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The Xa exchange approximation was used in self-consistent augmented-plane-wave calculations on
metallic copper. The value assigned to a (0.7225) was chosen to yield zero pressure at the
experimentally determined lattice spacing, and the calculations were carried out for six different lattice
piLriameters. The total energy as a function of lattice parameter, resulting from these calculations, was

used to determine pressure as a function of lattice parameter, cohesive energy, and compressibility. The
cohesiv~ergy calculation gave 0.286 Ry, which is within 11% of the experimental value of 0.257 Ry.
The compressibility, as calculated for two sets of calculated pressure as a function of lattice parameter,
was found to epee with the experhnental value to within 7% for one set of pressures and to within

4% for the other.

I. INTRODUCTION approximation to the electronic-exchange-interac-
tion term that can be used with reasonable accuracy
to determine the electronic states of a solid. The
purpose of the work described here was to apply
one such exchange approximation in evaluating the
energy bands of metallic copper, through use of the
self-consistent augmented-plane-wave (APW} meth-
od, and to determine the total energy as a function
of lattice parameter. These results were then used
to obtain pressure as functions of lattice param-
eter, compressibility, and cohesive energy.

The Xo. exchange approximation, as used in this
work, is the outgrowth of the p

~'~ approximation
originally proposed by Slater. ~ Later, when Gas-
par 2 and Kohn and Sham, s using a slightly different
approach, derived a p' 3 exchange approximation
that differed from Slater's by a constant multiplier
of 3 it became evident that a reasonable exchange
approximation could be obtained by multiplying the
Slater exchange by an adjustable parameter o,
which led to the Xn method. Many other exchange
approximations, both local and nonlocal, have been
suggested, but the use of several of these on the
energy bands of copper by Boring and Snow ~ failed
to produce results that were significantly better
than those obtained from the less complicated X&
method.

Copper was chosen for the present work for sev-
eral reasons. The author has done considerable
work on the energy bands of copper, ' and thus has
a background of experience with that metal. The
many calculations 7 and experimental results
on copper that are available in the literature pro-
vide useful comparisons. The author has also
presented calculations on silver 7 and aluminum,
but copper has a lower atomic number than does
silver, and, therefore, copper is less likely to be
affected by relativistic effects, which were not con-
sidered in the present work; and aluminum has

%'ith the development of large fast computers,
many methods of determining the electronic struc-
ture of solids have become feasible. Such methods
employ various approximations that simplify the
calculations, but with minimal loss of accuracy.
In two of these methods, namely, the nonrelativis-
tic and the electrostatic approximations, the Ham-
iltonian operator for a crystal can be written as

O2 S2
H, = —Q V„—Q V~+V(X„,x)),2~p

where the first term is the kinetic energy associ-
ated with the motion of the nuclei of masses hf„,
the second term is the kinetic energy associated
with the motion of the electrons of masses mp, and
the last term is the potential energy, which in-
cludes nuclear-nuclear, electron-nuclear, and
electron-electron Coulomb interactions, plus the
electron-electron exchange interactions. In the
Born-Oppenheimer approximation, which is based
on the assumption that the electronic motion can be
treated separately from the nuclear motion since
M„» mp, the first term in the above equation van-
ishes, yielding the electron Hamiltonian as

52
H.,=-Q V', + V(X„,x,}.

mp

The Schrodinger equation for the system is then
given as

@2E, v) ~ )'(x„,x, ))(((x„,x, )=)((x )()(x , x, ), „2mp

where the energy E(X„)depends on the positions of
the nuclei X„only as a pa, rameter. E(X„}isthe.
total energy considered in this calculation as a
function of lattice parameter.

Recently, considerable effort has been concen-
trated on developing for the crystal Hamiltonian an
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been studied in great detail by Ross and Johnson.
Furthermore, copper has a large number of d-like
electrons in a nearly filled d band that is especially
sensitive to small changes in the exchange potential
used in the present calculations, whereas the broad
sp band in aluminum is affected very little by such
changes.

