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The attractive and repulsive contributions to the physisorption interaction energy are derived from the
assumption of weak coupling between an atom and a metal surface. Results for the physical adsorption
of He atoms indicate that an accurate determination of the dynamic polarizability is euiential in
calculations of the attractive interaction energy using a local-dielectric-function formalism. The major
contribution to the physisorption interaction is the van der Waals energy, so that the physisorption
energy curve is largely temperature independent. The repulsive energy is evaluated via the
density-functional method. The equilibrium distances of the atom are a monotonically increasing
function of the metallic-electron density. For high electron densities the binding energy increases
monotonically. Values for the adsorption energies of He on various metals are in good agreement with
available experimental results.

I. INTRODUCTION

Recent experimental and theoretical advances in
the understanding of physical phenomena charac-
teristic to metal-surface systems have triggered
a revived interest in theoretical microscopic ap-
proaches. Following the development of surface-
sensitive probes and the ability to routinely main-
tain stable, controlled, ultrahigh-vacuum environ-
ment during the experiments, coupled with the
construction of theoretical models, quantitative
determination of surface geometrical and electronic
structure parameters have been attempted for sev-
eral clean surfaces and adsorption systems. ' '
Understanding the nature of the interactions between
particles and the surface net is a basic compo-
nent in the construction of theoretical models of
surface processes. The adsorption of gases on
metal surfaces is one of the most relevant and in-
triguing problems in surface science, in view of its
intimate relation with chemical processes such as
oxidation and catalysis 6 occurring on some of these
surfaces. Fundamental to an analysis of adsorp-
tion mechanisms is the understanding of the adsorp-
tion of a single atom (or molecule) on a metal sur-
face. Besides its relevance to surface chemical
reactions, and ultimately, to the solution of prac-
tical problems, it is of great scientific interest
because the atom-metal-surface system is a proto-
type system for theoretical models.

Customarily in the literature~~~ a distinction is
drawn between physical and chemical adsorption,
the distinction often being on the basis of binding-
energy magnitudes (of the order of 10 eV and
several eV for the former and latter, respective-
ly). Chemisorption can be roughly defined as the
state of chemical binding between an adsorbed

atom (or molecule) and a surface Ag.reat deal of
theoretical work has recently been done on the
problem of the fundamental chemisorption interac-
tion (e.g. , Refs, 16-21), whereas relatively little
effort has been spent on the important theoretical
problem of determining the interaction energy be-
tween a metal surface and a physisorbed atom.
Aside from its intrinsic appeal as a fundamental
interaction, the importance of physisorption lies
in its suggested" role as a precursor stage to
chemisorption. Hence, physisorption is of interest
in the evaluation of the adsorption mechanism. In
particular, the magnitude of the potential barrier
for chemisorption is determined by the shape of
the interaction energy curves for both "types" of
adsorption and by the relative equilibrium distances
of the atom from the surface. ' ' ' In addition, an
important aspect of the physisorption state of a
molecule may be the part it plays in geometrically
"aligning" the molecule ' relative to the metal sur-
face. This "alignment" may be critical in enhanc-
ing the probability of chemical interaction.

In the case of noble-gas atoms adsorbed on
metals, physisorption is the main form of interac-
tion (due to the inert electronic configuration of the
gas atoms) rendering these systems particularly
attractive for the study of physisorption process-
es. 3s Physical adsorption is usua1ly considered to
arise from the presence of van der Waals forces. "
Considerable effort has been applied to the problem
of understanding the nature of these forces ~ re-
sulting in several formulations of the interactions.
Nevertheless, detailed systematic studies of the
physical parameters describing the interaction of
single atoms or molecules with metal surfaces
have not been usually performed. A number of
quantum mechanical and semiclassical methods for
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calculating physisorption interaction energies have
been suggested in the literature, and have been re-
viewed by several authors. *3 Of the quantum-
mechanical calculations only a few" "have been
applied to computation of actual interaction ener-
gies. A pioneering attempt to account for both the
attractive and repulsive contributions to the inter-
action energy has been presented by Pollard. In
this method the van der Waals interactions is de-
scribed by classical dipole-dipole interaction '
between the atom and the solid substrate. The
repulsive term is evaluated 8,s the exchange inter-
action resulting from a Heitler-London coupling
scheme. Implicit in this approach is the formation
of a "one-electron bond" between localized or-
bitals of the surface and valence orbitals of the
adsorbate. Moreover, the model of the surface
employed in the calculation does not allow for
"leakage" of electronic charge into the vacuum. In
addition, interactions of valence electrons of the
adsorbate with the substrate electrons which may
be of the same order as the Heitler-London bond-
ing energy are neglected in the calculation. Cou-
pled with a number of approximations used in the
evaluation, '3 the results of the above method do not
conform with more recent knowledge of surface
structure characterist;ics ' and are not in good
agreement with available experimental data. The
calculation of Mavroyannis, '0 on the other hand,
is based on the work of Lifshitz' and Dzyaloshinskii
et a/. ' It employs a uniform continuous model of
the surface and in calculating the interaction energy
ignores the presence of repulsive forces entirely.
The calculation is performed by assuming that a
noble-gas atom resides at a distance from the
metal which is the average of the nearest-neighbox
distances of the metal atoms in the metal and rare-
gas atoms in a rare-gas crystal. The physisorption
energy is then set equal to the vander Waals energy
at the average distance and an approximate for-
mula for the energy is used. The neglect of repul-
sive contribution to the energy of physisorption,
the above assumption of equilibrium position, and
the approximations introduced in the expression
for the energy cause serious difficulties, as we
have discussed in an earlier paper. ' The semi-
classical methods are phenomenological in type. ' '
In these calculations, a form of the individual ad-
sorbed-atom-bulk-atom interaction energy is as-
sumed and the total adsorbed-atom-bulk interac-
tion energy is derived by summing over the bulk
atoms. The validity of this procedure is doubtful
for the van der Waals interaction, since Lifshitz
and co-workers '3~ have shown that the addition
of individual atomic interaction energies is usually
not valid in calculating the van der Waals forces
between dielectric media. This is especially true
in the case of metals, in which the electrons are

