibility of observing Stark ladders in solids is discussed.

I. INTRODUCTION

The character of the energy spectrum of Bloch
electrons in the presence of external electric or
(and} magnetic fields has been extensively dis-
cussed in the literature. ' A satisfactory under-
standing, however, has not yet been obtained even
for the systems where the mutual Coulomb inter-
actions can be neglected. In recent years there
has been particular interest in the influence of an
electric field on the energy spectrum.

Soon after the investigations by Slater on the ef-
fects of the aperiodic perturbations on Bloch elec-
trons, James3 examined the electrons in a uniform
electric field and suggested the possible quantiza-
tion of the energy spectrum along the direction of
the field. Katsura, Hatta, and Morita4 examined
the case of the tightly bound electrons within the
one-band approximation. By finding exact solu-
tions of a finite-difference Schrodinger equation,
they found a discrete spectrum of equidistant levels.
In retrospect this level quantization is identified
with the Stark ladder (SL) to be discussed below.
They also found that near the center of the band the
energy spectrum of the finite crystal was nearly
equal to that of the infinite crystal for the boundary
condition that the wave function vanishes at the end
of the crystal. Subsequently, Feuer studied a
two-band model of tightly bound electrons. A fi-
nite-difference Schrodinger equation was also en-
countered here and it was found that the uncoupled
bands each gave rise to a SL. Solutions were ob-
tained in which the interband dipole matrix element
was treated as a perturbation and the otherwise
interspaced SL's were taken to exactly coincide.
Zener breakdown~ was studied from this approach
and the resulting tunneling probability was in qual-
itative agreement with that of Zener; the latter was
obtained by a quite different method. A more gen-
eral derivation of a SL was given by Kane' when he
discussed the Zener tunneling in semiconductors.

Solving Schrodinger's equation in momentum space
within the one-band approximation he showed the
existence of a SL with much simplicity. This quan-
tization of the energy spectrum was extensively dis-
cussedby Wannier who showed that if a solution of the
one-electron Schrbdinger equation in a periodic crys-
tal potential and uniform electric field exists for some
energyE, then the wave function Ps(r) satisfies

gs(r) = gs,~s (r+b) (Wannier's theorem). (l. 1)

Here Eo is the electric field, —e is the electronic
charge, and b is a vector representing a period of
the periodic crystal potential in the direction of the
field and P is its length. If E is unique then it fol-
lows that a unique SL exists. In Eq. (1.1) it is
essential that the system is infinitely large. %an-
nier' also presented detailed arguments for the
existence of SL in terms of perturbative treatments
of the electric field. Subsequently the effects of a
magnetic field on tunneling process was treated by
Argyres and the optical absorption was examined
by Callaway. ' Both are based on the wave function
that Kane obtained. After these pioneering works,
various investigators' ' examined the problem in
a somewhat similar fa,shion.

Zak, "on the other hand, has put forward various
arguments which call the existence of a SL into
question. He first claimed that there is a mathe-
matical inconsistency in the usual derivation of a
SL if one makes the following assumptions at the
same time: (a) periodic boundary condition, (b)
one-band approximation, and (c}macroscopically
large system such that the momentum variable can
be treated as a continuous variable. Later he
pointed out that E in Eq. (l. 1) is not uniquely de-
termined and might be arbitrary, resulting in a
continuous spectrum. Zak furthermore argued that
the energy spectrum should be sensitive to the im-
posed boundary conditions. Rabinovitch and Zak'~

in particular found a discrete energy spectrum dif-
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ferent from a SL for both free electrons and Bloch
electrons. In the latter case they introduced a
sinusoidal potential and treated the spectrum nu-
merically for a finite system under the rigid-wall
boundary condition. Recently the problem of bound-
ary conditions has been discussed by Shockley"
who claimed that almost all physically relevant
states will form a SL with minor modifications ir-
respective of the boundary. Apart from those rath-
er formal questions, there has been a naive con-
cern about the compatibility of a SL with the Bloch
band in the low-field limit.