II. METHOD OF CALCULATION

The present calculations employ the APW meth-
od for determining the energy bands. In this
method, the "muffin-tin" approximation to the po-
tential, which has been found to give very good re-
sults in energy-band calculations of this type, is
used. In the "muffin-tin" approximation, the elec-
tronic potential-energy function is considered to be
spherically symmetric within nonoverlapping
spheres centered at each lattice site and constant
in the region between spheres. DeCicco~' has
found that the "non-muffin-tin" terms should have
very little effect in a energy-band calculation of an
fcc metal like copper, and therefore, these terms
are not considered in the present calculations.

The self-consistent calculation is started with a
potential that is generated by the superposition of
atomic potentials centered at each lattice site.
This potential is then used in the APW calculation
to determine the energy bands and corresponding
charge density of the filled Bloch states. The en-
ergies and charge densities of the core states are
determined in a manner similar to that used in the
Herman and Skillman~ atomic calculations with the
appropriate boundary conditions. The total charge
density, core plus energy band, is then used to
generate a new potential for use in the next itera-
tion of the self-consistent process. This iterative
process is continued until there is no significant
difference between the one-electron energies ob-
tained in two successive iterations. The details of
the APW method of determining the energy bands
are presented in an article by Mattheiss, Wood,
and Switendick~~ and will not be repeated here.

This self-consistent method is used for calcula-
tions at various lattice parameters so that the to-
tal energy as a function of lattice parameter can
be determined. Pressure, compressibility, and
cohesive energy can then be determined and com-
pared to experimental results and the results of
previous calculations.

These calculations are all done for an appropri-
ate value of the parameter e of the Xe method, the
choice of o still being somewhat of a question. In
a recent paper, Schwarz~4 describes three methods
for determining e in atomic calculations. In the
first, suggested by Lindgren, ~5 e is chosen so that
the Hartree-Fock total energy, determined from
the Xa orbitals, is a minimum. This a, called
0. „, has been evaluated for several elements by

Kmetko~ and Wood. ~~ The second method, sug-
gested by Berrondo and Goscinski, ~8 is based on
the quantum-mechanical virial theorem and rec-
ommends that the a~ should be chosen so that the
virial coefficient p, given by

where (Ez,z) and (Ezz) are the average potential
and kinetic energies, respectively, calculated
from the Hartree-Fock expression using Xe orbit-
als, be equal to 1. The third method chooses n,
called 0», so that the statistical total energy of
the Xe method equals the Hartree-Fock average
energy of configuration ' for the ground state of
the atom. Schwarz has determined the values of
e„and n» for the first 41 elements in the peri-
odic table and has found that they differ by less
than 0.0008 in every case except hydrogen. Slater
and Wood~ have recommended using e» in a solid
calculation. Energy-band calculations similar to
the one presented here, but using values of e given
by Schwarz, have been done by Averill ' ~ and
Hattox. "

The a used in the present calculation was deter-
mined to be the one that would yield a virial coef-
ficient equal to unity at the experimentally deter-
mined equilibrium lattice constant for 0'K. This
was done by evaluating the pressure for a series
of self-consistent APW calculations, each for a
different value of e. The pressure as a function
of a for these calculations was then plotted, and
the 0. determined that would yield zero pressure.
The pressure for each calculation was determined
by

J'=~~ (2«m&+(E z&),
1

where V is the volume, and (Ezz) and (Epz) are the
same average energies used in the virial coeffi-
cient described above. Averill~6 has shown that
this expression for pressure can be derived from
the virial theorem for the Xe method in the "muf-
fin-tin" approximation. Obviously, the a that
yields zero pressure also yields unity for the viri-
al coefficient.

III. RESULTS

A. Determining e of the Xn Method

Each self-consistent calculation used a 500-point
linear radial mesh (for integration of the radial
Sehradinger equation) and was done for 2048 points
in the first Brillouin zone. The self-consistency
criterion used in these calculations was that the
resulting pressure vary by less than 1 kbar be-
tween two successive iterations. This generally
required from 8 to 10 iterations, with each itera-
tion taking about 4 min of computer time on the
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TABLE I. Pressure, potential energy, kinetic energy, total energy, and cohesive energy
for four self-consistent APW calcaultions on copper, with different values of n.

