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Calculations of stacking-fault energies in aluminum, magnesium, beryllium, copper, silver, and gold are
reported. For the polyvalent metals it is shown, by means of comparisons of numerical results based on
several different energy-wave-number characteristics, that exchange and correlation corrections are not
as significant in the present context as they are in most other defect calculations. Nonlocal effects are
quite important but can be approximately accounted for by empirical adjustments of the form factors
based on simpler local models. Although stabilities against faulting and the relative magnitudes of
stacking-fault energies are correctly predicted, quantitative agreement with experiment is not obtained.
Possible reasons for this discrepancy are discussed. Results for the noble metals indicate a severe
sensitivity to the detailed curvature of the energy-wave-number characteristic in the vicinity of the
smallest reciprocal-lattice vector. Failure to obtain agreement with experiment in these cases may
therefore be due to minor inaccuracies in the energy-wave-number characteristics for noble metals.

I. INTRODUCTION

Applications of the pseudopotential theory of
metals to analyses of the energetics of most crys-
talline defects are made difficult by a number of
factors. Among these are the questionable validity
of a first-order perturbation treatment, ! the sen-
sitivity of interionic potentials to exchange and
correlation corrections, %3 and the need to proper-
ly account for the nonlocal nature of the pseudo-
potential itself.* However, the calculation of
stacking-fault energies in close-packed crystals
is one class of problems that apparently does not
suffer from the first mentioned difficulty, owing
essentially, to the fact that close packing is pre-
served across the fault plane.! There is also
reason to expect that stacking-fault-energy pre-
dictions are less sensitive than other defect cal-
culations to uncertainties in exchange and corre-
lation effects. This is because effective inter-
ionic potentials, which are always used at least
implicitly in defect-energy calculations, are most
sensitive to such many-body corrections at small
interionic distances (or the order of the nearest-
neighbor distance), * while the smallest distance
involved in a stacking-fault-energy calculation is
twice the distance between close-packed planes. °
The effects of nonlocality, however, are more
difficult to estimate because such effects persist,
in the form of a reduction in magnitude of the os-
cillations in the interatomic potential, at large
interatomic distances.* On the other hand, fully
nonlocal treatments do exist, 2%® so that it is
now possible to avoid this difficulty altogether.
Thus, if our suggestion that the stacking-fault en-
ergy is insensitive to many-body corrections is
valid, it should be possible to proceed with rea-
sonable confidence in the prediction of stacking-
fault energies for at least a few close-packed
metals.

loo

In the present paper we examine the effects of
both many-body corrections and nonlocality by
means of comparisons of calculated stacking-fault
energies. Our principal purpose in undertaking
this work was to test the sensitivity of the result
to such effects and thus to investigate the useful-
ness of the more rigorous models, and simple
local potentials as well, for predicting trends in
stacking-fault energies. A secondary objective
was to explore possible advantages of the calcu-
lational method of Blandin, Friedel, and Saada,®
in which the stacking-fault is expressed as a real-
space sum, as opposed to the usual reciprocal-
space formulation, ® involving the effective interac-
tion between close-packed planes.

A review of the method of calculation and a de-
scription of the scope of the work are presented
in Secs. Il and III. In Sec. IV we present numeri-
cal results for the interplanar potential in alumi-
num and gold, these results being typical of poly-
valent and noble metals, respectively. Topics
discussed here include the effects of nonlocality
and many-body corrections in polyvalent metals,
the asymptotic approximations of Blandin et al.,®
the sensitivity of the gold potential to minor fea-
tures of the energy-wave-number characteristic,
and implications of this sensitivity as regards the
relative stabilities of the two close-packed struc-
tures for noble metals. Section V contains the re-
sults of stacking-fault-energy calculations, com-
parisons with experiment, and an analysis based
on the discussion in Secs. III and IV.

II. METHOD OF CALCULATION

The stacking-fault energy, which will be de-
noted by y, is defined as the difference in energy
per unit fault area between the faulted and perfect
crystals. In the usual pseudopotential-perturbation
approximation, the expression for y is a sum over
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FIG. 1. Normalized energy—wave-number characteris-
tics for aluminum. Stacking-fault energy calculations
involve only those data for which ¢ is greater than the
smallest reciprocal-lattice vector, indicated here by the
line labeled x. Sources are as follows: A, Animalu
(Ref. 12); Y, Yamamoto (Ref. 8); SP, Shaw and Pynn
(Ref, 7); and EC, the empty-core model discussed in the
text. The energy—wave-number characteristics of Shaw
(Ref. 6) and Shyu et al. (Ref. 2) differ only slightly from
the Shaw—Pynn curve.