delocalized.
The objective of this work is to derive a micro-

scopic formulation of the physisorption interaction
consonant with modern studies of bare-metal sur-
faces. In a previous paper, we presented the
results of such a consistent microscopic quantum-
mechanical formulation of the problem and examined
the systematic variations of the interaction energy
of He atoms adsorbed on metal surfaces as a func-
tion of the parameters characteristic to the atom
and metal under study. 3~ In the present work der-
ivations of the basic formulas and details of the
calculations for atoms and molecules physisorbed
on metal and additional results for He adsorption
on metal surfaces are presented. Our fundamental
assumption is that a physisorbed particle (i.e. ,
atom or molecule) resides at a large distance from
the surface, so that there is only weak coupling be-
tween the substrate and the incident particle. In
equivalent terms, we can state that we assume that
there is no chemical interaction (either charge
transfer or charge rearrangement or other mech-
anism) involved: the particle and solid interact
through the intermediary of the )ong-wavelength
electromagnetic field. " This assumption agrees
with the usual physical picture of physlsorptlon. 1e

The model determined by this hypothesis implies
that the mechanisms responsible for attraction at
short distances from the bulk (i.e. , exchange, cor-
relation, and electrostatic interactions) transform
into the van der Waals attraction alone at physisorp-
tion distances. This is analogous to Bardeen's
result for the image force. Extending this pic-
ture further, we conclude that the repulsion between
the physisorbed entity and the surface is provided
by the remaining portion of the Hamiltonian: the
electronic kinetic energy. This is a result famil-
iar from the theory of diatomic molecules. '

In order to calculate the van der Waals en-
ergy, 29 it is necessary to measure the distance
from the correct origin. It has been shown, ~ that
for a stationary classical external charged particle
the image-interaction energy should be measured
from the centroid of the induced-charge density. Van
der Waals forces, however, originate from the
electromagnetic field fluctuations in the solid, ex-
tending beyond its boundaries, which perturb spon-
taneous fluctuations in the atom. In this case, we
are, therefore considering a high-frequency inter-
action to which the electron density is not expected
to be able to respond instantaneously. It has been
shown that the density fluctuations induced by a
high-frequency external charge are related to the
derivatives of the static isolated bare-metal elec-
tron density. In the framework of the jellium
model of a metal surface (see, e. g. , Ref. 11) the
centroid of the induced-charge density is located
very close to the edge of the jellium background,
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in contrast to the zero-frequency result of Lang
and Kohn. Since van der Waals forces have been
derived from an image-charge method, the dis-
tance in the expression for the van der Waals en-
ergy should be measured from the centroid of the
derivative of the isolated-metal-electron density.
However, in making consistent comparisons with
the jellium model of a bare-metal surface we shall
measure the van der Waals distance from the edge
of the jellium background. Since the energies of
the transitions involved in the van der Waals inter-
action are high but not infinite, one expects small
corrections due to the diffuseness of the surface
region of the bare metal. In a forthcoming pub-
lication~ we show the effect of varying the electronic
surface boundary conditions upon the physisorption
energies. The preceding remarks are intended to
be a motivation of the physical picture consistent
with the basic assumption of weak coupling and not,
hy any means, a rigorous proof of our assump-
tions. A rigorous proof requires an exact solution
of the physisorption problem perhaps within the
generalized density- functional formalism. 4'45

Such a self-consistent solution entails considerable
effort and does not yet exist.

This paper is organized into four sections. In
Sec. II, we discuss the attractive portion of the
interaction and indicate that it is represented by
the van der Waals interaction at large physisorp-
tion distances in accordance with our basic as-
sumption. We derive the general formula for van
der Waals forces and show that it reduces to the
usual expression ' ~ when the metal is represented
as a uniform, homogeneous medium. Results of
a detailed examination for He adsorption on metals
reveal that adequate representation of the atomic
polarization is extreme Ey important for accurate nu-
merical determination of the physisorption energy.
In Sec. III we derive the equations for the repulsive
energy of interaction within the density-functional.
formalism. ' ' An important result is that in
the case of weak coupling, the change in kinetic
energy is expressible, to first order, in terms of
the charge densities of the isolated atomic and
metallic systems. This enables us to calculate
the first-order correction to the repulsive energy
without being required to derive the electron den-
sity of the combined system self-consistently. In
applying the equations to physisorbed He, we ex-
amine the systematic behavior of the repulsive
contribution as a function of the metallic adsorbent.
In Sec. IV, we present results for the total physi-
sorption interaction energy of He on metals. The
predictions of the theory are in good agreement
with results derived from He scattering ex-
periments~~ and from heat of adsorption measure-
ments. A number of conclusions are forthcom-
ing. First, the major contribution to the physi-