On the experimental side, tunneling' and opti-
cal' studies aimed at verifying the existence of the
SL have been inconclusive and also questioned.
However, recent measurements of the nonlinear
conductivity by Maekawa' are worth noticing. We
discuss this in Sec. IV. Other recent experimental
support for the existence of the SL has been given
in the optical absorption study of Koss and Lam-
bert, ' although, as these authors pointed out, the
experimental uncertainty is rather large.

In this paper we first study a one-band model
within the tight-binding approximation whex'e the
system is put at an arbitrary size and the boundary
conditions are either periodic or rigid walls at both
ends. Thus we remove two of the above-mentioned
restrictions, (a} and (c}.

Although, as is well known, the single-band
model leads to a unique SL in a one-dimensional
system, this is almost certainly not true for the
full multiband system. It is reasonable to expect
that the energy spectrum will in general 0 be con-
tinuous as Zak' and others ' pointed out. (We
note that this possibility is consistent with
Wannier's theorem since the theorem also applies
to the empty lattice. ) However, we argue that this
situation would not preclude observation of the SL
quantization associated with a given band. We have
also solved a two-band tight-binding model and

found the spectrum to be comprised of two inter-
spaced SL. We have used this solution in present-
ing our argument for the observation of a single-
band SL.

elements of the coordinate operator. Although Eq.
(2. 1) is one dimensional, extensions to a three-
dimensional tight-binding model is straightforward
provided the electric field is in the direction of a
crystal axis. The present model has been employed
extensively in various studies. However, all of the
previous investigations were concerned with mac-
roscopically large systems. In the following we
examine the effects of both finiteness of the crystal
and boundary conditions in detail E. quation (2. 1)
also enables us to discuss both the limit of localized
atomic electrons (t= 0), where the SL is obviously
present, and the limit of free electrons discussed
by Rabinovitch and Zak' (cot '- 0 retaining a2t fi-
nite).

The various physical regimes are characterized
by two dimensionless parameters n = t/w and a
= t/Nzv, where N is the total number of lattice sites
and re= eE~. The parameter a describes the de-
gree of localization of a wave packet around an
atomic site, since t and so represent the kinetic
energy associated with the hopping and the poten-
tial difference between neighboring sites, respec-
tively. The auxiliary parameter o. characterizes
the competition between the kinetic energy and the
potential drop due to the electric field across the
system. For e «1 the energy spectrum is shown
to be insensitive to the boundary conditions and
forms a SL except for levels near the edge of the
band, where we find derivations from the SL for
e &1. The fraction of levels deviating-from the
SL, however, is vanishingly small in the limit of
large ¹ In this sense almost all states form a
SL. For e ~ 1 the SL disappears and the levels
approach the free Bloch spectrum and are sensitive
to the boundary conditions.

In order to solve the eigenvalue equation X@=E4
for the Hamiltonian in Eq. (2. 1), we expand C' in
terms of localized Wannier states

C'=Z c,a~(~0),

where I 0) is the vacuum. We obtain the following
secular equation for the expansion coefficient cg.'

II. BOUNDARY CONDITIONS IN A SINGLE BAND (fax —l)cl cK(cg+g+ cl-1) (2. 2)
We investigate one dimensional Bloch electrons

within the tight-binding approximation represented
by the Hamiltonian

K= Z t», ata„+ur Zlata, , (2. 1)
1, le=1 2=1

where a, (a,) is the creation (annihilation) operator
at the lth Wannier site. The transfer energy tf f is
assumed to be finite for nearest-neighbor hopping
only, t, &. ———t(t &0), and w = eEea, where —e, Bo,
and a are the electronic charge, the external elec-
tric fields, and the lattice spacing, respectively.
In this section we have neglected interband matrix

c, =AJ; (2n)+BY, (2n), (2 2)

where J„and F„are the usual Bessel and Neuman

Here e =E/t and ct = t/tu. Exact solutions to Eq.
(2. 2) were first given in Refs. 4 and 5. This type
of equation was also treated by one of the present
authors~ in connection with the magnon bound-state
spectrum in a magnetic salt. 3 By noting that Eq.
(2. 2} has the same form as the recursion formula
Z„,&(&) +Z, (x) = (2v/x) Z„(x) for the solutions Z„(x) to
the Bessel equation, we can immediately write
the general solution of Eq. (2. 2) in the form
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J„(x) (2wv) 't w(ex/2v)",

Y„(x) (2/wv)'t '(ex/2v) ",
(2. 6)

and obtain the eigenvalue equation, tan[saw] = 0,
which implies ec. =n (integer}, i.e. , a SL. The
fraction of states near the band edges, which show

deviations from a SL, is of order N ' and therefore
vanishingly small for a macroscopic system. 2' The
above arguments demonstrate the existence of a SL
for almost all states even in the presence of rigid-
wall boundary conditions.