wave-vector space of a factor that depends only on
q, the electron wave number, multiplied by the
difference in the absolute squares of the faulted-
and perfect-crystal structure factors.? Blandin
et al.,® have shown that this expression can be
reduced to the simple form

ye Zz N@n) Agleh) | (1)

where % is the distance between close-packed
planes, N(n) is a set of integral weights corre-
sponding to a particular fault configuration, and
A@(nh) is an interplanar potential difference de-
fined as follows: If the stacking sequence of close-
packed planes is denoted in the usual way by a
sequence of symbols (e.g., ABABAB. .. for the
hcp structure), then A¢@(nk) is the interaction en-
ergy of a pair of planes in nonequivalent (e.g.,
A-B) positions minus the energy of a pair of planes
in equivalent (e.g., A-A or B-B) positions, the
interplanar distance in both cases being nk. The
reason that the sum in Eq. (1) begins withn=2 is
that in all of the stacking sequences considered
here, nearest-neighbor planes are in nonequiva-
lent positions in both the perfect and faulted crys-
tals and their interaction energy therefore cancels
in calculating the energy change due to faulting.
The function A@(nk) is given by

1622 - =
@)= g ox B (cosE- - 1I(g,mk), (2
g
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where z is the effective valence, ! k is the Fermi
wave number, a is the lattice constant for the
close-packed plane, E is a reciprocal lattice vec-
tor for the close-packed plane, g= Ig|, and +d is
the parallel displacement of one plane relative to
a second plane in a nonequivalent position.! The
dimensionless function J(g, nk) is the integral

© - 2, 2)1/2
Jg, nh):j [1 F;}E” +x7 )] coskpnhmdn ,
u x
(3)

where x=g/kr and Fy(q/kp) is the normalized en-
ergy—wave-number characteristic. * In practice
the only significant terms in Eq. (2) are those for
the smallest nonvanishing value of g. (By actual
numerical test, higher-order terms contribute less
than 1% to Ag.) In all subsequent discussions we
will therefore use

48 z°
Ap(mh)=— J@nh) , 4
@(nh) ‘;;r(") (4)

which is obtained by summing over the six smallest
g vectors. The integral J(nk), which is propor-
tional to the interplanar potential, is, of course,
given by the right side of Eq. (3) with x equal to its
minimum value. Actually, as the development of
Eq. (2) reveals, ! the interplanar potential is pro-
portional to +J(nk) for planes in equivalent positions
and —J(nk) for planes in nonequivalent positions.
From Eq. (3) it is evident that the only values
of the argument of F y that enter the calculation
are those for which ¢/kp>x. In Figs. 1 and 2 we
show the location of x with respect to the peaks and
valleys in the energy-wave-number characteristics

102 Fy(q)

q/kg

FIG. 2. Normalized energy—wave-number character-
istics for gold. The line marked x has the same signif-
icance as in Fig. 1, The solid curve is based on the
tabulation of Moriarty (Ref. 16) and the dashed curve is
an arbitrary alteration of that data as described in the
text.
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for aluminum and gold; these data are typical of
polyvalent and noble metals, respectively. Since
X is of the order of, or greater than, the position
of the first minimum in Fy, the large matrix
elements of the pseudopotential that occur near
q/kp=0 do not enter the calculation. Thus, as
Heine and Weaire! point out, the first-order per-
turbation approximation on which the formalism
is based is more likely to be valid for stacking-
fault calculations than it is for other defect studies
that do involve values of q/kp near zero.

K x <2, so that the integrand in Eq. (3) contains
the logarithmic singularity at the point ¢ = 2k, (i.e.,
n%+x?=4), we can expect J(rk) to exhibit a long-
range oscillatory behavior similar to that of inter-
ionic potentials.? Blandin et al., ° showed that, in
this case, the asymptotic form for J(rk) is (with
the usual assumption of a local pseudopotential)

3a'ky w(2ke) sin(2kpvnh)

J@mh)= - 128 7222 ot , (9)
where
v=[1-(x/2)%]"/2 (6)

and w(2kg) is the screened-pseudopotential form
factor evaluated at g=2k;. They also found that
if this asymptotic approximation is used to calcu-
late A@(nh), the stacking-fault-energy sum given
by Eq. (1) can be evaluated exactly for intrinsic,
extrinsic, and twin faults in both fcc and hep crys-
tals. For X >2 the poles in Eq. (3) occur at imag-
inary 7 and the resulting asymptotic form is a
decaying exponential. In this case the sum in Eq.
(1) converges quite rapidly.

In the present case, for x <2, we used the asymp-
totic formulas of Blandin ef al., with numerically
computed corrections to A@ (k) for small . Thus,
if we let v, and Ag,(nk) denote the asymptotic ap-
proximations described above, then the formula
used in place of Eq. (1) is

M
Y=va+ 7_“; N)[apnh) - ag,h)] (7
n=

where M is a number large enough that the differ-
ence between A@(Mh) and A@ 4(MFE) is small.

As it turned out, the most serious difficulty we
encountered in applying Eq. (7) was in the numeri-
cal evaluation of the integral J(zh) for large nh.
Since preliminary tests showed that the mesh-point
spacing in tabulated values of Fy is too coarse for
the application of standard numerical-integration
methods, it was necessary to interpolate the data
to obtain estimates of Fy at intermediate values of
q/kp. After experimenting with various interpola-
tion and integration schemes we finally settled on
the Aitken interpolation method® for obtaining val-
ues of Fy at ten points within each tabulated inter-
val. The integration over each subinterval was
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then done by fitting the quantity in brackets in Eq.
(3) with a single exponential in 7 and evaluating
the resulting integral exactly.

