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A "geometrical" model is presented for the hexagonal close-packed lattice proposing several principal
mechanisms for the displacement of a knocked-on atom. Using the experimentally determined
resistivity-change rates of a previous paper and matching families of cross sections computed with this
model, we have calculated sets of thresholds energies for displacement in the directions [0001], [1014],
[1012], [1011],and f1120] in cobalt, zinc, and cadmium. The correlation between the resistivity-change rates
and the displacement cross sections allowed the determination of the Frenkel-pair resistivity per unit
concentration in cobalt and zinc: pz' 3 po~c/at. %, p~" = 3.5 poz"c/at. %; no definite conclusion for

pz couId be made owing to the proximity of a recovery stage. Expressions for the energies needed to
pass across one or several open "windows'" in the hcp unit cell were deri~ed, including the possibility of
focusing coHisions in the [1120] direction, and compared with the previously calculated threshold en-

ergies for displacement in various directions. This comparison permitted the tentative deduction of in-
teratomic potentials of the Born-Mayer type giving as a possible choice: U '(eV) = 3300e~~& ~, U "(eV)
= 280e "&"& U d(eV) = 300e ~.o'&"~

I. INTRODUCTION

It is by now a well-established phenomenon
that atom displacements caused by collision with
an energetic particle proceed preferentially in a
few fundamental directions of the crystal lattice.
In other words, the so-called threshold-energy
surface contains distinct minima of generally
10-20' width around the principal low-index di-
rections of a unit cell. This has been analyzed in
detail for fcc' and bcc lattices by the Brook-
haven group, who simulated atomic collisions on
a computer using a potential of the type

U(r)=A e +

with r as the interatomic distance. Using the re-
sults of the computer "experiments, "' Jan and
Seeger employed a threshold-energy surface
which they gave an analytical form (harmonic) us-
ing three adjustable parameters for cubic crystals.
A comparison of the experimental results and the
cross section o(E) calculated with this analytical
threshold-energy surface allowed a deduction of
the three parameters, which were the displace-
ment energy thresholds in the three main crystal
directions (100), (110), and (111). This method
was used to interpret the single-crystal results
of nicke14 and tantalum, and also of hexagonal
graphite~ bombarded by electrons. We feel that
this technique might be justified for crystals of a
high symmetry such as the fcc system; but al-
ready in the case of the hexagonal close-packed
(hcp) crystals, their relatively lower symmetry
would induce us to choose more than three funda-
mental displacement mechanisms. In using Jan
and Seeger' s threshold-energy function, this

mould imply an increased number of parameters,
thus complicating the analytical form oi this func-
tion and making its application impractical. It
seems, actually, that even for bcc crystals the
Jan-Seeger method is not easily applicable: Jung
and Schilling' had to cease in their efforts to fit
their tantalum data with its help, and Lomer and

Pepper from the beginning used the computer re-
sults instead of it for their iron interpretation.

In what follows, we propose a tentative model for
the displacement events in an hcp lattice, proceed-
ing from simple geometrical considerations con-
cerning possible propulsion mechanisms of a
knocked-on atom, without any a priori assumption
for the form of the threshold-energy surface. Sec-
tion II will present this "geometrical" model show-
ing the various "easy" displacement directions.
Section III will briefly treat the calculation method
of the displacement cross section using the model
described before, and in Sec. IV we shall, finally,
compare the obtained families of displacement
cross sections with experimental resistivity change
rates measured for hcp, cobalt, zinc, and cadmium
and presented in the preceding paper, hereafter
called I; this comparison shall offer us the right
combination of threshold energies for the model
in question. In Sec. V, we shall calculate the
energies an atom needs to pass through various
potential barriers in the corresponding directions
and try to rnatch an interatomic potential of the
form (1) so as to reproduce the empirically oh-
tained sets of thresholds.

II. DISPLACEMENT MECHANISMS IN AN hcp
LATTICE

Figure 1 represents half the unit cell of an hcp
crystal: We show one basal plane and the three
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FIG. 1. Part of the hcp unit cell indicating several
lenses and the corresponding propulsion directions of the
atom Ao across them.

atoms placed symmetrically half-way between
this plane and the one in a distance c above it.
%'e have indicated the principal directions which
the central atom of the base plane will take when
being knocked out of its lattice position: [0001],
[1014], [1012], [1011], [1120], and [1010], which
are perpendicular to the lattice planes (0001),
(3038), (3034), (3032), (1120), and (1010), re-
spectively.

To illustrate better the various collision mech-
anisms, we present in Fig. 2 two projections of
the ideal hcp lattice —very closely corresponding
to the case of cobalt. In the upper part of the
figure, we show the basal plane viewed along the
c axis; in the lower part, we show a view per-
pendicular to it and cut along the (1120) plane,
i.e. , under an angle of 30 with regard to the
prismatic plane. The filled circles represent
atoms in the plane of the paper; the open ones
represent those in the plane immediately above
or below it. Let us consider now the trajecto-
ries which the atom marked Ao would take once it
is pushed out of its lattice site, according to the
principle of least effort. One can see that the
atom is surrounded by different "lenses" of var-
ious shapes and sizes, which we shall describe
here in some detail:

L, : ideally a square lens of side length a, where
a is the lattice constant of the basal plane. The
atom Ao, which has been knocked into the direc-
tion [1012] (cf. Fig. 1) and has passed through L,
[parallel to the plane (3034)], will encounter the
next atom A, after a distance 2a, (a, is equal to
the distance r, of the lens center to one of its
atoms) and will push the latter through a very
open lens L2.