In order to investigate the energy spectrum near
the lower band edge, we assume without loss of
generality that N- ~, in which case Eq. (2.4) re-
duces to

Z,.(2o) = 0 . (2 7)

In the high-field limit, Eq. (2. t) yields a SL as
discussed above. At low fields, a '«1, we make
use of the following double asymptotic expansion of
the Bessel function:

functions, sinvwY„(x) = cosvwZ„(x) —J „(x). The ar-
bitrary real constants A and 8 are determined by
means of the boundary conditions. For convenience
we have chosen the real solutions to Eq. (2. 2},
thereby excluding current-carrying states. (Cur-
rent-carrying states can be discussed in terms of
the complex Hankel functions. w~)

A. Rigid-%falls Boundary Condition

By imposing rigid walls at both ends of the crys-
tal, we arrive at the boundary conditions c0= cN. &

=0 which lead to the eigenvaIue equation

(2o)Yw. i- (2&) -~v. g (2o)Y (2o) =o (2 4)

In the high-field limit, n «1 (i.e. , m» t), the
left-hand side of Eq. (2. 2) dominates and we get
en =n(n= 1, . . . , N), which is the SL. This is the
limit of atomic electrons localized at each Wannier
site. A more careful analysis based on Eq. (2. 4)
by means of the power series expansions of the
Bessel and Neuman functions yields (keeping only
the leading term)

n '"'"[I'(1—en)I'(en -N)sin(en -N)w] ' (2. 5)

The poles of the I' function imply Ee = n, i.e. , the
SL.

Let us next consider the spectrum at interme-
diate and locu fields, i.e. , a =0(1) but o«1. We
first demonstrate the existence of a SL for almost
all states in a macroscopic system. For this pur-
pose we distinguish between states which are close
to either band edge, i.e. , &n = 0(1) or N —&o. = 0(1),
and the remaining states which occupy the bulk of
the spectrum. In the latter case we make use of
the asymptotic expressions for the Bessel and Neu-
man functions for large order and fixed argument

~„=-2+ o "'[3w(n+-', )/2]"' . (2. 9)

The expression (2.9) is of the same form as the
energy spectrum obtained by Rabinovitch and Zak
for free electrons in an electric field if we replace
(2cPt) by an effective mass m. We redefine the
energy origin at the lower edge of the band and re-
store the proper energy units, we have

e„=[3weEw(n+ —,')/2(2m)] (2. 10)

The spectrum of Eq. (2. 10) represents the surface
states at one (lower-electric-field potential) side of
the crystal. In the case of finite bandwidth, how-

ever, the spectrum continuously changes to a
SL around n0th eigenstate which satisfies E„=2, or"0

n, = (ISED/3w —-', ) . (2. 11)

In the extreme low-field limit, where n» 1, we
obtain the energy spectrum of free Bloch electrons
a„= —2cos(wn/N), n=0, 1, . . . , N —1. This can be
shown using Eq. (2. 4) by expanding the asymptotic
expression (2. 8) and the corresponding one for Y„
in orders of Nn for Na «1. Thus the spectrum
changes continuously in the extreme low-field limit
for finite ¹ For an infinite system the zero-field
limit is singular as shown by Eq. (2. 10).

The right-hand side of Fig. 1 illustrates the field
dependence of the energy spectrum for rigid-wall
boundary conditions. For simplicity we have set
N=50 in the plot. We stress that for large N al-
most all eigenvalues form a SL. A more quantita-
tive plot of the field dependence of the lowest few
levels for n ~~ 1 can be found in Fig. 1 of Ref.