In an attempt to minimize the inevitable inaccu-
racy of interpolated values near the logarithmic
singularity at ¢ = 2k, we performed the interpo-
lation on the function €(q)F y(g/k5)/ [e(q) - 1], where
€(g) is the Hartree dielectric function. The idea
here was that in the local approximation with
Hartree screening this function is smooth and,
therefore, more easily interpolated than F itself.
Even so, when we tested the method by applying it
to such approximate functions we were not able to
consistently reproduce the asymptotic oscillations
in J(nh) for n greater than about 4. This is illus-
trated in Fig. 3, where we show the asymptotic
form of J(nk), the curve obtained by evaluating F
exactly at each mesh point, and the data obtained
with an interpolated function. For the test shown
here we used an exponentially damped, empty-
core-model potential, ' with parameters chosen
to obtain an approximate fit to tabulated F data for
magnesium., The lengths of the vertical lines
drawn at integral values of » are proportional to
the weights — N(z) for an intrinsic fault in an hcp
crystal. [From Egs. (1) and (3) it follows that ¥
is proportional to the sum of the products — N(z)
xJ mh). ]

From the erratic behavior obtained with the in-
terpolated F at large values of n, it is evident
that when 7 is large the numerical integration is
too sensitive to interpolation errors to be reliable.
It is also evident that the interpolation procedure
leads to some error for small z, as evidenced by
results for » between 2 and 3. These errors, how-
ever, are not as important because the weights
used in computing ¥ [the N(z) in Eq. (7)] are greater
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FIG. 3. Interplanar potential function for magnesium
based on the local empty-core model described in the
text. The lengths of the vertical bars are proportional
to the weights involved in Eq. (1) in the calculation of the
intrinsic fault energy in an hep crystal.



for large n. Thus, if we use the data shown in
Fig. 3 to compute the energy of an intrinsic fault
in the hep structure, we obtain 11.5 erg/cm? with
the computed Fy and 13. 2 erg/cm2 with the inter-
polated function, if the sum in Eq. (7) is termi-
nated at M=4. With M =6, however, we obtain
11.9and 7.7 erg/cm2 using the computed and in-
terpolated functions, respectively. Similar re-
sults were obtained with empty-core models for
aluminum and beryllium, although the errors in
vy for these data were much smaller.

Since interpolation difficulties of this type un-
doubtedly exist with tabulated nonlocal F, the sum
in Eq. (7) was terminated at M = 4 in all of the cal-
culations reported here. Fortunately, this caused
no serious problem in most of the computations be-
cause the agreement between computed and asymp-
totic approximations to J was generally quite good
atn=4, With some of the data for beryllium, how-
ever, the difference between the computed and
asymptotic J was still significant at » =4 and the
fact that we could not handle larger interplanar dis-
tances prevented us from obtaining reliable results.

III. SCOPE OF THE CALCULATIONS

The remaining sections of this paper are con-
cerned with the results of calculations for alumi-
num, magnesium, beryllium, copper, silver, and
gold. In all cases stacking-fault energies were
computed for intrinsic, extrinsic, and twin faults
in both the fcc and hcp structures, thus providing
tests of the ability of the method to predict stabili-
ty against faulting and the relative energies of
different fault configurations.

The energy—wave-number data used in calcula-
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FIG. 4. Interplanar potential functions for aluminum
based on the optimized model potential. The vertical
bars correspond to weights for an fcc intrinsic fault.

tions for the polyvalent metals are indicated in
Table I. In comparing the results of such calcu-
lations it is important to recall that there is an
inherent arbitrariness in the construction of a
model potential and that this arbitrariness leads,
in a truncated perturbation expansion, to some
unknown, model-sensitive error. Thus, as far
as tests of sensitivity to many-body corrections
are concerned, the most meaningful comparisons
we can make are those involving the first three
sets of data listed in Table I. All three sets were
derived from the same ionic-model potentials and
differ only in the treatment of electron exchange
and correlation energies. Similarly, because they
differ only in the way nonlocality is handled, the

TABLE I, Energy-wave-number characteristics used in calculations for polyvalent metals,
Screening Fy

Data source Model potential approximation calculation

Shaw-Pynn Optimized®* Shaw-Pynn nonlocal

(Ref. 7) (Ref. 7)

Shaw Optimized Hartree nonlocal

(Ref. 6)

Shyu et al. Optimized SSTL® nonlocal

(Ref. 2)

Animalu Heine—Abarenkov® Hubbard-Sham¢ semilocal

(Ref. 12)

Yamamoto Heine—Abarenkov Hubbard-Sham nonlocal

(Ref. 8)

Empty-core Exponentially damped Hartree local
model empty core

*R. W. Shaw, Jr. and W. A, Harrison, Phys. Rev. 163, 604 (1967).

PReferences 13-15,

°K. S. Singwi, A. Sjolander, M. P. Tosi, and R. H. Land, Phys. Rev. B 1, 1044 (1970).
L. J. Sham, Proc. R. Soc. Lond. A 283, 33 (1965).
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next two sets of data, those based on the Heine-
Abarenkov-model potential, provide a basis for
investigating the importance of nonlocal effects.
The primary reason for including calculations
based on the empty-core model was to determine,
through comparisons with results based on the
more refined models, to what extent the simpler
theory might be useful for estimating trends in
stacking-fault energies.