L~: a wide rectangular lens parallel to the

0
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FIG. 2. Two views of the hcp lattice. Above: view
along the c axis of the crystal; below: view perpendicu-
lar to the c axis, cut parallel to the (1120) plane. Indi-
cated are several of the lenses (cf. Fig. 1) and their di-
mensional characteristics.

(3038) plane with a center-to-atom distance rz
and a relatively small lens "depth" a& such that
the next chain atom A~ is rather close. %e shall
call a collision of the type across L2 into the di-
rection [1014]a "quasifocusing" collision, since
it represents the beginning of a focusing chain
(geometrically equivalent to the focusing chain in
the (110)direction in an fcc lattice} which does
not continue but drops its atom into another square
lens of the type I,.

The passage L&-L&-L» etc. is symmetrical:
%e can see, actually, that the atom A~ can make
first a quasifocusing collision (with B,) and push
the latter through a square lens I;it results in
the sequence L~-L,-L~, etc.

L3: a triangular lens formed by the three atoms
above or below the basal plane in a distance -', c (c
is the lattice constant between two basal planes}.
The passage of Ao across L3 in the direction [0001]
will knock the next atom Ao through an identical
lens L3 giving LS-AO-L~, etc.

L4. another triangular lens, parallel to (3032),
which in the case of an ideal hcp lattice [where
c/a = ($)'1~] equals L„' for zinc and cadmium, with
(c/a)~ &+ this lens is bigger than L, By being
pushed in the direction [1011], the atom Ao passes
through a double lens L4 before colliding with the
next atom C,—a situation analogous to that of an
atom knocked into the direction (111)in an fcc
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TABLE I. Center-to-atom distances r& and "depths" a& of the various lenses in an hcp
lattice (cf. Fig. 2).

Ls

L4

()c2 + 1 2)1/2
18

(gd(2 + (c2)1/ 2

&a +ac1 2 1

()82 + c2)1/2

ideal

(1 2+ g 2)1/I'2
&~ +~ec

$(2&3 (()f(22+ (tc2)'/2

gc

a&3 1+~ 2 g+ ~
2- i/2

ideal

gaW

& (g)

g (2) |//2

with g =&3 (c/g)2

r)= gnvY

2'" = (~(2' + gc ) ' $(2(/3i2

lattice. The further track, however, is different
from the fcc trajectory: C, is pushed across an

type lens and now follows the sequence L;Ldfp-L „
etc.

L,: is not a lens in the exact sense used here.
It is the classical focusing collision chain in all
the directions of the type [1120]in the basal plane,
with an interatomic collision distance of a. The
correction due to the interaction with the next-
nearest atoms from the center between two chain
atoms will be considered.

In Table I we have collected the necessary in-
formation concerning the sizes and "depths" of the

I

above-mentioned lenses for a general hexagonal
close-packed lattice. The expressions are thus
directly applicable for the zinc and cadmium cases
as well: In fact, due to the larger c/a ratio of
these metals, the lenses L„L~, and especially
L4 become wider than in the ideal hcp crystal.
The much simpler formulas for the ideal case of
cobalt are also presented.

III. COMPUTATIONAL METHOD

Our task is the calculation of the displacement
cross section, which is function of the bombard-
ing electron energy E, such that

a(E) ff d(((=f f [p, (a, [da, dad'2 ] p(p, a„a,)) . (2)

T=T cos 8, (4)

where T is the maximum energy transferable in

The relationship between the angles involved is
illustrated in Fig. 3; a, and az are counted from
the direction of the incident electrons, p, and y~
are perpendicular to it. The direction of the scat-
tered electron is defined by the angles (a„(((p,),
that of the recoil atom by (a„922). P(a, ) is the
angular dispersion function of the electrons in the
specimen (cf. the discussion in I, Sec. IV), which
is supposed to be of Gaussian shape and normal-
ized such that foP(a)da =1. The angle between
the knocking-electron direction and that of the
knocked-on recoil atom is given by

cos e= sina2slna2 cos (e22 —(/(1)+ cosa1cosa2. (2)

The energy T transmitted to the atom by the inci-
dent electron is a function of 8

a head-on collision: T (eV) = (560. 6/A) &(a'+ 2), with
e= E/mcc and the usual meaning of the notations.
For the differential cross section do/dQ2(T, E), we
employ the approximate formula by McKinley and
Feshbach, and p(T, a2, 422) is the step probability
of an atom having received the energy T in the di-
rection (a2, F22) to be displaced:

p(Tp aa, (Ica)= 0 for T(8) T~(a2p 1/'2) p

= 1 for T(e) ~ T,(a2, (([[2).

