
PHYSICAL RE VIE W B VOLUME 8, NUMBER 12

Energy Bands in Paramagnetic Chromium'

15 DECEMBER 1973

J. Rath and J. Callaway
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

(Received 13 July 1973)

The results of a self-consistent tight-binding calculation of the band structure of paramagnetic chromium

are reported. The basis set consisted of atomic wave functions for the 1s, 2s, 3s, 4s, 2p, 3p, and 4p states

expressed as linear combinations of Gaussian-type orbitals (GTO) and five individual GTO's for each 3d
state. The exchange potential was calculated according to the Xa method with a=2/3. The initial Coulomb

potential was constructed from the superposed charge densities of neutral chromium atoms in a 3d' 4s'
configuration. Eleven iterations were required to determine a self-consistent potential. The charge density

was sampled at 55 inequivalent points in 1/48 of the Brillouin zone. Energy bands were calculated with the

use of the self-consistent potential at 819 points in 1/48 of the zone. The density of states was calculated

according to the Gilat-Raubenheimer method. Cross sections of the Fermi surface were obtained in several

symmetry planes. The x-ray form factor was determined from the self-consistent wave functions.

I. INTRODUCTION

The band structure of chromium is of considera-
ble interest in view of its antiferromagnetic prop-
erties. The antiferromagnetic structure which
exists below the Neel temperature of 312 K has
a periodicity incommensurate with that of the lat-
tice and is interpreted in terms of spin-density
waves first described by Pverhauser. '~

Pverhauser showed that the ground state of a
free-electron gas in the Hartree-Fock approxima-
tion is not paramagnetic, but is, instead, an anti-
ferromagnetic spin-density-wave state. Subse-
quently, Hamann and pverhauser, Rajagopal, 4 and
Fedders and Martin demonstrated that when the
screening of electron interactions is included, a
ground state of the normal type is obtained. The
situation is more complicated when a periodic po-
tential is present. Special features of the Fermi
surface in the paramagnetic state can produce an
instability leading to the formation of an antiferro-
magnetic ground state.

What is required is "nesting. " If it is possible
to translate portions of electron sheets of the
Fermi surface by some wave vector Q so that they
come into coincidence with similarly shaped hole
sheets, the magnetic susceptibility of the para-
magnetic state may develop a maximum near g.
Such a situation favors the formation of spin-den-
sity waves of this Q. Lomer pointed out that these
conditions should be realized in chromium.
These arguments require modification because
nesting is not perfect, and because matrix ele-
ments may vary strongly in the vicinity of the sur-
faces on which nesting occurs. 7

It then becomes of interest to study the band
structure and electronic wave functions of chromi-
um in detail. Several calculations have been re-
ported previously.

Asdente and Friedel and Asdente calculated
the d-band structure and Fermi surface of chro-

mium using a crude form of tight-binding method.
These authors made drastic approximations con-
cerning the crystal potential, the wave functions,
and the tight-binding matrix elements and were
unable to obtain results of quantitative significance.
The essential features of the Fermi surface in-
cluding those responsible for the nesting were in-
ferred by Lomer ' from the results of a calcula-
tion performed for iron by Wood. The portions
of particular interest are closed electron and hole
surfaces around I' and 0, respectively, hole
pockets around E, and electron balls along the
[100] axis. Similar conclusions were inferred by
Mattheiss from a band calculation for tungsten.

These surfaces have also been obtained in specif-
ic band calculations for chromium. The first of
these was an augmented-plane-wave (APW) computa-
tion by Loucks. 3 This work employed a potential
obtained from a superposition of atomic charge
densities. Exchange was included in the p' ap-
proximation (Xa with o.'= 1). The calculation was
not carried to self-consistency. The Fermi sur-
face obtained by Loucks was in qualitative agree-
ment with Lomer's model except that no hole pock-
ets were obtained at N. No value for the nesting
wave vector Q was reported. Switendick reported
briefly results for charge and spin densities ob-
tained from a self-consistent form of the APW
method, but experienced difficulties in obtaining
convergence to the proper antiferromagnetic state
as the number of iterations was increased. ~

Asano and Yamashita applied the Korringa-Kohn-
Rostoker (KKR) (Green's-function) method in a
calculation of band structures in both paramagnetic
and antiferromagnetic phases of chromium. '~ They
carried their calculation to approximate self-con-
sistency. Exchange was included as in the work of
Loucks (Xa, a = 1), and a somewhat ad hoc cor-
relation correction was imposed in the spirit of
the Wigner-Seitz method. In the case of antiferro-
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TABLE I. Fourier coefficients of the Coulomb and

exchange potentials for paramagnetic chromium are
listed for the smallest 20 reciprocal-lattice vectors.
The quantities b V are the changes in these quantities
from the first to the final iteration.