The only nonlocal energy—-wave-number charac-
teristics available for the noble metals are those
reported by Moriarty. !® Although comparisons
with results based on simpler local models could
have been made, we did not do this because such
models are obviously unrealistic for the noble met-
als, where the energy-wave-number characteris-
tic is dominated by the highly nonlocal effects of
resonant scattering. Our analysis for the noble
metals is therefore limited to comparisons with
experiment and a numerical test of the sensitivi-
ties of the interplanar potential and stacking-fault
energies to minor alterations of the energy-wave-
number characteristic.

IV. INTERPLANAR POTENTIALS

The interplanar potential function J(rk) for alu-
minum, as determined from the energy-wave-
number tabulations of Shaw® (Hartree approxima-
tion), Shaw and Pynn, ? and Shyu ef al., 2 is plotted
in Fig. 4 along with the asymptotic approximation
based on the Shaw-Pynn form factor. The lengths
of the vertical lines shown here are proportional
to the negative of the weight factors for an intrin-
sic fault in an fcc crystal. Figure 5 is a similar
plot, the tabulated Fy in this case being those of
Animalu’® and Yamamoto, ® while the correspond-
ing asymptotic curve was computed for the Heine—
Abarenkov form factor. '*"!® The points and asymp-
totic curve for the empty-core model correspond
to the energy—wave-number characteristic shown
in Fig. 1. Potential functions for magnesium and
beryllium were also computed but are not shown
here because the main features we wish to con-
sider are similar for all three polyvalent metals.

The first thing we should note regarding Fig. 4
is that it is very easy to see, from a plot such as
this, how the interactions between various pairs
of planes contribute to the stacking-fault energy.
At the second nearest interplanar distance (z =2)
in aluminum, for example, J is positive and the
weight — N(2) is also positive. This indicates,
according to Eqs. (1) and (4), that the interaction
between second-nearest-neighbor planes is such
as to oppose the formation of an intrinsic fault;
i.e., this particular interaction leads to a positive
contribution to the stacking-fault energy. At the
next interplanar distance, however, the contribu-
tion is negative because J and — N(3) are of oppo-
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FIG. 5. Interplanar potential functions for aluminum
based on the Heine—Abarenkov and empty-core-model po-
tentials,

site sign. The fourth- and fifth-neighbor planes
are not important because N(4)=0 and J(5%)=0.
Thus, neglecting possible contributions from larg-
er n (which turns out to be valid in this case), we
can see that the reason aluminum has a positive
intrinsic fault energy, or equivalently, the reason
that the fcc structure is stable against faulting, is
because the positive contributions of second-near-
est-neighbor planes outweigh the negative contri-
butions of third-nearest-neighbor planes. The
same kind of analysis can, of course, be applied
to the magnesium plot shown in Fig. 3. Here the
fact that the hep structure is stable tells us that
the positive stacking-fault-energy contributions
from second- and third-nearest-neighbor planes
must be greater than the negative contribution from
more distant pairs.

Another point illustrated in Fig. 4 is that at the
interplanar distances of importance here, it makes
very little difference whether we use the data of
Shaw, Shaw and Pynn, or Shyu et al. in the calcu-
lation of J. Since the only difference among these
three sets of data is the way in which exchange and
correlation effects are handled in the screening
calculation, the comparison shown here indicates
that such effects are of little consequence in the
present context. In fact, the good agreement of the
results obtained with the other two characteristics
with the result based on Shaw’s data, which was
calculated in the Hartree approximation, suggests
that exchange and correlation corrections can safe-
ly be ignored in calculations of stacking-fault en-
ergies. The reason is, as we indicated earlier,
that the effects of such corrections are observed
at interplanar or interatomic distances somewhat
shorter than those involved in the calculation of
stacking-fault energies.

Figure 4 also illustrates the generally good
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agreement experienced between the numerically
computed value of J and the value obtained from
the asymptotic approximation of Blandin et al. at
separation distances of about four interplanar
spacings. Further examples are provided by the
Yamamoto and empty-core results shown in Fig.
5. Thus, as we indicated in Sec. III, it was possi-
ble to terminate the numerical-integration com-
putations at » =4 and, in effect, use the asymptotic
curve for larger n without introducing serious
errors in most applications.

An exception is illustrated in Fig. 5, where it
is evident that computed values based on Animalu’s
semilocal energy-wave-number characteristic are
significantly greater than the corresponding asymp-
totic curve. This difficulty was also observed
with the Animalu calculation for magnesium and,
to a much greater extent, with the beryllium cal-
culation. In fact, with beryllium, the disagree-
ment was so serious that we were not able to ob-
tain even a reasonable estimate of the stacking-
fault energy based on the Animalu data. Some
difficulty was also experienced with the beryllium
potentials based on the data of Shaw, Shaw-Pynn,
and Shyu et al., but not to such an extent as to
completely invalidate the corresponding estimates
of 7.