In expression (5) the main difficulty of the problem
emerges: in order to be able to calculate the cross
section (2), we have to know T(((a2, (/[2). In fact,
what we shall do is to invert the procedure and use
sets of T~'s as parameters, subdividing the space
A2 = (a2, (([[2) into a number of distinct "windows"
corresponding to the "lenses" presented in Sec. II,
where the various T~'s will assume a constant and
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FlG. 3. Angles relating the directions of the knocking
electron and of the recoil atom to the direction of the in-
cident electrons.

relatively low value. In between the windows, the
space is supposed to be nontransparent for the re-
coil atoms, i. e. , we shall assign it to a T~ which
is not attainable by the maximum energies trans-
ferred in our experiment. An additional param-
eter is the size of the various windows, for which
we shall be guided by the geometrical considera-
tions of Sec. II and by the results of the Brookhaven
group~' concerning the region of constant minimum
threshold around a low-index crystallographic direc-
tion. The obtained families of cross sections will
then be compared with the experimental damage-
rate curves with the aim of choosing the right set
of Tz's. It may seem that the picture of a window
with a constant T~ surrounded by a space of much
larger T~ is not justified. In fact, such an image
of something like a potential well is what follows
from the computer simulations. It will be more
or less correct if the respective interatomic po-
tentials are more or less steep. As a first ap-
proximation, we have defined the windows corre-
sponding to the selected orientations by a solid
angle of rotation of 10' around the focusing direc-
tion [1120]and of 20' around the other directions,
The calculations showed, however, that it was not
sufficient to consider the first collision only, since
the atom would not stay permanently displaced after
the passage of only one lens system. Taking into
account more than one passage changes the sym-
metry properties of the problem and leads to a
modification of the shape of the windows. The fi-
nally adopted threshold-energy surface is shown in
a stereographic projection in the upper part of Fig.
4 viewed along the c axis of the crystal. We note
that directly adjoining the central lens (0001) there
are three windows corresponding to the quasifocus-
ing direction (1014) with the threshold energy T2.
The opening angle of these windows is nonsymmet-
rical to facilitate the subsequent passage of the re-
coil atom through I,. The window I ~ had under-

1120: ,"lT20

~ o

T2 ss
0 ~

FIG. 4. Above: stereographic projection of the thresh-
old-energy surface viewed along the c axis of the crystal
indicating the various open windows having the respective
thresholds T;. The shape of the windows corresponds to
the form they have been given for the computation. Be-
low: cut parallel to the (1120) plane indicating the open-
ing angles of the windows.

gone an analogous treatment. For the same rea-
son, the window I 4 is divided into a region with a
threshold T4 and another region with a threshold
T', which can be larger or smaller than T~, thus
allowing the passage through both triangular
lenses L~ only for the right combination of (n2, p~).
The lower part of Fig. 4 represents a cut parallel
to the (1120) plane and delineates the opening an-
gles of the various windows.

A particular problem to mention is the multiple-
defect creation. In order to take into account the
multiplication of defects, we have to introduce the
coefficient v = T/2T~ from the moment when T & 2T,.
The difficulty arising here stems from the fact
that-due to the angular dispersion of the electrons-
one might in a certain direction still be in the re-
gion T & 2T~, but in another (easier) direction, with
a smaller threshold T„ to attain values where the
cascade formation might become effective. In any
case, the correction for this effect never sur-
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passes - 15% at the highest energy (1.7 MeV} used
But, in principle, the problem remains open arjd is
a limitation for any simplified model.

As concerns the incident beam dispersion due to
the passage through various windows and the sam-
ple itself, we have adopted a mean thickness of the
specimen for which the Gaussian P(a,}was ap-
plied in the form (7) of L No corrections have been
made for energy loss and increase of path length
of the incident electrons in the specimen, or for
an eventually nonuniform defect distribution across
its thickness. These corrections would only be of
importance near E„, where the relative errors are
particularly large and the data are less reliable,
while we are attempting to reproduce the shape and
the relative positions of the damage-rate curves in
the whole energy range studied-certainly a safer
way of tackling the problem.

The integration was performed on an IBM-3V5
computer of the CIRCE Computational Center at
Orsay; details of the program are given in Ref. KO.

IU. COMPARISON WITH EXPERIMENT

In this section, we present th4 calculations made
for cobalt, zinc, and cadmium and compare them
with the results obtained experimentally and pub-
lished in I. The influence of a variation of differ-
ent parameters such as the values of threshold en-
ergies will be shown in detail for the case of co-
balt. Only final results will be presented for zinc
and cadmium.

A. Cobalt

Figure 5 shows the results acquired for cobalt:
Figure 5(a) has been taken from Paper I and re
produces the experimental data, Fig. 5(b) rep-
resents our closest agreement achieved computa-
tionally. The agreement is not really perfect, but
in view of the limitations of our model it is satis-
factory. In fact, the main features such as the
shape of the curves and their relative positions with
regard to each other falways maximum for (0001)
and minimum for (1120)], with the three other ori-
entations hardly distinguishable) are corrobo-
rated, the only shortcoming is the slightly too high
data of the (1120) specimen. In the framed case,
we indicate the mean thickness x used in the cal-
culations and the five threshold energies of the
various windows in the respective directions em-
ployed as parameters for the given set of curves.