26

B. Periodic Boundary Condition

In this case, the eigenvalue equation is given by

= constant independent of l .
I-aa 2& tow-ea (2. 12)

The energy spectrum determined by this condition
is almost identical to that of the rigid-walls bound-
ary condition except at extremely low values of the
field, i.e. , e & 1. This is related to the fact that
the zero-field Bloch spectrum, e„=—2cos(2wn/N)
(n = 0, 1, . . . , N —1}, is doubly degenerate except for
the lowest state. The degeneracy is lifted by the
electric field and for 0. & 1 the spectrum becomes
insensitive to the boundary conditions. The eigen-
value spectrum in the case of periodic boundary
conditions is plotted on the left-hand side of Fig. 1.
Thus we have confirmed the existence of a SL for

Jw, (2o) cos [2n(sine —e cos&) —-'
w] . (2. 8)

The energy spectrum E= —2cos8 is given by the
zeros of Eq. (2. 8), i. e. , sin8 —&cose= w(n+ ', )/—2n
(n positive integer). By expanding near the lower
band edge e= —2, we obtain the spectrum
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Thus by use of the one-particle operator

a„= Z J, „(2a)a, ,
f g»40

(2. 16)

n= a4

-3

the Hamiltonian, Eq. (2. 1), is diagonalized as

&= ~ ~nan&4 . (2. 16}
fism40

(2. 1V)

can be written in a closed form as

Here u„and a, refer to destruction operators for
an electron on the nth rung of the SL and the Eth

Wannier site, respectively. Note that the wave
packet corresponding to the nth rung of the SL has
a center at R„and its width is of the order of ec.
Correspondingly, the one-particle propagator de-
fined by

K(R„,R„r)=(oi a„-(r)a/i(0}i 0}

1

I
l

ns-N ns-N

K(R„,R„r)= Z Z„,(2a)Z, , (2a)e""'

jr'& -j(r-s) (+&-&)I&=e e

x Z, ,(4t(sin-,'mr}/m) . (2. 16)

FIG. 1. A schematic representation of the electric
field dependence of the energy spectrum c' in the case of
rigid-wall boundary conditions (right-hand side of energy
axis) and in the case of periodic boundary conditions (left-
hand side of energy axis). For n =eE~/t less than N
(N is the total number of lattice sites) the spectrum is
essentially that of free Bloch electrons and is sensitive
to the boundary conditions. For higher fields 0. » N i

the spectrum forms a Stark ladder in almost the whole
energy region. Deviations from the Stark ladder is ap-
preciable only for states near the edge of the band and for
weak fields 0, -1.

Z Z„., (2a) J~„(2a)= 5„,„, .
J s»oo

(2. 14)

a finite one-dimensional tight-binding band.

C. Infinite Crystals

As we have seen, if the crystal is large the
boundary conditions have no effects on the energy
spectrum for almost all states except those very
near the surfaces. This is in accord with Shock-
ley's observation. The fact that the present mod-
el yields a SL in infinite crystals is also simply
seen4' from the requirement of the normalizability
of the wave function C, , Eq. (2. 3). By the redefi-
nition of the origin of the coordinate at the center
of the crystal, this condition is written as

Z ic, i'( (2. 13)
f s»oo

which is satisfied only for C, = J, „(2a}—= C',"', where
n is an arbitrary integer related to the energy ei-
genvalue e„=nav. The completeness and orthogo-
nality for these wave functions follow from

If we define K(k, r) by

K(k, r) -=1/NZ e' '"i "~'K(R„,R„r),
we obtain

limK(k, r) = e' "'~~ (2. 19)
go» 0

which is the correct propagator in the absence of
the electric field. Thus although the energy spec-
trum is discontinuous at Eo= 0, this one-particle
propagator goes correctly to the one in zero field
(since the wave functions at energies outside the
zero-field bandwidth interfere destructively as that
limit is approached}, implying that other physical
observables mill behave accordingly.

Wannier's theorem, Eq. (1.1), applies to an in-
finite crystal of the present model, Eq. (2. 1), and
therefore does not say anything about finite crys-
tals. In the following we wish to show how, work-
ing mith an infinite crystal, a boundary condition
that has a sensible interpretation can be imposed.