H= H&+H&+ Hem+Hm+Hv» (2.1a)

in which H, is the Hamiltonian of the vacuum-
quantized electromagnetic field, H„and H„are the
Hamiltonians of the isolated atomic and metallic
systems, H~ describes the short-range interac-
tions between the atom and metal, and Hv„cor-
responds to the interaction between all the par-
ticles of the system and the quantized long-wave-
length electromagnetic field (i.e. , the van der
Waals interaction). More explicitly,

Hvv = —fd r A(r) ~ j (r) . (2. 1b)

The quantities A and ~ are the vector potential and
particle current density operator, respectively.
The integral in Eq. (2. lb) is cutoff at a small dis-
tance. " The ground-state energy of the system,
E, is specified by the Schrodinger equation

nfl G d) = El G d) (2. 2a)

where I G, d) is the ground state for separation d
between the metal and atom. At T=O K, the en-
ergy of interaction between the atom and metal is
given by

~(d)=&G diff lG d)-&G "l&~+~a+~ IG ").
(2. 2b)

ht large values of d, the contribution from H~ is
negligible and

fI(d)=&G dlffvwlG d)= Evv(d»- (2. 2c)

in which Ev„ is the van der Waals energy.
The Hamiltonians H» and H~ give rise to the

attractive forces between the atom and metal. The
coupling to short-wavelength electromagnetic fluc-
tuations, embodied in Ha„, produces chemical

sorption energy (i.e. , the negative of the total in-
teraction energy at the equilibrium position) origi-
nates from the van der Waals interaction. Thus,
the physisorption energy is essentially tempera-
ture independent. ' In addition, our results show
that the equilibrium position of the adsorbed par-
ticle increases monotonically with increasing me-
tallic electron density. The value of this equilib-
rium position is not related simply to the covalent
radii of the He and metallic atoms as had been as-
sumed in several previous studies. Finally, for
"Meal" metals in which the plasmon energy (d~

and the bulk electron densities n. are related by
&u~ =4vn, (in atomic units) the physisorption energy
at high metallic electron densities (i.e. , ~~ & 10
eV) is found to increase with increasing electron
density.

II. ATTRACTIVE INTERACTION

The total Hamiltonian H for the combined metal-
atom system is represented by '
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g (I)=, P („pdpln[g, (i(„,P)g, (i)„,P)],
4m'

(2. Sa)

]„=2vnk T/K. (2. Sb)

The summation in Eq. (2.3a) is performed over
integral values of n, where the n=O term is given
half-weight, 0 is the Boltzmann constant, T is the
absolute temperature, and c is the velocity of light
in vacuum. The quantities g, and g, are the dis-
persion relations of the normal modes (TM and

TE) of the electromagnetic field. These modes
have been identified with surface plasmons. ~ The
variables t' and p appearing in Eq. (2. Sa) are re-
lated to the frequency ~ and the component of the
wave vector in the plane of the surface, k„, by the
foQowing transformations

binding (or chemisorption). In accordance with
our basic hypothesis that physisorbed atoms reside
at such large distances from the surface that there
is no chemical mechanism involved in the adsorp-
tion process, we neglect the influence of H~ and
identify the attractive energy of interaction with
E~~. At short distances from the surface, the
attractive energy of interaction is usually described
in terms of exchange, correlation, and electro-
static interaction energies. If calculated exactly,
the contributions from these terms approach the
van der Waals interaction at large separations.
Thus, in a sense, the van der Waals energy at
large distances contains the exchange, correlation
and electrostatic terms, in agreement with Bar-
deen's ' result for the image force. Consequent-
ly, consistent with the assumption of weak coupling,
the van der Waals energy is the sohole energy of
attraction: Adding exchange or correlation con-
tributions to the van der Waals energy would con-
stitute overcounting and would contradict our basic
assumption. It has been shown3P that the van der
Waals energy of interaction between an individual
atom and a dielectric medium can be derived from
the resul. ts of Lifshitz and co-workers ' for
the dispersion energy between two dielectric
media, by assuming that one of the media is rar-
ified (i.e. , the density of atoms approaches zero).
Casimir's idea that the retarded dispersion forces
between media is attributable to the zero-point
energy of the quantum electromagnetic field, has
been shown ' to be equivalent to Lifshitz's ap-
proach, where the dispersion forces arise from
classical electrodynamics into which there has
been introduced a random fluctuating field in mat-
ter. According to the formulation of Van Kampen
&I, a3. , the van der Waal free energy of interac-
tion between two semi-infinite dielectric media
with planar faces of infinite area which are sep-
arated by a gap, l, is given by

(2. 3c)

(2. 3d)

The quantities appearing in Eq. (2. 3a) are derived
from the dispersion relations for the normal
modes,

(2. 3e)

W(d) = j N,E,„(f)df. (2. 4b)

The individual atomic dispersion energy is, thus,
given by the relation

E (d(= lim —E(d()
1

Np p
(2. 3)

In order to illustrate the application of Eq. (2. 5),
we describe the metal as a uniform, homogeneous
medium characterized by a dispersionless dielec-
tric function, e„(ru). In numerical calculations,
we let e„(((()= 1- ((((~/co), where &u~ is the plasma
frequency characteristic to the metal. For a free-
electron metal, ~~=(4wne /m)'~, where n is the
electron volume density, and e and m are the elec-
tron charge and mass, respectively. We charac-
terize the rarefied gas of atoms by a dielectric
constant, e„(m) = I+4vNoa„(ru), in which a„ is
the dynamic polarizability of the atom ' 4 and Np

is the density of atoms. The resultant force at
small distances is given by~

Z(d)
&

""„[~„(it)- I][e„(it)- I]
Sv~d' .0 [e„(i])+1][e„(ig)+1]