%e propose for the main threshold-energy re-
gions in cobalt the following values:

[0001]:T~= 40+ 3eV,

[1014]:T~= 23+ 2eV,

[1012]:T~
= 22 s 1 eV,

[1011]:T,= 40+ 5eV
(upper-half of I, ~ in Fig. 4)

[1120]:T,= 27m 2eV;

for all intermediate directions: T„&150eV.
In order to demonstrate how sensitive our pro-

cedure was to a variation of one or several thresh-
olds, we have chosen among roughly two hundred
families of cross sections with various sets of pa-
rameters; the effect is shown in Figs. 5(c)-5(f).
%e might also mention that a change of the mean
thickness x to 30 p, did not influence the results
much, while a reduction to 12 p. introduced nonob-
served structures; we are thus retaining 20 p, as a
reasonable and experimentally justified choice.
The fact that the (0001) crystal exhibits highest
damage rates over the whole energy range implies
minirnurn threshold energies in both neighboring
lenses 1, and L„ i.e. , in the directions [1014]
and [1012]. An increase of one of these thresh-
olds immediately lowers the (0001) curve; name-
ly, at the low-energy end when diminishing Tz, and
at higher energies when lowering T,. A reduction
of the threshold for the [0001]direction increases
the difference between (3038) and (3034) on the one
hand and (1010) on the other. A diminution of the
[1120]threshold increases exaggeratedly the re-
sults of the (1120) crystal at intermediate energies
and those of the (1010) sample at lower ones.

Howe" has irradiated monocrystalline cobalt in
an electron microscope and observed the follow-
ing thresholds:

[0001]:33+ 1eV,

[1010]:30+ 1 eV,

[1120]:23+0. 5eV.
There is an apparent disagreement with our find-
ings, but one has to remember that the measured
threshold energy of 33eV for the [0001] orientation
can either mean a 7.', = 33 eV in this direction or-
considering that 33eV= 22eV/cos 35'—a T~ =22 eV
in the direction [1014]. In the same way, the
[1010]threshold of 30eV can be due to a real thresh-
old energy of -23eV in the [1120]or in the [1012]
direction. All this is in quite satisfactory agree-
ment with our analysis. The only difficulty is the
somewhat higher value of 27eV which we obtain for
the [1120]orientation. We have no direct explana-
tion for this; possibly, the fact that our specimens
had a rather high impurity concentration, which
could interfere with the propagation of focusing
chains, might be at the origin of this discrepancy.

Another comparison is given by the results on
polycrystalline cobalt, ' where a fit of the experi-
mental data had been achieved using a three-step
probability function with steps at 22. 5, 28, and 35
eV, respectively. A juxtaposition with our single-
crystal results leads to the attribution of the first
step to displacements in [1014]and [1012]direc-
tions, the second step would be due to a focusing
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mechanism in the [1120)direction, and the third
step might be correlated with .[0001] and [1011]dis-
placements.

Finally, to obtain direct comparison between
Figs. 5(a) and 5(b), we have to convert the resis-
tivity-change rates to cross sections through the
introduction of pz, the resistivity of a unit concen-
tration of Frenkel pairs (cf. , also, the discussion
in I, Sec. IV):

The corresponding value for pz lies, in the case of
cobalt, between 20 and 50 pohm cm/at. % for the
various orientations, in average 30 pohm cm/at. g
While the empirically derived relationship' gives
p„~po c within a factor of 2, it was shown that for
polycrystalline cobalt~2 one had already to assume
at least pz= 2po to get agreement with the experi-
mental data. In our experiment, we find p~~3po,
which gives weight to the polycrystal results. This
is just another proof for the need of experiments
with single crystals and of a thorough analysis of
the data obtained in order to get information on the
basic characteristics of point defects.

B. Zinc

In Fig. 6, we present the experimental results
[Fig. 6(a)] taken from Paper I and the best fit ob-
tained by computation [Fig. 6(b)]. The agreement
is very close and we rather confidently propose as
the optimum set of thresholds:

[0001]:T,= 19",eV,

[1014]:T, = 25+ 2eV,

[1012]:T,= 30+ 5eV,

[1011]:T', = 20+ 2 eV,

(lower-half of I., in Fig. 4),

[1120]:T,= 14',eV,
for all intermediate directions: T& & 55 eV.

As in the case of cobalt, it is interesting to note
that the analysis of the experiments on polycrystal-
line zinc' had yielded a double-step probability
function, with the first step at 13.5eV and the sec-
ond at 18eV. The znalysis of the single-crystal
data allows us now to assign the first step to fo-
cused collision chains and the second to displace-
ments in the directions [0001]and [1011].

The correlation of Figs. 6(a) and 6(b) leads to a
Frenkel-pair resistivity of pr = 20 a 3 p,ohm cm/at. %,
which means py 3 5po c quite comparable to the
cobalt results.