0.700 00
0.706 35
0.72000
0.770 00

Pressure
(kbar)

33.70
24. 35
3.64

-60.34

Ezm
(Ry)

—6553.880 469
—6556.226 508
—6561.271 765
—6579.806 760

&KI,
(Ry)

3276.967 354
3278.132 847
3280.638 812
3289.854 829

Total energy
(Ry)

—3276.913115
—3278. 093 661
—3280.632 953
—3289.951 931

Cohesive
energy~

(Ry)

0.2798
0.2814
0.2850
0.2967

Experimental value of cohesive energy is 0.257 Ry (Ref. 37).

CDC 7600. If; is of interest to note that the varia-
tion in total energy between two successive itera-
tions was about 10 ~ Ry when the pressure criteri-
on was satisfied,

The resulting pressures for four values of 0.',
calculated at the experimentally determined lattice
parameter (Aa = 6. 8086 a. u. ), are given in Table
I, along with the kinetic, potential, total, and co-
hesive energies. Pressure as a function of a is
plotted in Fig. 1, while total energy as a function
of a, for the same four calculations, is given in
Fig. 2. The total energy is very nearly a linear
function of e, as it is in atomic Xo. calculations,
but the pressure is not. However, the smooth
curve drawn through the average of these data
points on the pressure-vs-n plot in Fig. 1 predicts
an n of about 0.V225 for zero pressure. This val-
ue of o was used to evaluate the total energy as a
function of lattice parameter, the cohesive energy,
and the compressibility.

Figure 3 is a plot of the cohesive energy as a
function of n for the same four calculations. Again,
the total energy for both solid and atomic calcula-
tions is very nearly a linear function of o. How-

ever, the nonlinearity of the cohesive energy in-
dicates that the linear dependence of total energy
on 0. cannot be carried too far. Even so, the co-
hesive energy is a smooth function that increases
with increasing a.

If the cohesive-energy curve given in Fig. 3 is
extended to intersect the experimental value of
0. 257 Hy, 37 the intersection mill occur at a value
of a somewhat below 0. 64. This value of e would
give Fermi-surface "necks" that are too large in
radius and a pressure of well over 100 kbar at the
experimentally determined lattice spacing, both of
which conditions would be in very poor agreement
with experimental results. This indicates that the
Xa method (using a single o.', as in the present cal-
culations) does not simultaneously give cohesive
energy, pressure, and a Fermi surface that are in
the best possible agreement with experiment. How-
ever, the calculated values of cohesive energy dif-
fer from the experimental value by less than 18%
throughout this range of e. This difference is

small when me consider that the cohesive energies
given in Table I are the difference between two cal-
culated energies, each of the order of 3200 Ry. It
is quite possible, that better precision in the pres-
ent calculations could reduce the differences be-
tween the calculated and experimentally determined
cohesive energies.

80
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FIG. 1. Pressure vs a of the Xo,' method, for copper
(A =Ao)

B. Total Energy, Cohesive Energy, and Compressibility

Calculations were made for six values of the lat-
tice parameter A of fcc copper, each with a
= 0.7225. The lattice parameters chosen corre-
sponded to that of the experimentally determined
Wigner-Seitz cell volume Va and to 10% and 20%
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FIG. 2. Total energy vs e of the X& method, for cop-
per (A =Ap).

FIG. 3. Cohesive energy vs o. of the XQ.'method, for
copper (A =AD).

reductions and 10', 20'%%uo, and 60% expansions of
that volume. Each calculation, with the exception
of the 60Fo expansion, was converged until the pres-
sure, as determined by using the virial theorem,
varied by less than 1 kbar between two successive
iterations. This usually took from 10 to 15 itera-
tions, at 5 min per iteration on a CDC 7600 com-
puter. As in the calculations discussed in Sec.
IGA, when this convergence criterion was met, the
change in total energy was about 10 6 Ry between
two successive iterations. The calculation corre-
sponding to 609o volume expansion was converged
so that the total energy varied by less than 1Q ~ Ry
between successive iterations. Each calculation
was done for 2048 points in the first Brillouin zone
and used in 5QQ-point linear radial mesh.

The total energies resulting from these calcula-
tions are given in Table II. Also given are the vol-
ume in cubic atomic units and the lattice param-
eters in atomic units. These data are plotted in
Fig. 4, showing the total energy as a function of
lattice parameter. This curve shows a definite
minimum near the experimentally determined lat-
tice parameter Ao, as predicted by the results giv-
en in the Sec. IGA.