V (k) bV (k) V (k) dV (k)

[ooo]
[110]
[2oo]
[211]
[22o]
[310]
[222]
[321]
[4oo]
[411]
[33o]
[420]
[332]
[422]
[510]
[4311
[521]
[44o]
[433]
[530]

—1.7060
—0. 8136
—0. 5979
—0.4785
—O. 3992
—0. 3420
—0.2987
—0.2649
—0.2377
—0.2155
—0.2155
—0. 1971
—0. 1816
—0. 1683
—0. 1569
—0.1569
—0. 1383
—0. 1307
—0. 1239
—0. 1239

0.2452
—0. 0933
—0. 0293
—0. 0067
—0. 0019

0. 0022
0. 0008
0. OQ04

—0. 0011
—O. 0003

0. 0004
0. 0000
0. 0006
0. 0003

—0. 0003
0, 0003

—0. 0000
0. 0002
0. 0003
0. 0001

—1.3072
—0. 2200
—0. 0251
—0. 0377
—0. 0522
—0. 0395
—0. 0161

0, 0012
0, 0067
O. 0024
O. 0024

—0. 0063
—0. 0142
—0. 0184
—0. 0183
—0. 0183
—0, 0098
—0. 0048
—0. 0011
—0. 0011

—0. 0905
0. 0228
0. 0163

—0. 0031
—0. 0104
—0. 0075
—0. 0015

0. 0029
O. 0043
0, 0033
0. Q033

—0. 0011
—0. 0010
—0. 0023
—0. 0026
—0. 0026
—0. 0010

0. 0000
0. 0009
0. 0009

magnetic chromium, they considered a hypotheti-
cal state in which the wave vector Q is exactly
half a reciprocal-lattice vector (2v/a). They ob-
tained a Fermi surface for paramagnetic chromi-
um consistent with Lomer's model. Although their
procedure differs in many respects from ours,
the resulting Fermi surface is rather similar to
ours. A detailed comparison of the present results
with those of Asano and Yamashita will be given
subsequently (Table II).

Additional band calculations for paramagnetic

chromium have been reported by Yasui, Hayashi,
and Shimizu, ' and by Gupta and Sinha. ~ Yasui
et al. employed a combination of tight-binding and
orthogonalized-plane-wave (OPW) methods, the
tight-binding portion being done in the manner of
Stern in which wave functions are added so that
all integrals may be performed in a single cell.
The calculations were carried to self-consistency
for two values of the exchange parameter n in the
Xo. method (n= 1.0 and 0. V25). The Fermi sur-
face obtained for e= I was not in good agreement
with that required to produce the observed anti-
ferromagnetic structure, whereas good results
were obtained for o.'= 0. 725. This is consistent
with our experience in that we find that transition-
motal band structures computed self- consistently
with 0.= 1 are unsatisfactory, ' and that a value of
e close to the Kohn-Sham-Gaspar result (-', ) gives
better results. A comparison of some features
of the results of Yasui et al. with those obtained
here is also presented in Table II.

In the course of a calculation of the wave-vector-
dependent magnetic susceptibility of chromium,
Gupta and Sinhav reported a computation of the
band structure according to the APW method (Xa
with n= 1). This calculation was not iterated to
self-consistency, and some aspects of the band
structure are inconsistent with ours as well as
those of Asano and Yamashita and Yasui et al.
They obtained a value of 0.88 for the nesting wave
vector (in units of 2v/a). A detailed comparison
of their results with ours is also included in Table
II.

II. METHOD

The present calculation is an application of the
tight-bindinp or linear-combination-of-atomic- or-
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FIG. 1. Energy bands in paramagnetic chromium along certain symmetry directions.
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TABLE II. Energy differences bebveen certain states
at symmetry points {in Ry) according to four calculations.

Asano and Gupta and
Yamashita Sinha
{Ref. 15) {Ref. 7)

0. 5785

0. 1332

0.4452

0.4848

I'~2-I'2's

~2S ~t

H2'5-H(2

H)5-I')

H,',-r,', 0.2341

I')2-H(2 0. 3840

P3-P4

N2-N)

N3-N(

N4-N,

N,' N4

N3-N)'

0.2505

0. 1326

0. 5025

0. 0200

0. 0530

0. 0498

0. 709

0. 136

Q. 573

0. 523

1.330

0. 238

0.421

0. 300

0. 170

0. 558

Yasui et al.
{Ref. 16)