C. Cadmium

Figure 7 shows the agreement between the ex-
periment [Fig. V(a) is the size-effect corrected
plot of the data taken from I] and the best fit
achieved with a given set of thresholds [Fig. 7(b}].
In fact, it turned out that it was sufficient to adjust
only two threshold parameters keeping the others
above a certain value. We propose the following
threshold energies:

(a) Z INC (b}

5 (16 Qcm /e cnt )
h

x ~ 22.5g
j0001]:19eV

t1014]:25eV

l1012]:30eV

[1011]:2Oev
15 [1120]:14eV

10

ZINC

+(3034)

r(1120

(0001)

)

/
/ r'

0 I

0.3 0.4 0.5 0.6 0.7 0.8 0.9 E 0.4

FIG 6. (a) Experimental resistivity-change rates as a function of incident electron energy for zinc, taken from Paper

(b) Computed displacement cross sections with the best-fit set of energy thresholds.
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[0001]:T,Z'40 eV,

[1014]:Tm~ 35eV,

[1012]:T, ~ 35eV,

[1011]:T4= 19+ 1eV

(upper half of L4 in Fig. 4),
[1120]:T g

= 21 q eV,
for all intermediate directions: T~ &40eV.

The data obtained for polycrystalline cadmium"
did not permit an unambiguous determination of a
probability function: It was only clear that at least
two steps were needed and that the first step cor-
responded to a threshold value of T~= 19-20 eV.
The results of this paper allow an assignment of
this threshold energy to displacements in the [1011]
and/or [1120]directions, the displacements in other
principal orientations being more "difficult. "

The derived Frenkel-pair resistivity p~ gives a
value of pr= 5+1 pohmcm/at. Q, which corre-
sponds to p~ & po'&, in contrast to the findings for
cobalt and zinc. One must not forget, however,
the main experimental difficulty discussed in ex-
tenso in Paper I: i. e. , the rather low recovery
temperature of Frenkel pairs in cadmium. Ac-
tually, it is not at all improbable that only a frac-
tion of the created defects remain stable near the
irradiation temperature, thus giving a reduced
apparent pz. This effect is also corroborated by
the very low measured-resistivity-change rates in
cadmium.

V. DEDUCTION OF INTERATOMIC POTENTIALS

As a next step, we shall try to calculate what
minimum energy has to be imparted to the atom
Ao (see Figs. 1 and 2) in a head-on collision when
we want it to pass through a certain lens (or sev-
eral of them) and either to come to rest itself as a
stable interstitial or in one way or another to pro-
voke the formation of a Frenkel pair. The value
thus obtained will correspond to the respective
threshold energy for displacement of the atom Ao
in the direction in question, provided the inter-
atomic potential has been chosen correctly. We
shall employ here the inverse procedure, namely,
derive expressions for the threshold energies
where the potential shows up as a parameter to be
adjusted so as to render agreement with the exper-
imental findings. For this, we shall use a Born-
Mayer-type interatomic potential of the form (1).

For each lens passage, we have to distinguish
between two cases: The first where the moving
atom loses its total kinetic energy and becomes
interstitial immediately after passage through the
lens, and the second where the atom has retained
enough energy to push the atom in front out of its
lattice site and replace it there. We shall call
these two cases the "last sequence" and the
"penultimate sequence, " respectively. In this
sense, the latter term will designate all the pas-
sages not resulting in the formation of an inter-
stitial. The actual number of sequences to calcu-
late will depend on the stability of the resulting

(a) CADMigH (b)
cr (barns)

Cadmium

li
~~ (~d' ~ilig(r. ~m2))

(»20)

x ~22.5 p
{0001]:I,Oev

[1014]

[1012]
[1011];19eV

[1120]:21 eV

(»20)

(30~S)

0.1
(303S)

(0001) (ooo1)

0.6 as 1.0 E (~ey) I

0.6 0.& E (WW)

FIG. 7. (a) Size-effect corrected experimental resistivity-change rates as a function of incident electron energy for
cadmium, taken from I. (b) Computed displacement cross sections with the best-fit set of energy thresholds.
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"4(ey)

3glo-

FIG. 8. Relation between the Born-Mayer-potential
constants A and b for cobalt in the range applicable to our
model. Indicated are the constants for the potentials
U&M, USM, and U~ derived from the Refs. 16-18, and
our proposed choice.

Frenkel pair and is subject to discussion. The
principle of the calculations being the same for alI
lenses, except for the special problem of a focused
collision chain, we shall give an example of it for
the two cases in the Appendix.