We can get some idea of the influence of nonlo-
cality through a comparison of the Animalu and
Yamamoto results shown in Fig. 5, since Yama-
moto’s data were obtained from a fully nonlocal
treatment of the same model potential used in
Animalu’s calculations. The principal result is
just what one would expect from Shaw’s* investi-
gation of similar effects on interionic potentials,
namely, that a fully nonlocal treatment tends to
diminish the amplitude while preserving the fre-
quency and phase of the long-range oscillations of
the potential function. It should be noted, however,
that Animalu’s energy—wave-number characteris-
tic is semilocal, in the sense that he made use of
certain simplifying approximations, usually invoked
in the local theory, in performing the final integra-
tion to obtain F . 2 If a truly local approximation
had been employed, Shaw’s* studies indicate that
the amplitude of the oscillations in J would be even
greater than that obtained with the Animalu approxi-
mation. We conclude, therefore, in agreement
with Shaw, that nonlocality must be accounted for
in any accurate first-principles predictions of
interionic or interplanar potentials.

This is not to say, however, that we cannot use
simpler, empirically adjusted local models for the
prediction of trends or even for obtaining rough
estimates of the values of the stacking-fault ener-
gy itself, provided that we have some prior knowl-
edge of the general features of the nonlocal energy—
wave-number characteristic. This is illustrated
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by the fact that the empty-core calculations shown
in Fig. 5 actually agree rather well with the more
sophisticated first-principles results shown in
Fig. 4. The energy-wave-number characteristic
used here was of the usual form,

Fyla/kg)={[€q)- 1]/€(@)}M?(q/kp), (®)
where €(g) is the Hartree dielectric function and
M(x)= cos(1rx/2:nr0)e"”‘z . (9)

The parameter x, was fixed by requiring that the
first zero in Fy coincide with that in Animalu’s
tabulation, and the damping parameter D was cho-
sen to bring the peak near g = 2k, down into rough
agreement with tabulated nonlocal functions. The
value used for all three polyvalent metals was
D=0. 12, which is somewhat larger than the damp-
ing parameters usually employed in local-empiri-
cal-pseudopotential studies. 11 This value did, how-
ever, lead to rather good agreement with the non-
local energy wavenumber characteristics and in-
terplanar potential functions for all three polyval-
ent metals, the results shown in Figs. 1, 4 and

5 being typical.

Turning now to the noble metals we show a repre-
sentative result in Fig. 6. This is the interplanar
potential function for gold, as determined from
Moriarty’s energy-wave-number characteristic, '
along with the corresponding asymptotic approxi-
mation. The second set of points shown here was
obtained with the altered energy—wave-number
characteristic shown in Fig. 2; the significance of
these data will be discussed shortly. Again, the
vertical lines are proportional to the weights
— N(n) for an intrinsic fault in an fcc crystal.

From these results, and those for copper and
silver as well, it is evident that there is serious
diagreement between the interplanar potential func-
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FIG. 6. Interplanar potential functions for gold. The

corresponding energy—wave-number characteristics are
shown in Fig, 2.
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tion predicted by the asymptotic theory and that
obtained by direct numerical integration. This is
not surprising in view of the fact that the asymp-
totic approximation is based on the assumption that,
as far as the long-range behavior of J is concerned,
the logarithmic singularity at g= 2k is the domi-
nant feature of the energy—wave-number charac-
teristic. Thus, when the asymptotic form resulting
from this assumption turns out to be a rapidly de-
caying exponential, as it does here, there emerges
the possibility that other features of Fy may domi-
nate at large values of n2. Qur results show that
this is in fact the case for the noble metals and
suggest that similar results might be expected for
other monovalent metals as well.

One encouraging consequence of the radical de-
parture of the numerically computed J from the
asymptotic approximation is that the computed
values lead to positive energies for fcc faults while
the asymptotic theory incorrectly predicts nega-
tive fault energies.® As is evident from Fig. 6,
this happens because the positive contribution
from third-nearest-neighbor planes is strong
enough to offset the negative contribution from
n =2 interactions. Thus, the strong negative dip
in J betweenn =2 and 3 seems to be essential to
the correct prediction that the fcc noble metals are
stable against faulting.

Unfortunately, the dip inJ is not strong enough.
In Sec. V we will present predictions of y that
show that although positive energies are obtained
for fcc faults, these energies are low by about an
order of magnitude for gold and silver. Further-
more, our calculations also indicate that noble-
metal fault energies for the unstable hcp crystals,
which one would expect to be negative, turn out to
be positive and quite large. This indicates, of
course, that the hcp structure is more stable than
the fcc structure, an incorrect prediction that
agrees with Moriarty’s total-energy calculation, ¢
The trouble is obviously due to some inaccuracy
in the Moriarty F, data, probably, as he suggests
to his neglect of the subtle effects of crystal field
splitting on s-d hybridization. !* However, what-
ever the basic reason may be, it is of interest to
note that the correct interplanar potential function
must have a more pronounced minimum than that
obtained from the Moriarty data. This would pro-
duce a greater difference between the positive
(n = 3) and the negative (2 =2) contributions to the
fcc intrinsic-fault energy, while at the same time
reducing the predicted values of fault energies in
the hypothetical hep structure.