The cohesive energy was determined as the dif-

TABLE II. Total energy for six values of the lattice
parameter for copper (0. =0.7225).

V/ Vg

0.80
0.90
1.00
1.10
1.20
1.60

(free
atom)

Volume (R
(a.u. 3)

63.125 6584
V1.0163639
78.907 OV39

86.7977809
94.688 4870

126.251 3250

Lattice parameter Q,)
(a.u. )

6.320 5563
6.573 6434
6.808 6129
7.028 395V
V. 235 2308
7.963 4021

Total energy
(Ry)

—3281.OV4 352
—3281.093786
—3281.098 246
—3281.094 903
—3281.08V 333
—3281.044 053
—3280.812 553

ference between the total energy, at the minimum
of the energy-vs-lattice-parameter curve in Fig.
4, and the statistical total energy for the atomic
calculation using the same value of n. The atomic
calculation for the ~S ground state was a non-spin-
polarized Herman-Skillman~ calculation using the
Xa exchange approximation. These total energies
are approximately —3281.098 and —3280. 813 Ry
for the metallic and atomic calculations, respec-
tively. This gives a cohesive energy of 0. 286 Ry,
compared to the experimental value 37 of 0. 257 Ry.
The fractional difference between this calculated
value and the experimental value of cohesive ener-
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FIG. 4. Total energy as a function of lattice param-
eter for copper (o,'=0.7225).

gy is 0. 112 or about 11%. This is fairly good
agreement, considering that the calculated value
of cohesive energy is about 0.00001 of the total en-
ergies used to determine it.

The bulk modulus was determined by

d E8=V

and was found to be 1396.6 kbar, as compared to
the experimental values~ of 1335.0 kbar. This cal-
culated value differs from the experimental value
by about 4. 5%.

C. Energy Bands

The energy bands for five calculations of copper,
for the lattice parameters corresponding to the ex-
perimental value and to 10% and 20% volume expan-
sion and contraction, are given in Fig. 5. The en-
ergy bands in this figure are shown in the direction
of high symmetry in the first Brillouin zone of the
fcc structure. The value of 0. used for all five cal-
culations was 0.7225.

Energy differences, for these calculations, that

represent the bandwidths and relative locations of
the bands with respect to each other and with re-
spect to the Fermi energy are given in Table III.
The energy differences identified as I'». —I', and
X5- I', give the relative location of the d band with
respect to the bottom of the sp band, while the dif-
ferences Ez —X, and E& —L3 locate the top of the
d band with respect tothe Fermi energy. The en-
ergy differences X, -X, and X4. —I', give the band-
widths of the d band and sp band, respectively.
The difference Ez —La. represents the location of
the high-symmetry point having an eigenvalue
nearest the Fermi energy. This energy difference
also gives a measure of the "neck" radius of the
copper Fermi surface.

Similar sets of energy differences for experi-
mental results and results of previous calculations
are given in Refs. 5-17 but are not included in
Table III.

The relative movements of the bands and the
changes in bandwidth as the lattice parameter is
increased are expected; namely, both the d band
and the sp band narrow and the d band moves to-
ward the bottom of the sp band. If the lattice pa-
rameter were to continue increasing, the d band
would continue to become narrower and would
eventually drop completely below the sp band, ap-
proaching the 3d atomic state in the limit of infi-
nite lattice parameter. The Fermi energy "fol-
lows" the d band, moving toward the bottom of the
sp band faster than does the energy of the L&. point,
resulting both in a decrease in the energy differ-
ence E& —L&. and a decrease in the "neck" radius
of the copper Fermi surface.

The only experimental results that can be con-
sidered for comparison with the results given in
Table IG are those for the experimental lattice pa-
rameter V/Vo = 1.0. Such comparison with the re-
sults of photoemission studies'3 ~~ shows that the
calculated d band appears to be too broad and too

~0.6
lX

(y 04
C

UJ
0.2

FIG. 5. Energy bands
for fcc copper as a function
of lattice parameter (n
= 0.7225).

0

XI
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TABLE III. Energy differences (in By) for states that indicate position and widths of the
sp band and d band (Hy) (o = 0.7225).