In Eg. (2. 15), for large negative n, states of ar-
bitrarily large negative energy occur in the spec-
trum. These states appear because electrons can
move to infinity in the negative x direction in the
model and, therefore, find themselves in a region
of arbitrarily large negative potential energy.
Real solids are bounded, of course, and the sur-
face of the solid presents a barrier which prevents
this from occurring. In order to simulate the sur-
face of a solid, let us try an approach taken from
other situations in which infinitely negative-energy
fermion states have appeared, ~' and fill up all the
states up to some energy. Without loss of general-
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p(R, ) = Z J~, (2a); (2. 20)

p(R, ) is a monotonic function which satisfies the
equations

lim p(R, }=1,
Rjeaoo

lim p(R, )=0 .

(2. 21)

(2. 22)

Furthermore,

ity, we take this energy to be zero. Because of
the relationship, Eq. (2. 15), between n and R, in
the wave function, filling the states up to some en-
ergy is essentially equivalent to filling the infinite
solidonone side of a certain position. Thus, owing
to the exclusion principle, rather than a physi-
cal barrier, additional electrons do not move to
regions of large negative energy, but remain in the
region spanned by the positive rungs of the SL.

Since we have the exact wave functions for the
states, we can make these statements mathemati-
cally precise. The probability that the site at Rj is
filled, if we fill the states referring to n from -~
to 0, is given by

p(-R ) = p(o)+ ~~i(2a) (2. 23)

p(RI ) = p(o) ~—~x i(2n) (2. 24)

for l& 0. Here

P(o) = -'[I+~o'(2 )1 (2. 25}

Simple numerical analysis shows that this function,
p(R, ), varies from 0.01 to 0. 99 in a region of width

L, where

L=2aa=4t/eEO . (2. 26)

Thus, the thickness of the barrier we simulate by
filling the negative-energy states is field dependent
and the stronger the field, the more abrupt the bar-
rier.

HI. TWO-BAND MODEL IN INFINITE CRYSTALS

The effects of interband coupling were already
discussed by Feuer' who restricted the strength of
the electric field to the specific values that yielded
two coinciding SL's in the absence of interband cou-
pling. In this section we discuss this problem
more generally based on the Hamiltonian for tightly
bound electrons,

X= —& Z e~s~+t Z (a~a~.~+sg fs()+n bgbg+t ~ (b(bg+f+bt lbl)t t Y t
j =me j =neo j w~ao j oaoO

+M Z l(a&a, +b&bi)+ V Z (sibi+b, a&) . (3 1)
j oooo j aaoo

a„= Z Z, (Sa)a, ,
j saao

P„= Z 8, (2n')b, ,
j shoo

(3. 2)

with a = t/eaEO and a' = t'/eaEO, we rewrite Eq.
(3. 1) as

3C= Z (e„a~a„+e„'P~P„)+eEOX
ffgwN

Here a, (b, ) is the destruction operator referring
to the lower (upper) band. The first four terms
represent the two Bloch bands which have the half-
bandwidths 2t and 2t', respectively. We chose the
energy origin such that the centers of gravity of the
two bands are symmetrically displaced about it and
separated by 2b, . The tight-binding approximation
requires 26» 21t1 and 2b, » 21 t'I . The last two
terms are due to the electric field. We have V
= eEOX, where X is the dipole matrix element be-
tween two atomic states at the same site. We have
neglected the matrix elements of electric field be-
tween neighboring sites. By introducing

Z J„„.(2a —2a')(a„'P„. + P'; a„) .
n, n'w ~

(S.3)

Here, e„'= x 6+neaEO and we have used the identity

Z J„,(2a)J~, (2n')= J„„.(2a —2a') .
,j s»oo

(S.4)

(v —e„)n„=V E 4„~(2n —2n')g. ,

((u —e„')P„=V Z J„.~(2n' —2n)n„. .
0~co

(S.5)

It is seen that, through the interband matrix ele-
ments of the electric field, the nth rung of either
ladder is coupled to all of the rungs of the other
ladder. The energy spectrum of this coupled set
of difference equations is found to be comprised of
two interspaced Stark ladders (see Appendix). In
the special case that t = t' or 0. = 0, ', which implies
an indirect band gap, the Hamiltonian Eq. (3. 3)
becomes