A. Cobalt

The close values obtained for T, (square lens in
the [1012]direction) and for Tm (quasifocusing in
the [1014]direction) imply a sequence choice of
L2 L 1 L2 or L2-L,-L2-L, on the one hand, and
I,-L 2-I, on the other. The uncertainty of these
thresholds does not permit the evaluation of each
of the potential constants A and b but only of the
pair of them, with a relatively wide variation
range. Figure 8 shows the relation between A and

h, which can be expressed by A/ev = 2. 3 e ~~" " '.
Table II gives the threshold energies for dis-

placement in the investigated directions for three
couples of the potential constants (A, b) taken from
Fig. 8. A separation by three or four lenses of
the type L, and I 2 means that the interstitial is four
to five interatomic distances away from its vacan-

cy. The computer simulations' have shown that
such Frenkel pairs can be stable. The correspond-
ing spontaneous recombination volume of -100
atomic volumes also gives the right order of mag-
nitude. Furthermore, we note the smaller thresh-
old in the [1014]direction when passing through a
four-lens system L2-I,-I 2-I, as compared to a
passage through only three lenses of this type, us-
ing the steepest potential. The explanation lies in
the fact that, in our approximation and with this
potential, the knocked-on atom will not stop at the
lens L 2 but, possessing enough kinetic energy, will
move on and become an interstitial only after hav-

Ptooo1)= 0 for T 40eV

=1 for T «40eV,
into a double-step one of the form

p (ooo13 0 for T & 33eV,
=0. 5 for 33~T & 55eV,

for T~ 55eV.

The calculations performed with this latter func-
tion have in fact shown that the best fit of Fig. 5(b)
does not change. Physically, this would mean that

TABLE II. Threshold energies for displacement in
different directions and for different lens combinations
in a cobalt crystal calculated vrith various Born-Mayer
constants (A, 5).

Threshold energies/e V

A/eV 8000 2800 1400

Displacement directions

[0001]

b/A 4.60

39.1
68. 2

4. 00

31.8
55. 8

3, 60

27. 6
48. 9

[1014]

tl012l

[1011j

[1120)

L2- Ll —L1
Ly-Ll —L2-Ll

Ll -L2- Ll

L4
L4 —L

9 collisions
10 col ils lons

24. 5
23.4

22, 1

39.4
45. 0

26.0
27. 6

21.3
23.7

22. 1

32. 0
38.1

26. 0
28. 0

19.8
24. 1

22 ~ 1

27 ~ 8
34.4

27, 1
29.5

kng pushed the next atom. This is not the case with
the two softer potentials. The relatively high
threshold in the [0001]direction allows only for
one passage across I 3; a stability of such a Fren-
kel pair is not impossible, since it was shown'
that the spontaneous-recombination distances were
small when the neighbor atoms of the interstitial
were pushed not towards the vacancy but in another
direction, which is the case here.

A more serious difficulty is the passage in the
[1011]direction. For the otherwise favorable
combination A = 8000 eV, b = 4. 60 A ', we obtain,
here, just one passage across the double lens L4.
A stable interstitial at such a small distance in
this direction would be in contradiction with the
computer results' for the fcc structure. We must
remember, however, that the ~atter looks differ-
ent in an hcp lattice. While in an fcc crystal an
atom which has passed through two triangular
lenses in the corresponding [111]direction pushes
its counterpart into a tightly squeezed position be-
tween two identical lenses, in an hcp structure,
such an atom faces the much easier task of pro-
jecting its counterpart across a relatively wide
square lens of the type I, , with a lower potential
barrier. Therefore, this configuration might well
be stable. Another valid solution to the problem
could be the breaking up of the single-step prob-
ability function in the [0001]direction
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TABLE III. Threshold energies for displacement in
different directions of a zinc crystal for different lens
combinations and with various Born-Mayer constants
Q. , S).

Displacement directions

[0001] L3

A/eV

5/A

Threshold energies/e V

550 280 155

3.0 2.5 2.0

18.6 18.5 18.5

[1014]

[1012]

[1011]

[1120]

I 2
—Li —L2 —Li

L2 —L, —L2 —Li —L2

L, -L2-L,
L, —L2 —Li —L2
Li —L2 —Li —L2 —Li

L4
L4- Li

4 collisions
5 collisions

14.9 20. 0 29.0
187 244 35 1

13.3 17.2 23.8
17,0 21.5 29.7
21.1 28. 3 41.3

13.9 14.2 14.3
18.4 20. 9 25. 1

94 ll 6 16 ~ 5
11.0 14.3 21.6

Again, as in the case of cobalt, we propose pairs
of potential constants (A, b) as possible choices:
Table III gives the calculated thresholds for three
combinations (A, b) which have been adjusted so as
to yield the right threshold energy T3 in the direc-
tion [0001J after one passage across the triangular
lens Le. The corresponding potentials have been
designed in Fig. 9. One can see that softening of
the potential by decreasing the constant b renders
more favorable the passage across triangular

the threshold for passing through one lens L3 is
33eV, but the atom has, in this case, only the
probability & to form a stable interstitial unless it
moves across a second lens L„ in which case it
needs in total 55 eV. With this argument, a good
choice for the potential constants would be A = 3300
eV, b=4. 10A '.