0.8
0.9
1.0
1.1
1.2

0.507
0.469
0.435
0.405
0.379

X5- I',

0.688
0.603
0.549
0.504
0.465

Xs- X)

0.356
0.297
0.252
0.217
0.189

X4.—I'g

Q. 926
0.857
0.801
0.754
0.715

Ey-Xs

0.132
0.121
0.114
0.108
0.103

Eg-L3

0.152
Q. 138
0.127
0.119
0.113

Eg —L2.

0.120
0.088
0.063
Q. 041
0.024

close to the Fermi energy. The E& —L~. energy
difference also appears to be too large, as com-
pared to the results of Spicer'~ or Lindau and
Wallden. ~6 The merit of such comparisons is ques-
tionable, but the value of Ez —L~. given here as
0. 063 Ry is only slightly larger than the 0. 061 Ry
calculated by Janak et al. '~ as the value that gives
a "neck" radius in good agreement with experi-
ment.

IV. DISCUSSION

The main purpose of this work was to evaluate
the Xe exchange approximation as used in self-
consistent APW calculations for a metal, viz. me-
tallic copper. To achieve this end, the total ener-
gy as a function of lattice parameter was deter-
mined, and the results were used to determine co-
hesive energy and compressibility. Comparison
of the calculated quantities with experimental re-
sults gives a measure of the accuracy of the calcu-
lations and indicates the worth of the method em-
ployed. Of course, a complete evaluation of a
method would involve a large number of calcula-
tions on a variety of materials; other calculations
similar to the present one have already been done
by Averill '3~ and Hattox.

To evaluate the results of the present work, we
first consider the method proposed to determine
the e that was used in the Xn exchange approxima-
tion. As pointed out above, the + that should give
zero pressure at the experimentally determined
lattice spacing was found to be 0. 7225. The calcu-
lated pressure at the experimental lattice spacing
resulting from the use of this value of e was 1.3
kbar instead of zero. However, the 1.3 kbar rep-
resents a difference in the potential energy, and in
twice the kinetic energy, of only approximately
0.002 Ry. This is a very small fraction (on the
order of 3&& 10 7) of 6562 Ry, which is the approxi-
mate magnitude of each of the two energies. The
virial coefficient, defined as the ratio of the nega-
tive of the potential to twice the kinetic energy,
was 0. 9999997 for this calculation, or very nearly
1.0, the desired value.

The total energy as a function of lattice param-
eter, as one would expect for this calculation, has
a minimum very close to the experimentally deter-

mined lattice parameter, as shown in Fig. 4. The
first derivative of the total energy as a function of
volume evaluated at Vo, found to be about —4x 10 '
in atomic units, indicates that the minimum occurs
slightly outside the experimental value.

The cohesive energy obtained from the calcula-
tion at the experimental lattice spacing with e
=0. V225 was 0. 286 Ry. This value is within 11%
of the experimental value of 0. 257 Ry, and is prob-
ab)y within the experimental accuracy of determin-
ing the cohesive energy at 0 'K.

The calculated energy bands agree reasonably
well with the results of photoemission studies,
though such direct comparisons are somewhat
questionable. However, the Ez —Iz. energy differ-
ence of 0.063 Ry agrees very well w'ith 0.061 Ry
value that Janak et al. '~ give as corresponding to a
"neck" radius of the copper Fermi surface, in
agreement with experiment.

A significant result achieved in the present cal-
culations is the agreement between the calculated
and experimentally determined values for the bulk
modulus, which differ by only about 4. 5%%up. Indica-
tions are, however, that the calculated value would
not change by a significant amount if a slightly dif-
ferent value of the exchange parameter n had been
used in these calculations.

V. CONCLUSIONS

From the foregoing, one concludes that the Xa
method, as applied here, can be used to obtain, the
total energy as a function of lattice parameter,
the cohesive energy, and the compressibility, that
are in good agreement with experimental values.
However, the agreement with experiment would
have been just about as good, if the a that satisfied
the virial theorem for the atomic calculations (a
= 0. 706 35) had been used in the present calcula-
tions, even though this minimum of the energy-vs-
lattice-parameter curve would then have been ap-
proximately 0. Po outside the experimentally de-
termined lattice parameter. Consequently, this
indicates that, from a practical point of view the
value of n that satisfies the virial theorem is prob-
ably the best one to use in a calculation of this
type, as was also shown by the calculations of
Averiall ' and of Hattox.
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