D vw NE (d) (2. 6a)

[~„(it)—I]
Cv(N= 4 d$ a~(it')

[ (.() (2. 6b)

g, ((d, R„)= 0 (j = a or k),

by the transformations in Eqs. (2. 3c) and (2. 3d).
In this formalism flexibility is achieved by reduc-
ing the calculation of the van der Waals forces to
the solution of hhxweQ's equations subject to the
appropriate boundary conditions, in order to de-
rive Eq. (2. Se) for specific systems. The energy
in Eq. (2. 3a) is independent of temperature for
distances appropriate to physisorption (i.e. ,
I & 20 A). '" At these distances, therefore, W

is the zero-point energy of the total system. At
large distances, 5' is temperature dependent. '
The force per unit area, F, is related to S' by the
equation,

W(d) = f Z(f) df, (2.4a)

where we use the convention that an attractive
force is positive. If one of the media of density
No is a rarified gas (i.e. , NO-O), then W can be
derived by summing over the van der Waals energy
E» of the individual atoms in the medium. That
is to say,
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(, ) p fg
Jt „ f.(E)

+('d~ 8rp f +E (2. ?a)

The quantities f& and &o& represent the discrete

In Eqs. (2.6), the dynamic dielectric functions c„
and z„are evaluated on the imaginary frequency
axis &u = i), i.e. , p = e(zg) .The result for Evv& in
Eq. (2. Ba), which was derived through the relation
in Eq. (2. 6), is completely equivalent to the re
suits of calculations of the dispersion forces be-
tween a single atom and a metal surface s0, 3& The
procedure we have outlined is, therefore, a viable
one for calculating the van der Waals interaction
energy between a single atom and a dielectric
medium. In the present work we represent the
metal as a uniform, structureless medium with a
local dielectric constant (i.e. , no dispersion}, as
in Eqs. (2.6). The effects of dispersion and vary-
ing electronic surface boundary conditions, are
described in a forthcoming publication. ~

In order to apply Eqs. (2. 6), it is necessary to
determine the origin from which d in Eq. (2. 6a)
is measured in the context of the jelltum modelof a
metal surface. Explicit in Lifshitz's derivation, 33

based upon a random Quctuation field, 5 is the ob-
servation that the van der Waals coupling is due to
electromagnetic field Quctuations in the metal
which extend beyond its boundaries and induce spon-
taneous transitions in the atom. The van der Waals
interaction is, therefore, highly dynamic.
This is expressed in Eq. (2. 6a) by the integral
over all imaginary frequencies. In particular,
He has a very strong continuum polariability, so
that the contributions from frequencies which are
much larger than energies characteristic to the
metal (e.g. , the plasma and Fermi energies) are
important in calculating E~„, as we shall show
below. In the case of such a high-frequency ex-
ternal field, the metallic electron density cannot
respond instantaneously. For example, the cen-
troid of the density Quctuations induced by a very
high-velocity external charge are related to the
derivatives of the static-charge density, ~' in con-
trast to the zero-frequency result. When applied
to the jellium model, this result implies that the
centroid of the induced charge lies very close to
the edge of the jellium background. In the context
of an image force calculation, the image plane is
located at the centroid of the induced charge. 40'~'

Thus, for a high-frequency external field, the
image plane is located at a distance close to the
edge of the jellium background. Since van der
Waals forces can be calculated by using an image
method, ~ we measure d from the jellium-model
origin. '

The polarizability of an atom as a function of
imaginary frequency is given in atomic units by5

oscillator strengths and transition frequencies,
respectively, while f,(E) and E» represent the
continuum oscillator strength and ionization poten-
tial, respectively. Values of discrete transition
frequencies and oscillator strengths used in the
calculation for He were taken from Ref. 59. The
continuum oscillator strength for He was deter-
mined by curve fitting of accurate calculations.
The result of the curve fitting (in atomic units) is
specified in the following form:

f~(E) = 2A+2B(2wcaz/E} (E»~ E &Ep),

= 2F(2wcap/E) (Ep ~ E}. (2. ?b)

where

—[tan (X») —tan- (Xp)]
2' $A -1

mc

~

(I+X',w) + c (,( ))"& (1+X',)

(2. Ba)

Xp —= $/Ep& X» = k/Ezv&

B' = 2wcBa—p, F' =—2F(2wcaz) (2. Bb)

As a check, the static polarizability, calculated
with the first twelve discrete He levels and u„
given in Eq. (2. Ba), is 1.334 (in atomic units},
which is to be compared with the exact n(0)
= 1.384.