0. 569

0. 145

0, 424

0, 467

1.097

0.298

0. 314

0. 227

0. 109

Q. 498

0. 069

Present

0.6102

0.1590

0.4513

0.4812

1.2644

0.2670

0. 3730

0.2670

0. 1234

Q. 5302

0. 0211

0. 0115

0. 1087

bitals (LCAO) method previously used to study the
band structures of nickel ' and iron. The wave
function for a Bloch state of wave vector k in band
n is expanded in a set of basis functions $,(k, r)
which are constructed from a set of localized func-
tions, u, (r —l„)

g„(k, r)= Z c„&(k)Q, (k, r)

„,Z e„,(k)e""& u, (r-%„) . (1)
N

In the present case, 38 functions u& are considered.
These functions are either individual Gaussian-
type orbitals (GTO) or linear combinations of GTO.
Atomic wave functions determined by Wachters~
were used for states other than 3d (ls, 2s, 3s, 4s,
2P, 3P, Q). In order to describe the d-band wave
functions, five radial GTQ were introduced for
each of the five possible l = 2 angular functions.
The exponents used in defining these functions
were those employed by Wachters in his calcula-
tion for atomic chromium.

The calculation was begun by constructing a
crystal potential from a superposition of overlap-
ping neutral-atom charge densities, the atoms
being assumed to be in the configuration 3d 4s '.
Exchange was included according to the Xa meth-
od. 3 Our previous work on transition-metal band
structures indicates that values of e close to 3

appear to give satisfactory results, and 0,' was
taken as equal to & here. No spin polarization of
the chromium atoms was assumed and spin-orbit
coupling was also neglected.
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FIG. 2. Density of states of paramagnetic chromium
for a single direction of spin.

Self-consistency was obtained by an iterative
procedure in which the wave functions obtained at
one stage of the calculation are used to generate
Fourier coefficients of the Coulomb potential for
the next stage. ~ The calculation of the corrected
exchange potential is more cumbersome, as the
charge density in a unit cell must be reconstructed.
The criterion used to define self-consistency was
that the Fourier coefficients of the Coulomb po-
tential should be stable to 0. 001 Ry. It was found
that only the Fourier coefficients of the smallest
20 rotationally independent reciprocal-lattice vec-
tors were appreciably affected by the self-consis-
tent procedure. Eleven iterations were necessary
to achieve self-consistency. The first four itera-
tions were based on wave functions obtained at 14
inequivalent points in /th of the Brillouin zone;
the final seven iterations employed 55 points. The
exchange potential was found to converge more
rapidly than the Coulomb potential. The Fourier
coefficients for the smallest 20 R's are given in
Table I.

The self-consistent potential was subsequently
employed to calculate energy levels at 819 inequiva-
lent points in $th of the Brillouin zone. The den-

sity of states was then calculated according to the
Gilat-Raubenheimer method. '

m. RESULTS

A. Band Structure and Density of States

The calculated band structure is shown along
certain symmetry directions in Fig. 1. Some en-
ergy differences between states at symmetry points
are listed in Table 11, where they are compared
with results obtained by Asano and Yamashita, '
Yasui et al. , and Gupta and Sinha. The calcula-
tions are only roughly comparable because of the
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TABLE III. Description of the Fermi surface.

I Large electron surface Approximately octahedral.
about I

II Large hole surface
about &

III Small hole surface
about N

IV Electron ball

Approximately octahedral
and slightly larger than
surface I. Touches surface
IV at six points along I'-&
directions at distance 0. 41
(2m/a) from H points.

Ellipsoidal with nearly
circular cross section in
the I'NR plane, and ellipti-
cal cross section in I'HN

plane. No intersections
with any surfaces.

Almost spherical with
greatest deviation from a
sphere in 1-H direction.
Touches surface II, and
intersects surface I. This
surface and surface I form
the electron "jack."

differences in the value of the exchange parame-
ter. However, the two calculations listed in the
table which use e= 1 do not agree mell with each
other, particularly in the relation of the s and d
bands. Moreover, there does not seem to be any
obvious regular dependence of the energy differ-
ences on the value of o, as would be expected. We
know no specific explanation for the irregular be-
havior.

The calculated density of states is shown in Fig.
2. The density of states at the Fermi energy mas
found to be 9. 6 Ry '. This leads to a value of the
coefficient of the linear term in the electronic
specific heat of 1.6x10 ~ J/mole 'K. Since this
value pertains to a paramagnetic state, it cannot
be compared directly with the results of lom-tem-
perature measurements, which are made on anti-
ferromagnetic chromium. However, an experi-
mental value for this coefficient can be estimated
by extrapolation from measurements of the specif-
ic heats of Cr-Mo and Cr-W alloys to be y=2. 9
&& 10 J/mole 'K. Part of the discrepancy may
be attributed to neglect of the electron-phonon in-
teraction.