An interplanar potential function having the de-
sired characteristic is shown in Fig. 6. This
curve was generated from the altered Fy data
shown in Fig. 2. We wish to emphasize that this
alteration is entirely arbitrary; it was obtained by

’
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trial-and-error manipulations of the data in the
neighborhood of ¢/kg=x, since J seems to be most
sensitive to the detailed curvature of Fy in this
region. We think the result is of interest, how-
ever, because it shows that for the noble metals
at least, seemingly insignificant changes in the
energy—wave-number characteristic can lead to
major changes in the interplanar potential (Figs. 2
and 6) and in the predicted stacking-fault energy
(the alteration shown here increased the fcc in-
trinsic-fault energy by about a factor of 7). Un-

fortunately this extreme sensitivity to detailed
structure in the energy—wave-number characteris-

tic also suggests that, in contrast to the situation
for polyvalent metals, there is little hope for
making useful estimates on the basis of simple
models for the noble metals.

V. STACKING-FAULT ENERGIES

Table II is a listing of intrinsic-stacking-fault
energies for the stable structures of aluminum,
magnesium, and beryllium. Calculations were
also performed for extrinsic and twin faults and,
with few exceptions, the approximate relations for
hep crystals!® yere® 2 10 3Vewin, Were found to
hold within about 10%. The exceptions were the
twin-fault energies in magnesium, as determined
from the energy—wave-number characteristics of
Shaw and Pynn, Shaw, and Shyu ef al., where we

TABLE II. Intrinsic-stacking-fault energies in erg/
cm? for aluminum (fcc), magnesium (hcp), and beryllium
(hep).

Data source Al Mg Be
Shaw—Pynn 57.9 13.9 439
Shaw 52.1 8.54 390
Shyu et al. 69.2 16.6 468
Animalu 104 33.4 eee
Yamamoto 110 37.7 305
Empty-core model 43.1 11.5 128
Other calculations 195% 8.7 225!

62° 30%
142°¢ 508
Experimental 135¢ 60-93" 1901
estimates 135—-280° 100-1504

2Reference 17; based on Animalu data.

bReference 18; based on Shaw data.

°Reference 18; based on Animalu data.

dReference 20,

°P, C. J. Gallagher, Met. Trans. 1, 2429 (1970).

fReference 19; based on Shaw data,

8Reference 9; based on Harrison’s pseudopotential.

bp, H. Sastry, Y. V. R. K, Prasad, and K. I. Vasu,
Scripta Met. 3, 927 (1969).

1H, Conrad, Air Force Materials Laboratory Report
No. AFML-IR-65-310 (1965) (unpublished).
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TABLE III, Intrinsic-stacking-fault energies in erg/
em? for fee copper, silver, and gold, Calculated values
are based on the energy—wave-number characteristics
of Moriarty (Ref. 16).

Cu Ag Au
Calculated 44.8 1.7 4.8
Average
experimental
estimate® 55 21.7 50

%p, C. J. Gallagher, Met. Trans. 1, 2429 (1970).

found Yert® 2. 3Yiyin. With fcec aluminum we ob-
tained, to within about 25%, Vext™VYint=2Vtwin. FOT
the unstable close-packed structures (hcp alumi-
num and fcc magnesium and beryllium) we obtained
negative energies for all three types of fault, thus
correctly indicating the instability of these struc-
tures against faulting.

Intrinsic-fault energies for fcc copper, silver,
and gold, as determined from Moriarty’s energy—
wave-number data, are shown in Table III. As
was noted in the Sec. IV, the hcp fault energies
for these metals, rather than being negative as
they should be, were calculated to be positive and
quite large (y=26, 15, and 25 erg/cm? for the hcp
intrinsic-fault energies in copper, silver, and
gold, respectively). The good agreement with ex-
periment obtained for the fcc intrinsic-fault ener-
gy in copper is therefore probably fortuitous.

When the energy-wave-number characteristic
for gold was altered as shown in Fig. 2, we ob-
tained 37 and 20 erg/cm? for the fcc and hep intrin-
sic faults, respectively. We wish to emphasize
again, however, that although this change is in the
right direction, the alteration of Fy shown in Fig.
2 is entirely arbitrary, and serves only to illus-
trate the sensitivity of noble-metal results to
rather minor features in the energy—wave-number
characteristics. This being the case, there is
not much more we can say about the noble metals
except to note that the calculation of stacking-fault
energies appears to be a very demanding test of
the accuracy of the energy-wave-number charac-
teristic in the vicinity of the smallest reciprocal-
lattice spacing.