The values of C» for He are illustrated in Fig.
1. The dependence of the van der Waals constant
C» upon re~ can be readily determined by inserting
Eq. (2. ?a) into Eq. (2.6b). Letting e„(i)) 1=
+ (~z/(), we obtain

1 (u~
™ E)

v 8 ~ .p E(E+u&z/
(2. 9a)

f(E)—=Z fy&(E &d, )+f,(E). - (2. 9b)

Equations (2.9) are expressed in atomic units.
Figure 1 clearly demonstrates that an accurate
representation of the atomic properties is essential
to an adequate calculation of the van der Waals
energy. Curves (a), (b), and (c) correspond, re-
spectively, to Eq. (2. Ba) calculated with only the
first transition), the first twelve transitions, and
the first twelve transitions plus the continuum con-

In Eq. (2. ?b), az is the numerical value of the H

Bohr radius expressed in angstroms, A = —0.56054,
B= 2. 0263 x 10 3, F= 2. 5645 x 10 6 and Eo = 2. 0019.
These coefficients were determined by requiring
that the f sum rule be satisfied. The continuum
polarizability calculated with Eq. (2. ?b) is given
by

r
n, (fg) =

J
&fE z' Ez

8rp
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E„[n]= r[n]+ Z[n],

F[n] =- E„[n]+E„[n],

(3. la)

(3. lb)

in electronic kinetic energy upon assembling the
system. This increase is a consequence of the
Heisenberg uncertainty principle, since assemblage
restricts the electrons to a smaller volume.
A convenient method for calculating the change in
kinetic energy is the density-functional formal-
ism. ' 5 According to this theory, the ground-
state energy of an interacting many-electron sys-
tem in an external potential is a unique functional
of the electron density n(r). Formally the ground-
state energy E„[n] can be written4~

20 E [n] = tv(r)n(r) d y

1 " n(r)n(r )d sd r
+ ~/

Ir -r I

(3. lc)

0
0 l0 20

ty&(eV)

50

FIG. 1. He van der Waals constant Cv~ in Eq. (2. 6 b)
as a function of plasma frequency or&. C~ increases
monotonically with co& for curves (a)-(e). Five models
are considered: (a) only the first excitation is included;
(b) twelve discrete ground-state excitations; (c) twelve
discrete ground-state excitation and transitions to the
continuum; (d) one excitation with oscillator strength of
2 and energy /e'(0); (e) static polarixability alone.
The importance of an adequate description of the frequency
response of the atom is illustrated.

tribution of the He atom. The curve labeled (d)

represents the approximation 0 in which the polar-
izability of He is modeled by one level with an os-
cillator strength of 2 (i.e. , the total He oscillator
strength) with a corresponding energy equal to
42/a(0). Finally, curve (e) results from replacing

a(f() by a(0) in Eq. (2. 6b). This represents an

upper bound on approximations to Cv. Evidently
a major contribution to C„„originates in the con-
tinuum levels. Moreover, the approximation in

curve (d) deviates from the more accurate result
in (c) by about 10%. Si.gnificant errors occur, there-
fore, when crude approximations of the atomic
properties (i.e. , the polarizability), are used in

evaluating the van der %aals energy. In addition,
we note a systematic increase in attraction cor-
related with increasing plasma frequency of the

metal.

(3.2a)

V(v, a, r)—= v(r)+ ll
i d r,s ~

Ir-r I

e,.-=6E,.[n]/6n.

(3.2b)

(3.2c)

The symbol p, represents the chemical potential of
the system. An equivalent system of self-consis-
tent one-electron equation is given, in atomic units
by45, 80

(h[n]+ V(v, n, r)] g, (r)= c,g&(r),

h[n] = —-', &'+ e„[n(r)],

(3.3a)

(3.3b)

The quantities T and E„represent kinetic and ex-
change-correlation energies, respectively, which
are unique functionals of n. In addition, we have
extracted the electrostatic energy E„as usual.
In Eq. (3. lc), v is the external potential which we

detine as the potential produced by all the ion cores
in the system.

In the following we derive the change in kinetic
energy, AT, which is produced by juxtaposing the
atom and metal surface. Under the assumption of
weak coupling, 4T can be expressed in terms of
the isolated atomic and metallic electron densities,
to first order in the coupling parameter. It is not
necessary, therefore, to determine the self-con-
sistent electron density of the combined system
to this order of approximation. The ground-state
energy satisfies the following variational principle

III. REPULSIVE INTERACTION

%hereas the attraction between an atom and a
metal surface arises from exchange, correlation,
and electrostatic interactions, as we discussed
previously, the repulsion derives from the increase

(3.3c)
(3.3d)
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where T, and T are the kinetic energies of the
atom and metal electrons at a distance d and at in-
finite separation, respectively. n„n„, and n&
are the electron number densities of the combined
atom-surface system, isolated atom and metal,
respectively. Within the context of the self-con-
sistent (Kohn-Sham} equations, 4' the isolated sys-
tem is specified by the following equations:

(h[ng] + V~)g( = W( P, (i = 1, 2), (3. 6a)

FIG. 2. Schematic illustrations of weak coupling.
Metal wave-function amplitudes near the nucleus are
small if the atom resides at large distance. The absence
of overlap between the He state energies and the metal
energy spectrum indicate that the weak coupling assump-
tion is justifiable for He, a forNori. Our energy con-
ventions are illustrated.