Abrahamson' has proposed for each element a
best Born-Mayer approximation to the statistical
Thomas- Fermi-Dirac potential for interatomic
distances of 1-2 A. His values for cobalt (A
=12600 eV, 5= 3. 5V A ') furnish far too high ener-
gies. However, Andersen and Sigmund's' semi-
empirical relationship A = (52 eV) Z~ 2, b = const
= 4. 56 A ', seems to be not too bad a choice for
cobalt: giving A = 7300 eV, b = 4. 56 A ', it is well
placed on our (A, h) curve of Fig. 8. Lucasson and
Lucasson' have performed a similar calculation
for fcc metals and obtained potential constants for
nickel, copper, silver, and gold using a Bohr po-
tential of the type U(r) = (Z e /r) e '". Matching
this potential. to a Born-Mayer potential of the type
(1) and choosing its pre-exponential factor and the
constant in the exponent so as to obtain the thresh-
old energy in one of the easy displacement direc-
tions yields for cobalt: A= 5960eV, 5=4. 37 k ',
also in good agreement with our own findings.

B. Zinc

lenses than that across rectangular ones. If one as-
sumes that the Frenkel-pair stability is the same
in the cases of cobalt and of zinc (three passages
necessary through the rectangular lens (3038) in
the direction [1014J}, one obtains 5 = 2. 0 A '; if,
however, one admits a lesser stability for zinc,
i. e. , five passages across (3038) and (3034) needed
for the creation of a stable interstitial, the choice
would be rather b=2. 5 A '.

As a final remark, we wish to add that for high-

ly anisotropic crystals such as zinc one may won-
der about the justification to employ a spherically
symmetric potential like the one used. The results
presented should thus be taken as an indication
only.

A comparison with the existing estimates by
Abrahamson'6 (U/eV= 14700e 3'~ ), by Andersen
and Sigmund~' (U/eV= 8500e 4'~ ), and by match-
ing to a Bohr potential'8 (U/eV= 6640e ~'

) shows
them to be far off our findings. This is not too
surprising, since Abrahamson does not take into
account any crystallographic properties of the sub-
stance coasidered but only its atomic characteris-
tics, while the two latter methods construct their
empirical potentials basing on experimental data
for copper and other cubic metals; this might also
explain the good agreement with cobalt, which, be-
ing an almost ideal hcp crystal, comes quite close
to fcc copper.

C. Cadmium

Cadmium being crystallographically very simi-
lar to zinc, the same reservations should be made

jV~) (eV)

550

280

155

50

20

10

qr'2
l

FIG. 9. Various possible Born-Mayer-type interatom-
ic potentials for zinc.
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TABLE IV. Displacement thresholds for cadmium in
different directions using the potential U/eV
=300e '

Displacement directions Threshold energies/e V

[0001]
[1014]
f1012]
[1011]

[1120]

L3-L3
L2-Lg-L2-Lg
L) -L2- Lg -L2
L4
4 collisions
5 collisions

52
34
36
20
20
25

when determining an interatomic potential. More-
over, as we have seen in Sec. IV, the matching of
the computed cross sections to the experimental
damage-rate curves is not very sensitive to the
choice of T„T3, and T3 as long as they are large
enough. As an example, we demonstrate in Table
IV the thresholds calculated with the potential U/eV

3pp e 2 Ot'/g

One notes that the interstitials produced by the
electrons of ~ 1-MeV energy (corresponding to T
~ 30eV) are separated by only three to four inter-
atomic distances from their vacancy and that they
are close to the original basal plane. This might
explain the very low recovery temperature and the
simple annealing mechanisms of these pairs, as
was reported in I (one simple peak at-5'K). In-
creasing the incident electron energy to 1.7 MeV
renders possible other defect-production mecha-
nisms and, indeed, the annealing spectrum becomes
more complicated revealing a substage at 6-9 K
(cf. Table III of Paper I). This interpretation does
conform with the recovery processes invoked by
Coltman et al. , who explain the low-temperature
recovery of their neutron-bombarded cadmium
specimens as due to close Frenkel pairs situated
either in the same basal plane or perpendicular to
it.

The potentials of Ref. 16-18 are equally far off
as in the case of zinc.

VI. CONCLUSION

A
' geometrical" model is presented for the hcp

lattice putting forward several principal mecha-
nisms for the displacement of a knocked-on atom.
Using the experimentally obtained resistivity-
change rates as a function of the incident electron
energy published in the Paper I and matching fami-
lies of cross sections computed with the above mod-
el we have determined sets of tnreshold energies
for displacement in cobalt, zinc, and cadmium
given in Table V.

The correlation between the resistivity-change
rates and the displacement cross sections allowed
the determination of the Frenkel-pair resistivity
per unit concentration in cobalt and zinc:

U~=nU(OB() =nU(r, ), (Al)

where U(r, ) is the energy of a pair of atoms at a
distance &~. To this energy we have to add the in-
teraction energy with the knocked-on atom A„
which is

UR = U(OA 1)= U(Q I) . &A2)

These two interaction energies have to be cor-
rected, since a shock between atoms cannot be re-
garded as a hard-core collision. In fact, Lehmann
and Leibfried have shown that the collision is al-
ready taking place when the atom Ao has only ar-
rived in 0' and that A, is at the same time being
pushed away towards A', by the same distance (O'O)

[Here, &= (2/5) ln2 and is only dependent on
the choice of the potential constant 5, i.e. , the

TABLE V. Threshold energies in various directions
for cobalt, zinc, and cadmium crystals.