3.4 eV. Lenham and Treherne find sharper struc-
ture, with peaks at 1.3 and 2. 0 eV. ~ Since me

have not made a detailed calculation of optical
matrix elements, we cannot specify the location of
maxima in a precise may. It seems probable to
us, on the basis of an examination of the band
structure as shown in Fig. 1, that large regions
of k space are involved in all the transitions. Spe-
cifically, we would expect a broad region of strong
absorption from 1.3 to 2. 1 eV with a maximum
near 2. 0 eV associated with a ~,-~3 transition.
These bands are roughly parallel with a separa-
tion close to 2. 0 eV over a range of k. Higher-
energy absorption associated with 4,-Ll„P4-P„
and E~-E~ transitions is likely. The latter transi-
tions correspond to energies close to the peak re-
ported at 3.4 eV.

C. Fermi Surface

We have made a detailed study of the Fermi
surface of paramagnetic chromium. The Fermi
surface consists of electron and hole octahedra
around j. and H, respectively, an electron ball
on the [100] axis, and an ellipsoidal hole pocket
around N. These results are qualitatively in ac-
cord mith the Lomer model and the results of other
calculations. A detailed description of the Fermi
surface is given in Table III. Some cross sections
are shomn in Figs. 3 and 4.

The electron and hole octahedra exhibit the nest-
ing property required by current theories of the
antiferromagnetism of chromium. The quantity
1-5 defined in Fig. 3 describes the nesting. This
quantity ranges from 0. 976 to 0. 955 in the (100)

B. Optical Absorptions

Studies of the optical properties of chromium
may furnish some experimental evidence concern-
ing the band structure. Bos and Lynch have in-
vestigated the optical absorption in the energy
range in which interband transitions would be ex-
pected to be important. They find a broad absorp-
tion peak between 1 and 2 eV, with indications of a
shoulder near 2 eV, and an additional peak near

FIG. 3. Cross section of the Fermi surface in the
(100) plane.
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N

FIG. 4. Composite of
cross sections of the Fermi
surface in different planes.
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TABLE IV. X-ray scattering form factor.

Expt. (Ref. 34) Theory

plane and from 0. 974 to 0. 963 in a plane displaced
by the vector (2v/a) (0, 0, $). The experimental
value for Q is 0.963 close to the Neel temperature
and 0. 951 at low temperatures. 29 The higher the-
oretical value which is obtained on the [100]axis
probably does not specify the most likely value of Q
since the contribution of states at this point to the
magnetic susceptibility is suppressed by symmetry
considerations concerning the matrix elements. A
detailed numerical calculation of the magnetic sus-
ceptibility is required to specify a precise predicted
value for the wave vector of the spin-density
wave.

Some direct information concerning the Fermi
surface of paramagnetic chromium can be obtained
from the measurements by Muhlestein and collab-
orators ' 3 of the phonon dispersion relations us-
ing a neutron-diff raction technique. These authors
observed Kohn anomalies in the vibration spec-
trum both below and above the Nebl temperature.
Values are reported for the lengths of the vectors
AC and ED in Fig. 4. Our results, in units of 2v/a,
are (with the experimental values in parentheses):

AC, 0, 98 (0. 98); ED, 0. 427 (0. 425).
Experimental information also exists concerning

the dimensions of the hole pocket at N. This
comes from measurements of the de Haas-van
Alphen effect in the antiferromagnetic state re-
ported by Graebner and Marcus. These authors
find that the pocket is ellipsoidal with dimensions
of 0. 173, 0. 234, and 0. 288 A ' along the NH, NI',
and NP directions, respectively. Our results are
0. 229, 0. 371, and 0. 375 A ', respectively. The
agreement is not good. However, it is not certain
that the results should be the same since the size
of the pocket could be modified by the establish-
ment of antiferromagnetic order.

D. Charge Density

The calculated charge density can be related to
experiment through the calculation of the x-ray
atomic scattering form factor. This quantity has
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FIG. 5. Variations of the nesting wave vector along
the Fermi surface in the two planes perpendicular to the
[001) axis. Curve a, 0 =0; curve b, k, =fp +/+.
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been measured by Diana and Mazzone. s4 Our re-
sults are compared with the experimental values
in Table IV. The theoretical results tend to be
slightly larger than the experimental ones. How-

ever, the values given here are in substantially
better agreement with experiment than those com-

puted from atomic wave functions and quoted by
Diana and Nazzone.
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