Eigenvalue equations for Eq. (S.3) are cast into the
form



5584 F UKU YAMA, BA RI, AND FOGEDBY

(3. 6)

(n'+ V')» t (3.9)

is satisfied. This comes from the fact that the
centers of the wave packets are apart, by Eq.
(3.8), as much as

~(n-n')a~=2(b +V )' /eE (3.10)

and the spread of each of the packets is of the order
aa = 2t/eEO. Thus two wave packets do not overlap
and would have little coupling under the condition
of Eq. (3.9). In such a case, certain physical
properties related to spatially local probes would
behave as if there is only one SL. If Eq. (3.9) is
not satisfied, states belonging to different rungs
couple appreciably through such local perturba-
tions.

IV. DISCUSSION

We summarize our results as follows: (i) In a
macroscopically large system we confirm the
existence of a Stark ladder in a one-band model
with either of the periodic boundary condition or
the rigid-walls boundary condition. (ii) In a
finite system the energy spectrum does not yield
a SL in a rigorous sense, but the deviations from
a simple SL are very small except in two cases.
One is the case of extremely low fields where the
potential difference between two surfaces due to
an electric field is comparable to the bandwidth
and the other is the case of states near the band
edges (surface states) in arbitrary fields. In the
case of an infinite bandwidth (an effective mass
region), all of the states are under the influence
of rigid walls and then it is natural that the spec-
trum Rabinovitch and Zak 4 found for this case is
different from the simple SL. (iii) In a model of a
two-band system, the energy eigenvalue no longer
forms a SL but yields two interspaced SL's. How-
ever, if the band gap is larger than the bandwidth,
nearby energy states associated with different
ladders will be spatially separated and it is mean-

The eigenvalues z„are simply given by

ru'„=+(& + V ) +neaE . (3.7)

The spectrum is that of two interspaced SL's, and
the energy spectrum of the system as a whole is no
longer that of a simple SL. Thus it generally hap-
pens that the nth state belonging to one rung, for
example ~„' of Eg. (3.7), has an energy eigenvalue
close to the n'th of the other rung +„.; or

~

(o„'-(u„.
~

=
~

2(n'+ V'}"'+(n -n')eazol«eaEO .
(3.8}

However, the coupling between these two states is
very small if

ingful to discuss a single SL over a given spatial
region.

Although our studies have been for one-dimen-
sional models of crystals, we note that the situa-
tion is somewhat different in a two- or three-
dimensional system. We take the former case as
an example, but the similar arguments apply to
the latter. If the electric field lies in a rational
direction in the sense that it is parallel to a vector
(ma~, naz) where az and aq are two fundamental
lattice vectors and m and n are arbitrary integers,
the electronic motion is periodic in both real and
momentum spaces and the spectrum is discrete
along the electric field. This can be easily de-
duced from the arguments of Kane. ~ [Note that
(kz —k, ) in Eq. (6}of Ref. 7 is the sum of the seg-
ments of the path in the first Brillouin zone. ] The
spectrum is continuous with respect to the motion
perpendicular to the field. In this sense the whole
energy spectrum consists of the continous and the
discrete components in this case of the ~ational
field direction. If the field lies in an irrational
direction, the spectrum even in the direction of the
field becomes continuous since the period of the
motion becomes infinite, and the entire spectrum
consists of two continuous components. This
rationality of the electric field direction for the
quantization of the spectrum might be compared
with the rationality of the strength of the magnetic
field encountered in the discussions of Brown,
Chambers, and Zak.

We again stress that these peculiar features of
the eigenvalues will not prevent us from observing the
simple structure of a Stark ladder, due to the
fact that the coupling between these neighboring
states is not always strong.