In applying the above equations to the physisorption
problem, it is important to realize that Eqs. (3. 1)
and (3.3) are formally exact, even though we do

not, at present, know the form of E„. Thus,
these equations are correct for both atoms and
condensed matter. N is the total number of elec-
trons in the system (i.e. , the «are a complete
set of orthonormal states labeled in order of in-
creasing energy). In the context of physisorption,
all energies are measured relative to the vacuum,
in agreement with the zero energy of the van der
Waals forces. These conventions are illustrated
in Fig. 2. According to our assumption of weak
coupling the electron densities of the combined
system undergo only small changes from their
isolated systems values. In particular, in the case
of He and other rare-gas atoms, this consequence
is further supported by the chemical inertness of
these elements. As illustrated schematically in

Fig. 2, the ionization potential of He is much
greater than the inner potential of common metals
resulting in weak coupling. In other words, the
metal electrons '*see" the atom as almost neutral,
while the atomic electrons experience a small
perturbation due to the metal electron density in

the surface region. Thus, electron states in the
combined system can be identified with states of
the isolated systems. We label the atomic He

states by i=1, 2 and the metal states by i=3, .. . ,
X+ 2, where N is the number of electrons in the
metal. The states and energy eigenvalues of the
isolated system are symbolized by p and 8', re-
spectively, while those of the combined system are
labeled by g and E, respectively. The quantity of
interest is the change in kinetic energy, DT, of
the combined

(h[n~] + Vj(}g, = W, P, (i = 3, N+ 2),
2 ++2

/~l Cn3

V„= V(v„,n„, r), V„=- V(v„,n„, r)

(s. 6b)

(3. 6c)

(s. M)

v„(vs) is the external potential of the atomic nu-
cleus (metal-ion cores). The combined system is
described by

(h[n, ]+ V,)« =E(Pg (i= 1, N+2),

+c= pg+ pe~

2 K+2

p. -~ I «I p. = ~ I «I,
fbi 4+3

V, —= V(v„n„r).

(S.6a)

(3.6b)

(S.6c)

(s. 6d}

(i=i, 2),

V~g -=V(vg, p„, r)+ e„[n,] —~ [pg],

V~~ -=V(v„, pu, r)+ e,.[n,] —e~[p„].

(s. 6b)

(3.6c)

(s. 6d)

e, is the external potential of all the ion cores.
Although we separate the isolated atomic and me-
tallic wave functions in Eqs. (3. 6), these equations
can be written in the form of Eqs. (3.6), since n„
and n„do not overlap (i. e. , n, n„+n-„as d- ~).
The quantities p„and p„represent the atomic and
metallic densities in the combined system. Since
the metallic states comprise a nondegenerate con-
tinuum, the energies E, (i=3, N+2) are param-
eters rather than eigenvalues. Their spectrum is
determined by the bulk metal, i.e. , z- —~. That
is to say, the Fermi degeneracy, p, , is given by~

p =
p hg+ e~[n~], (3. I)

where n„ is the bulk electron density as z- —~
and k~ is the Fermi momentum of a degenerate
electron gas with the above density. The metal
electron spectrum is, therefore, unchanged by as-
sembling the system.

In order to demonstrate the effect of the weak
coupling, we rewrite Eqs. (3.3) as follows:

(h[ p„]+V(v„,p„, r)+ V„g« = E,P,

(i=S, N+2), (3. 6a)

(h[p.] v(". .. ).v ]~ =E~

b T[n,]= T~[n,]—T„[n„,n~], (s. 4) The consistency of our assumption of weak coupling
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can be verified by insepection of Eqs. (3.8). If
p&=n&, then V» must be a small perturbation.
This, in turn, requires that p„«n„ in the region
of the nucleus (i.e. , n, = p„ in this region). As a
result we conclude that

Vzz = V(vz, n~, r)+ e„[nz] (3. 9)

The expression in Eq. (3.9) is just the potential of
an electron in the isolated atom. We expect, there-
fore, that p„=n„when the one-electron eigenstates
of the atom do not overlap the metal spectrum.
This condition is fulfilled for He. Independently,
p& =n& when the atom resides at large distances
from the surface, so that the metal wave functions
have small amplitudes in the region of the nucleus
(i.e. , see Fig. 2). As a consequence of the above
consideration, we derive through first order in

VAN y

E& = w&+ fd'r
I 4)& I

'
V„u (f = I, 2) . (3.10a)

The resulting atomic electronic kinetic energy is
given by

2

T[p,l=~ d'r4[*(- z V')4[
jni

2

d'r p„(V, + z„[n,])

2

=-E)d, + J r(d„d-)t )()'. d„[d.])
gn1

p~ r) + z Ip~]]'

Jds„d ()d'[d. ] »[ ])5n 5n

n, =n +z(n).d (3.11b)

Neglecting terms in p„-n& and p„-n„ the change
in kinetic energy of the system is

=-E)d& —Jd~y „()'~+d[d ])=d'[d„]. (3. )Db)
ill

To first order in V», the kinetic energy of the
atomic electrons is unchanged. Upon assembling
the system, the chemical potential p,, (i.e. , the
negative of the work function in the above energy
convention) is changed from its isolated value, p„.
Therefore, E, = W, + p,, for i = 3, . . ., M+2. Upon
combining Eqs. (3.2a) and (3.3c), the kinetic en-
ergy of the metallic electrons is determined by

M+2

Tlp„]=Z W, — t 'drp( V+ e[ n])

(3.12)

ng(r} = (2/X 7r)z z" " . (3.14)

In Eq. (3.14), X = P, and r is measured from the He
nucleus. The kinetic energy resulting from inser-
tion of Eq. (3.14) into Eq. (3.13) is 91.8/o of the
variational kinetic energy. Since the variational
ground-state energy is within 1.9/p of the experi-
mental value, ~' it follows from the virial theorem,
that the variational result for the kinetic energy
has the same degree of accuracy. Equations (3. 13)
and (3. 14), therefore, constitute a good approxima-
tion for the atomic kinetic energy within the context of
physisorption. Application of Eq. (3.13) to the de-
scription of bare metal surfaces~ and work func-
tion calculations63 resulted in adequate agreement
with experimental values. Rather than using the
density-functional variational solutions for the
metal number density, we employ a parametrized
form of n& specified by~

n„=n, —,'n, expIP—z], z&0,

nz= &n, exp[- Pz],

(3.15a,)