Returning now to the polyvalent metals we can
see, as anticipated from the plots of the inter-
planar potential function shown in Fig. 4, that ex-
change and correlation effects are not particularly
significant since little change was experienced in
going from the Hartree approximation (Shaw) to
calculations with such many-body corrections in-
cluded (Shaw and Pynn and Shyu et al.). The only
appreciable effect was that shown for magnesium,
where there is roughly a factor of 2 spread in pre-
dicted intrinsic-fault energies.
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Results based on the energy-wave-number data
of Animalu and Yamamoto indicate that, in two
cases at least, differences between fully nonlocal
and semilocal calculations are not as great as one
might expect from the data shown in Fig. 6. Ap-
parently what has happened in aluminum is that
the large differences between the Animalu and
Yamamoto calculation of J at second- and third-
nearest-neighbor planes are approximately can-
celed in performing the sum in Eq. (7) (recall that
the second-nearest-neighbor plane gives a positive
contribution to y while the third-nearest-neighbor
plane yields a negative contribution). A similar
situation exists for magnesium, the cancellation
in this case being between the positive contribu-
tions of the second- and third-neighbor pairs and
the negative contribution of fourth-nearest-neigh-
bor planes. For beryllium, however, the effect
was quite marked because the Animalu data gave
correction terms [those in the sum on the right
side of Eq. (7)] that were about an order of magni-
tude greater than the corresponding values obtained
with Yamamoto’s data. As was mentioned pre-
viously, it is this large deviation of the numeri-
cally integrated J from the asymptotic approxima-
tion that prevented us from obtaining a meaningful
estimate of ¥ for beryllium from Animalu’s data.
One should, of course, expect to encounter diffi-
culties with the local or semilocal approximation
for beryllium because the absence of p states in
the core leads to a strongly nonlocal pseudopoten-
tial, !

It would appear, however, from results such as
those illustrated in Figs. 1, 4, and 5, that in the
present context the principal effect of a fully non-
local treatment is the suppression of the peak in
Fy near g =2k, and the resulting reduction in the
interplanar potential functionJ. Thus, given some
prior knowledge of the magnitude of the peak in
the nonlocal Fy, it should be possible to use em-
pirically adjusted local-model potentials, even for
sueh strongly nonlocal elements as beryllium, to
obtain rough estimates of y. To test this idea, we
used the modified empty-core model described in
the Sec. IV to compute the intrinsic-fault energies
shown in Table II. Considering the fact that the
model is extremely simple and that the same damp-
ing-factor adjustment was used for all three met-
als, the agreement with other predictions of v is
surprisingly good. Although improved agree-
ment could probably be obtained by further adjust-
ments of the model-potential parameters, we see
little reason for doing so, particularly since there
is still considerable uncertainty as to what one
should assume for the correct value of ¥. In any
case, even if Y were known more accurately, the
real merit of such simplified models lies in their
ability to predict trends in relative magnitudes and,
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perhaps, obtain rough estimates of y itself, with

minimum requirement for prior adjustment of the
model-potential parameters. In this sense, then,
the rough agreement shown here is actually quite

encouraging.

As far as the more rigorous models are con-
cerned, comparisons of our computations with
those performed by other methods met with mixed
results. With aluminum, for example, our value
of 104 erg/cm? based on Animalu’s data is signifi-
cantly lower than Hodges!” value of 195 erg/cm?,
which was computed from the same energy-wave-
number characteristic using the reciprocal-space
formulation. It is also lower than the value of
142 erg/cm? obtained by Wilkes and Sargent, !® who
used the same data in a real-space treatment in-
volving the sums of interionic potentials over a
large number of pairs of ions in the faulted and
perfect structures. There is, unfortunately, rea-
son to question the accuracy of both the Wilkes—
Sargent result and our own. The Wilkes—Sargent
calculation did not make use of the asymptotic
theory of Blandin et al. and, therefore, suffers
from a convergence difficulty typical of pairwise
sums over the direct lattice. Our calculation in
this case is also subject to a convergence uncer-
tainty because, as we noted earlier, with the
Animalu data it was not possible to carry the cal-
culation out to distances large enough to obtain
agreement with the asymptotic potential. We can
be less certain of possible sources of error in
Hodges result, although the fact that he had to
perform a number of rather sensitive computations
by hand could have resulted in some inaccuracy.
The only other comparison we can make for alu-
minum is our value of 52 erg/cm?, obtained from
Shaw’s data, with the Wilkes—Sargent value of 62
erg/cm?. In view of the convergence difficulty
experienced by Wilkes and Sargent this ageement
is probably as good as can be expected.

For magnesium, our results based on the Shaw
and Animalu energy-wave-number data are in
excellent agreement with the values reported by
Ducharme?? (8.7 erg/cm? with Shaw’s data) and
Hodges!” (30 erg/cm? with Animalu’s data). Har-
rison’s calculation of 50 erg/ cm? was based on a
different energy-wave-number characteristic® and
is included here only as a further illustration of the
rather significant differences that can result from
the use of different potentials. The only compari-
son we can make for beryllium is our calculation
of the fault energy with that of Ducharme, *® both of
which made use of Shaw’s energy—wave-number
characteristics. Here again, however, we ex-
perienced some convergence difficulty, which could
account for the discrepancy.

Agreement with experimental results is general-
ly rather poor. We are not particularly concerned

that our results for beryllium seem to be too high,
because of the convergence problem discussed
earlier. The poor agreement for magnesium and
aluminum, however, deserves further comment.

First we should point out that it is quite possible
that the experimental values for these metals are
too high, since experimental difficulties are usually
encountered when y is greater than about 20 erg/
cm? ?® The source of this difficulty is that fault
widths are roughly proportional to the inverse of
the stacking-fault energy and are therefore too
small for direct observation when vy is large. One
must then resort to indirect methods, such as the
observation of dislocation-loop annealing rates, 2°
to obtain estimates of y. Interpretations of such
data necessarily involve the assumption of physical
models and subsequent calculations to extract ¥
from the direct experimental results. The pres-
ent situation is therefore one of considerable un-
certainty, as evidenced by the spread in experi-
mental data referenced in Table I. For this rea-
son we are inclined to regard comparisons with
experiment primarily as tests of the ability to pre-
dict trends, placing less emphasis on the achieve-
ment of absolute numerical agreement.