There have been no definite observations of the
SLuntil the recent experiments by Maekawa' and
Koss and Lambert. ' Maekawa found a stepwise in-
crease of the electrical conductivity in ZnS as a func-
tion of electric field. These results were theoreti-
cally analyzed by Saitoh'~ on the basis of Kane's
function. ~ In this experiment a thin film with a
thickness of the order of 1 p.m was used and the
applied electric field was - 10~ V/cm. Since the
bandwidth is nearly 3 eV, "we have a ~ = eEa/t
=2x10 ~ (a=3 A), which is nearly two orders of
magnitude larger than N ' = a/(film thickness)
—3&10 4. In this sense the experiment is defi-
nitely in the region of the discrete spectrum ex-
cept for the broadening of the states due to the
motion perpendicular to the field. From Fig. 1,
on the other hand, we note that in this case the
spectrum deviates strongly from a SL near the
band edges. These deviations will not be impor-
tant, however, for the current-carrying electrons
running from one side of the surface to the other,
since the number of atoms which occupy surface
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APPENDIX

We shall demonstrate that the energy spectrum
of Eq. (3.5) i.s comprised of two interspaced Stark
ladders. We introduce Fourier transforms of 0.„
and P, according to

a(k) = Z e '""a„,
~N n

(A1)

regions is 2n« = 4f/e Ea = 200 [Eq. (2. 11)]and then
electrons spend almost all of their time in the bulk
region. Thus the analysis by Saitoh who treated
the system as a bulk sample is justified in this
respect. However, the condition, Eq. (3.9), for
the validity of the one-band approximation is not
satisfied so well since the band gap is -4 eV and
then SL of different rungs would couple to each
other owing to such perturbations as electron
phonon and impurity scatterings. Apart from
this interband coupling, the present system has
another complication owing to the three-dimension-
al character. Applications of the high magnetic
fields in the same direction of the electric fieM
might be of use since the motion perpendicular to
the electric field can be quenched. We note, how-
ever, that more detailed investigations based on
current-carrying solutions [complex solutions to
Eq. (2. 2)] are necessary for understanding such
nonlinear transport phenomena.

Besides such irreversible processes, it would
also be of interest to see the gradual change of the
energy spectrum from the surface to the bulk
region. Perhaps optical measurements will be
useful in this regard. (We note the measurement
by Koss and Lambert~ in the bulk region. ) Of
course the purity and the thickness of samples are
important factors in this kind of experiment. The
former determines both the carrier number and
the relaxation time and the role of the latter has
been discussed in this paper. Apart from usual
solid-state materials, the narrow-bandwidth or-
ganic solids are of particular interest since they
can be intrinsically one dimensional and the con-
dition Eq, (3.9) for a one-band approximation is
easily satisf ied.
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b(k) = Ze '""P, .
MN n

Note that a (k+ 2&&/a) = a(k) and b(k +2 «/a) = b(k).
We substitute Eqs. (Al) and (A2) in Eq. (3.5) and
easily obtain

(A2)

l
&+A is@ s(k) Vs-8& &a-a')e&nneb(k)

(A3)

b(k) —B(k) e-& i I ese) & Q-d) n

then, from Eqs. (As) and (A4) we obtain

—ieEe —A(k) = Ve' 'sB(k), (As)

-ieEe B(k)—= Ve ' '"A(k), (As)

where

F(k) = k —2(a —a ) sinka .26
eEO

After differentiation of Eq. (As) and combining
with Eq. (A5) we obtain

d B (V . I'24 'I da
dk I, eE ),eEe +l —B-el 2(a —a ) coska —=0.

) dk

(A7)
Since Floquet's theorem applies to this differen-
tial equation, the solution must be of the form
B(k) = e&"'P(k), where P(k+2«/a) =P(k) and X

=X(V, 6, f- i'). This implies that

b(k) i&i-&a-6)/eBjnp(k) (As)

but the periodicity condition on b(k) requires that

A. —(&d - n )/eE = na (n = integer) .
This gives

g = &+neaE+ eEX,

(A9)

(A10)

the familiar ladder spectrum. It is seen that the
condition (A9) makes the function a(k) also periodic
in momentum space. By repeating arguments for
A(k) similar to those leading to Eq. (A7), we will
get the spectrum (A10) with different X.

l&d -A —ieEe —b(k) = Ve " a "nn'a(k) .'du
(A4)

In obtaining the Fourier transform of the right-
hand sides of Eqs. (A3) and (A4) we used the in-
tegral representation of the Bessel function, ~4

g ( x) = (1/&&)f &f&t
e&&ne »&ne-&

n 0

If we define

a(k) = A(k) e-«""o'""'"
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