(3.15b)

where n, is the positive jellium charge density and
P is a variational parameter. Equation (3.13) is a
functional form for the kinetic energy which in con-
junction with the electron densities in Eqs. (3.14)
and (3.15) is an adequate representation of both the
isolated atom and metal. In accord with the den-
sity-functional formalism, we assume that Eq.
(3.13) describes the combined system. The re-
sulting equation for the repulsive energy E„ is
therefore

d (d)=- J d' d d(d ')"'(,"'-,"')
Vg

Thus, the zeroth-order change in kinetic energy
can be determined approximately without resorting
to self-consistent solutions. The notation n„(d) in-
dicates that the nucleus is located at separation g.

Our scheme of calculation involves choosing a
functional T[n], which is an adequate description
of the kinetic energies of both the atomic and me-
tallic electrons when they are separated by an in-
finite distance. The functional we use is derived
from the extended Thomas-Fermi version of the
density functional formalism. For the case of
slowly varying electronic densities one may per-
form an expansion of T[n] in successive orders of
the gradient operator which, to first order, yields
the following expression:

T[n] = fd r [0.3(3v ) n +Vz ((d'n) /n] . (3.13)

In the case of the He atom, we represent n„by the
hydrogenic variational solution of the Schrodinger
equation. ' The resulting form is a good approxi-
mation to the exact number density and is given by
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+ '~e~'[E2(p) —F~(- p) —16/X], (3.1Va)

e"' f 1& 1
Ei(X) )

b i+—3,Xi X) X (3.1Vb)

Ep(X) -=e '
~

b ——
[ X ——

p
+—( 11 q 4 8

P, =-P~ 4/3X, P'=-5P/3,

(3.1Vc)

(3.17d)

(3.1Ve)

In Fig. 3, we display the repulsive energy pre-

l5
I I I

REPULSIVE ENERGY CURVES:
He ON METALS
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FIG. 3. The repulsive energy Ez for He on metals.
As +0 increases E~ becomes stronger.

(3 16
72 & n„' n„n„n„)

The approximate form in Eq. (3.16) results from
noting that n& varies much more slowly than n„
(i.e. , 2/X=3p), and n„»n„ in the region of the
nucleus. Consequently, from Eq. (3.12) we ob-
serve that the major contribution comes from the
region around the nucleus. The region VB is a
sphere of radius, 5, centered at the nucleus such
that n„& n& for r& b. Contributions from regions
such that y& 5 are much smaller. The integral in
Eq. (3. 16) can be performed analytically, yielding

5n x ( 2 &'~'
E„(d):—0. 5(3 ) SP ])X mi

U(d) = &vv—(&)+& (&) (4 1)

The van der Waals and repulsive energies used in
the calculations are taken from Eqs. (2. 6) and

(3.1V), respectively. In applying these equations
we must specify the plasmon frequency ~ needed
to calculate Ev„and the electron density n, neces-
sary for Ez (i.e. , &@20= 4', ). We determine ~~
from electron-loss experiments, ~ using the
criterion that the plasmon energy corresponds to
the most prominent loss common to measurements
taken in different laboratories. The value of (d~ for
tungsten was taken from inelastic-low-energy-
electron-diffraction (ILKED) measurements. '6 For
free-electron metals, +p is determined by the num-
ber of conduction electrons per atom, so that there
is no ambiguity in the value of this parameter (i.e.,
~0 is the free-electron plasmon energy), and the
observed value of ~~ differs only slightly from (dp

because of interbands transitions. ~4

In the case of transition metals, there is a po-
tential problem because the choice of a free-elec-
tron density appropriate for a surface calculation
is not clearly indicated. Fortunately, a prescrip-
tion has been formulated for choosing the "free"
valence electrons in these metals. This prescrip-
tion, which identifies the free electrons with the
most stable oxidation state of the isolated atom,
has been shown to be an excellent parametrization
of surface energy data in the density parameter,
r„ i.e. , r, = (4', /3) —js Even .though there is
some disagreement™ about the validity of the the-
ory, nevertheless the parametrization can be con-
sidered as phenomenological, giving strong sup-
port to the correctness of the prescription. In the
following, we denote the plasma frequency used in
computing E~ by ~ and that used in calculating
ER by (g)o

Illustrated in Fig. 4 are U(d), Evv(d), and Ez(d)
for a, "typical" metal (i. e. , ~~ =~0=20 eV). At the
equilibrium position (vertical arrow), the van der
Waals energy is the major component of the physi-
sorption energy. From our discussion in Sec. II,
we conclude that U(d„), where d„ is the equilib-
rium position of the atom is largely independent of
temperature. Another interesting feature illus-
trated in Fig. 4 is that, as the particle approaches
the surface, E„first decreases because the atomic

sented in Eqs. (3.1V) for three different positive
jellium charge densities. The systematic strength-
ening of Ez with increasing uPO—= 4nn, (in a.u. ) is
evident.