As for why the calculations might be inadequate,
if indeed it is the calculations that are at fault,
we cannot offer a completely satisfactory explana-
tion. While it is certainly possible that the nu-
merical problems discussed in Sec. II led to sig-
nificant errors in the predictions, agreement with
calculations performed by other methods seems
to indicate that this is not the case. Nor does it
seem likely that uncertainties in exchange and
correlation corrections are responsible, because
we can totally ignore such effects and still obtain
about the same answers. Nonlocal effects can be
ruled out because they are fully accounted for in
some of the energy—wave-number characteristics
of concern here. Although magnesium and alumi-
num are generally considered “simple” metals,
in the sense that the matrix elements of their
pseudopotentials are small, we cannot ignore the
possibility that higher-order terms in the pertur-
bation expansion, which would be structure depen-
dent and therefore different in the faulted and per-
fect crystals, may have a greater effect in stack-
ing-fault-energy calculations than they do in cal-
culations of other properties. Still, if agreement
with presently available experimental data is our
goal, we are looking for a factor of about 2 or 3
increase in v, and the possibility that a higher-
order perturbation treatment would give us such a
factor does seem remote.

Thus, because the major sources of error usually
present in defect studies are of diminished impor-
tance in stacking-fault-energy calculations, it is
difficult to identify any one uncertainty as being
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most likely to cause disagreement with experi-
ment. The best we can do at present is to simply
note that there are still many approximations and
idealizations present, both in the theory and in the
derivation of stacking-fault energies from experi-
mental observations and, for this reason, perhaps
we should not expect much better agreement than
that obtained here.

VI. SUMMARY AND CONCLUSIONS

We have applied the method of Blandin, Friedel,
and Saada’® to the calculation of stacking-fault
energies in aluminum, magnesium, beryllium,
copper, silver, and gold. Energy-wave-number
characteristics representing various degrees
of refinement of the theory were used in order
that the sensitivity of the result to such refine-
ments could be determined.

Our results for the polyvalent metals indicate
that the stacking-fault energy is influenced by
many-body and nonlocal effects, but not nearly so
much as to invalidate the use of approximate
model potentials. In fact, comparisons of results
based on a simple local potential with those based
on the more sophisticated nonlocal treatments sug-
gest that, with certain semiempirical adjustments
to account for the major effects of nonlocality, the
simpler theory is entirely adequate for predicting
trends and for obtaining rough estimates of the
stacking-fault energy, as long as the use of such
models is restricted to polyvalent metals. Cal-
culations for copper, silver, and gold, on the
other hand, show that the stacking-fault energies
of these metals (and probably other monovalent
metals as well) are quite sensitive to minor altera-
tions in the energy—wave-number characteristic.
The use of simplified semiempirical models for
these metals could therefore lead to serious error.

The real-space formulation of Blandin et al.
was found to have both its advantages and dis-
advantages. On the positive side, the fact that the
method involves a sum of interplanar potentials
over pairs of close-packed planes offers some
interpretative advantages over the reciprocal-
space treatment. It is very easy to see, for ex-
ample, in terms of the amplitudes and oscillatory
characteristics of the interplanar potentials, how
interactions between various pairs of planes con-
tribute to the stability or instability against faulting
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for a given close-packed structure.

The principal disadvantage of the method is that
it presents some difficult computational problems,
both in the sensitivity of the result to numerical-
integration approximations and in the usual con-
vergence problem associated with real-space lat-
tice sums. Still, with the aid of the asymptotic
approximations developed by Blandin ef al., the
latter difficulty can be largely overcome, and the
method therefore offers an instructive, though
perhaps somewhat less accurate, alternative to
the more familiar reciprocal-space treatment.

Comparisons of predicted stacking-fault energies
with experimental results were disappointing, the
calculated values in most cases being substantial-
ly lower than experimental values. Since the
major uncertainties that one usually has to deal
with in defect-energy calculations (the validity of
perturbation theory, exchange and correlation
corrections, and the importance of nonlocal effects)
are of minimal significance in the present appli-
cation, it is difficult to explain why this disagree-
ment exists. Although this is an unsettling situa-
tion, and one that we think deserves further study,
we can draw some satisfaction from the fact that
the calculations do correctly predict the stabilities
of close-packed structures against faulting, and,
at least roughly, the relative magnitudes of stack-
ing-fault energies for different metals. The cal-
culations also indicate that trends such as these
can be predicted with reasonable success with a
local-model potential, provided that the major
effects of nonlocality, the suppression of the peak
in the energy-wave-number characteristics at g
=2kp, is approximately accounted for by an em-
pirical adjustment. This may well be the most
important result of the present work because it
suggests that in spite of quantitative difficulties
that seem to persist in even the most refined ver-
sion of the theory, there is still much that can be
learned from the simplest local approximation.
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