Threshold energies/e V

Direction

f0001]

faoT4]

f1012]

[1011]

[1120]

cobalt

40+3

23 k2

22 +1

40+5

27 +2

zinc

1g+2

25+2

30 +5

20 +2

14+2

cadmium

40

35

35

19 +1

21+2-i

P&c ~ 30 P0 cm/at Pp,

pg 3.5 proc = 20 s 3 p, fi cm/at. %,
no definite conclusion for p~ can be made owing
to the proximity of a recovery stage.

We have derived expressions for the energies
needed to pass across one or several open "win-
dows" in the hcp unit cell, including the possibili-
ties of focusing collisions in the [1120)direction,
and compared them with the previously calculated
threshold energies for displacement in various di-
rections. This comparison enabled us to deduce
tentatively interatomic potentials of the Born-May-
er type giving as a possible choice:

U '/eV= 330th ~ ""
U '/eV= 280e h~"
Uc~/eV= 3008 2 ~"

APPENDIX: CALCULATION OF THRESHOLD
ENERGIES

A. Last Sequence

In order to arrive at the saddle point 0 of Fig.
10, which is the center of a lens consisting of n
atoms &„.. . , 8„, the atom Ao has to possess at
least the energy
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FIG. 1o. Last sequence of a passage across a lens.
FIG. 11. Penultimate sequence of a passage across a

lens.

E'„„=(U»+ U2)/(n + 2), (A4)

the mass ratio being 1/(n+ 2). The kinetic energy
transmitted to the atoms B& perpendicularly to the
direction of motion of Ap need not be taken into ac-
count, since it is compensated by a diminution of
the potential energy in the lens center due to the
repulsive action there of Ap and the resulting in-
crease of r&. Thus, the total energy needed for
the passage across a lens to give an interstitial
ls

T~= U(+ Up+E„'g, .
The various && and a& can be found in Table I.

B. Penultimate Sequence

During this collision, the atom Ap has to trans-
mit to the atom A, at least the energy calculated
in the preceding section, i.e. , T'„. An atom pos-
sessing such an energy can be described by a
hard-core radius r„, through the expression U(r„,)
= &T'„, since only half of the available kinetic ener-
gy can be transformed in potential energy in the
case of equal masses. Again, due to the correc-
tion of Lehmann and Leibfried, the position of Ap
during the collision will be (OAO) = a, —t»- r„
This means that the atom Ap has recovered some
of its energy lost on the way to 0 (cf. Fig. 11); the
actually required energy is

Uq--nU(Ao B»}. (A6)

This time, we have to add the kinetic energy com-
municated to B& perpendicularly to the direction of
motion of Ap, since the replusion of B& will con-
tribute to a decrease of the lens potential and
through that to a decrease of U~. This is a cor-
rective term which amounts to only -1% of the
final threshoM. To estimate it, we assume that
the momentum received by an atom B& is ~ =f~,

hardness of the potential. } Thus, we write in-
stead

U»~= U(0'A', ) .
Moreover, the atom Ap transmits kinetic energy to
the atoms 8» and to A, in the direction of its mo-
tion.

where f is the interaction force derived from the
potential U and 4I' is the time needed to move the
atom along a distance 2(OAO) (in front of and be-
hind the lens center); with U(r)=Ae ", we have

—dUf= dr bU(r—»)=bU»

and

Ev, = t»t»~i/2M=bmU3»[2(OAo}/"]2/2M

= b~U3»(OA»0} /E,
where M and v are the atom mass and velocity
and E=T„'+U3. For n atoms B&, we obtain as an
upper limit:

E'„'„=nb'U»(OA0) /T»+ Ug) . (AV)

T~= Tg+ U3+Eg), -Ep . (AS)

C. Focusing-Collision Sequence

During the propagation of a focusing chain (Fig.
12), the atom Ao has to be brought to traverse the
saddle point 0, i.e. , to pass from the configura-
tion (0) to configuration (1); this "compression
wave" continues to proceed without losing energy,
except to the surrounding atoms B,. The lens in

(Q) e

FIG. 12. Propagation of an atom in a focusing colli-
sion sequence.

After subtraction of the zero-point energy, which
is the interaction energy of a lattice atom with its
12 neighbors liberated by the creation of a vacancy
during the first collision (and neglecting the sub-
sequent contraction around the vacant site) Eo
= 121»(a), we obtain finally:
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this case is unsymmetric and the potential energy
is U, = 2 U(r', ) + 2U(rf ) or, after m collisions:

with the usual designations for ~ and Eo. Thus,
the total energy spent in a focusing chain is

Ug=mU~ . (AQ) Ttt = Ecclny+ Uf ~ (Al 1)

The compression energy can be expressed as

E„,= 2U(-,'a+ A) E-o, (A 10)

The computation of all the thresholds under dis-
cussion has been programmed and the details can
be found in Ref. 10.
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