IV. He PHYSISORPTION. ENERGY RESULTS
AND CONCLUSIONS

in Secs. II and III, we treated the attractive and

repulsive components of the physisorption energy.
The total energy of interaction U(d) is derived by
combining them:
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as we show in Fig. 4. Comparison of Figs. 1 and

5(b) reveals that for increasing &oo, first Cvv in-
creases less rapidly than ds, and then (for &uc h10
eV} the reverse occurs. It is, therefore, the rapid
increase of d for small values of &0 and slower
increase for higher ~, which produces the maximum
in the energy versus equilibrium-distance curve
shown in Fig. 5(a). In Table I we display results
of the calculations of the physisorption energies
for various free-electron and transition metals,
along with parameters used in the calculations, and
compare our results with available experimental
values. In comparing our results with experiments,
we use values derived from He scattering experi-
ments, 4 '4 which were performed under controlled
conditions. Other adsorption measurements have
been made 9' on substrates whose surface condi-
tions have not been specified; we, therefore, make
no further reference to these experiments.

In conclusion, we have presented a formulation
of a microscopic theory of physisorption derived
from the assumption of weak coupling and the ap-

FIG. 4. Illustration of the relation between U, E~
and E~ for a typical "ideal" metal (i.e. , (d& = (dp= 20 eV).
The arrow indicates the equilibrium position, d,q. The
largest contribution to U is from Ev~, indicating that
U(dg is mostly independent of temperature at physisorp-
tion distances.

and metallic electrons overlap and then increases
because the electrons are "squeezed" into a small-
er volume. This is exactly analogous to the situa-
tion for the binding in diatomic molecules. 3 In a
previous paper, ~ we presented results for d'„and
—U(d„) for the physisorption of He on free and
transition metals. In Figs. 5 we summarize these
results by plotting the physisorption energy versus
the equilibrium position for a range of metals.
The solid line in the Fig. 5(a) corresponds to ideal
metals (i.e. , roc= &u~). It is apparent that, for
these metals, U(d„) first increases (weaker bind-
ing) with increasing d and then decreases with
further increase of d„. In Fig. 5(b) it is demon-
strated that d increases monotonically with in-
creasing &0. This increase is first very rapid
(i.e. , for ~, &10 eV) and then markedly slower.
The transition metals listed in Table I follow this
curve closely. It is important to note that the val-
ues of the equilibrium position are not simply re-
lated to the sum of covalent radii of the metallic
and He atoms. The physisorption energy exhibits
a maximum for ~o =10 eV, as illustrated in Fig.
5(a). This feature can be appreciated by observing
that the van der Waals energy (i.e., C —Cv„/d,',}is
the major contribution to the physisorption energy,

g -OIO—
a
L
DI

-O.I2-
O

-O.I4-
D

tdo gP~

~ 4'o +

-O.I6—
I

5 6
deq ~ o ~ u. )

30—

20-
O

3 io—

0
3

~o
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FIG. 5. (a) Physisorption energies for He adsorbed
on "free-electron" metals. The decrease of —U(d, g
for small electron densities reflects the sharp increase
in d~ at these densities. The increase in —U(- U(d, g)
for high electron densities is a result of the slow varia-
tion of d«. Error bars indicate the uncertainty in the
values of d~q due to the numerical distance grid of 0.1
a.u. used in the calculations. (b) Equilibrium position,
dpq& of physisorbed He atoms on metals characterized by
the plasma frequency cop. The monotonic increase of cfq

as a function of the plasma frequency is illustrated.
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TABLE I. Physisorption energies, equilibrium positions, and parameters used in the calculation of He adsorption on
"free" and transition metals. The column labeled E~t represents values of the scattering well depth in He scattering
studies (Refs. 46 and 47).

Metal

K
Na
Ll
Mg
Al
Be
Ag
ZIl
Cu
Co
Ni
Mo
W
Pt

4.3
5.9
8.0

10.9
15.8
19.0
12.7
18.5
15.3
19.3
19.4
23. 0
23. 0
19.1

3.9
5.9
7.1

10.6
15.3
19.0
23.0
22. 9
20. 0
21.0
22. 9
25. 0
23.0
23.0

l.32
1.27
l.24
1.22
1.24
l.26
1.22
1.22
l.24
1.27
1.27
1.30
1.30
1.34

d ~~(a. u. )

3.8
9

5.9
6.5
7.0
7.1
6.3
6.4
6.8
7.1
7.1
7.3
7.3
7.6

—U(d,) (10 hartree)

0.129
0.123
0.097
0.103
0.109
0.121
0.179
0.169
0.140
0.129
0.138
0.137
0.129
0.141

E~t (10 hartree)

0.128

0.159b
0. 1674

~Reference 46.
Reference 47.

plication of the local-dielectric-function formalism
and the density-functional method. The systematic
observation that the potential energy minimum does
not occur at a distance equal to the hard-sphere
radius of the metal-atom-gas-atom system as was
assumed in several previous studies, but rather at
larger distances [see also Fig. 5(b)], indicates the
necessity for a complete theory which includes both
the attractive and repulsive terms. Such a theory,
subject to the approximations and assumptions in-
dicated above, with the neglect of mutual interad-
sorbate interactions has been used in this study.

The ab initio predictions of the theory for adsorp-
tion interaction energy curves of He atoms on
metals are illustrated and compared with experi-
mentally available data. Consequently, a system-
atic dependence of the interaction energy on pa-
rameters characterizing the metal surface and ad-
sorbed atom were derived.
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