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Effective Fields in the Electron Gas
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The effective fields acting on different probes are analyzed. Several formalisms are discussed. It is shown
that the definition of an electron-test-charge dielectric function is compatible with all current approximations
for the electron gas.

I. INTRODUCTION

The response of a many-particle system to an
external perturbation can be found in two distinct
ways, depending on the kind of information one
desires. One may ask what is the behavior of the
system as a whole, when acted on by the external
perturbation, or inquire about the behavior of one
particular subsystem when in the presence of the
perturbing field. The subsystem can be of many
different kinds, such as a particle occupying ini-
tially a state k, a wave packet, bound electron,
etc. Depending on the response one is interested
in, two effective fields are obtained: (a) that which
an external probe would feel due to the external
perturbation field. This defines the usual sus-
ceptibility or, in the case of charged particles, the
usual dielectric function, which we shall call a;
(b) that which is felt by the subsystem under in-
vestigation. If this effective field does not depend
on the specific subsystem chosen, a new suscepti-
bility (or dielectric function x) can be defined which
is, in general, different from the usual one, de-
fined in case a.

In order to investigate the relationship between
the two responses we turn to the theory of the
many-electron gas with a uniform background of
positive charge with the same density as the aver-
age electron density. The system is known to
represent to a certain extent the alkali metals,
once the bare electron mass is replaced by an ef-
fective mass.

The usual dielectric function has been thoroughly
investigated since, from knowledge of it, many
thermodynamical quantities can be obtained, such
as the free energy of the gas, the specified heat,
collective modes, Landau parameters, etc. ' This
dielectric function is usually obtained by linear
response theory supplemented by a decoupling
ansatz. ' Recently some calculations took as a
starting point the response of individual electrons
to the external field, and from there the usual di-
electric function was calculated.

The purpose of this paper is to study the relation
between the two formalisms and discuss the ap-
proximations involved in the definition of the elec-
tron-test-charge dielectric constant.

~(q) = 1 —P(q)x (q) —J(qh (q) .

Notice that in the RPA Z(q) = 0 and &(q) = v(q).

(6)

II. ELECTRON- TEST-CHARGE DIELECTRIC FUNCTION

When an external potential is acting on the elec-
tron gas, the effective field felt by one particular
electron is certainly different from that felt by an
external probe. This difference is due to the fact
that the two probes interact quite differently with
the medium. Only in the simplest of the self-con-
sistent approximations, the random-phase approxi-
mation (RPA), are the two fields identical. The
reason for this is well known: The RPA corresponds
to a macroscopic-field approximation and is the
same no matter what probe one uses.

In the RPA the dielectric constant is given by

e(q) =1 —4(qh (q),
where P(q) = 4we /Iql, q are four vectors (q, &a),

and X (q) is the susceptibility of the noninteracting
electron gas with the same density as the interact-
ing one considered.

A useful approximation is to assume that the
local field Q, (q) acting on every qua, siparticle is
the same, and to define a new dielectric function
v(q) as the ratio of the external to the local field:

4 r(q) (2)
P(q) K(q)

'

This dielectric function shields the external po-
tential as seen from the quasiparticles, and there-
fore the collection of quasiparticle responds to this
field as a system of noninteracting particles

&p(q)) Xo(q)~ () Xo(q)~(q)

with the connection between e(q) and x(q) trivially
obtained as

& q)4(qh'(q)
(4)

1 —e(q)

It is instructive to rewrite the dielectric function
x in terms of the local-field corrections (over the
macroscopic field) J(q). If

4 (qh'(q)
(q) —' —

1 Z(qh (q)
then
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FIG. 3. Relation between the test-charge-test-charge
effective potential and the function A.

P

FIG. 1. Graphical representation of the function A.

III. GRAPHICAL INTERPRETATION

Let us start by defining, following the notation
of Langreth, the electron vertex function A(q, P),
which represents the full interaction of the electron
with an external potential. The function A has the

graphical representation shown in Fig. 1.
The effective potential acting on eIectron P is

readily obtained from ~:

0:«(q, p)=4(q)A(q, p).

Equation ( l) is not a macroscopic equation since
the effective potential depends on the electron four-
momentum P. In order to define a dielectric func-
tion electron test charge, which is our goal, we
must make P,« independent of p; i.e. , we must
take some average value for A,

multiplied by the cross po(q), leading to Fig. 2,
where the cross with a dot is the effective exter-
nal-field strength. Figure 3 may be interpreted in
a similar way.

An effective potential may be understood as a
renormalization of an effective external charge
density, interacting with the system via the bare
potential line.

In order to write K in terms of the bulk dielectric
function we write the equation for E in terms of A,

1/e(q)=1+/(q) f, A(qp')G(p')G(p'+q), (10)

where f&, includes spin summation and all GG

products are diagonal in spin.
This equation can be represented graphically in

a very simple way. Define the effective field acting
on a test charge as P,'« = P/e and let it be repre-
sented by a wavy line, ' then Fig. 3 clarifies the
meaning of Eq. (10).

If the approximation used in order to obtain z is
made, the bulk dielectric function becomes

&(q) = &A(qp) &, (8) 1/&(q) = 1 +4(q)A(q)X(q),

and then

1/v(q) = A(q) . (9)

P
q

p+q

eff
o q

As X(q) depends only on the potential four-vector
q it may be replaced by a point in Fig. 1.

In Fig. 2 we show the graphical representation
for iY(q), where the cross can be identified as the
source strength po(q). The dot X(q) may now be

where X(q) = f~, G(p')G(p'+q) is the single-particle
susceptibility.

Combining Eqs. (9) and (11), we obtain the de-
sired relation between a and ~, namely,

1/& = 1 + (pX/K),

identical to that derived in Sec. I, if X and X are
identified. This X, calculated from the renormal-
ized single-particle Green's function, is usually
called the short-range susceptibility.

The replacement of A(q, P) by X(q), necessary
in order to define v, is exactly the approximation
made in the present theories of the linear response
theory of the electron gas. %e shall show that this
is the case by writing an integral equation for the
vertex function, in terms of the four-point function
I, which represents the total electron-hole inter-
action:

A(q, p) =1+ f,, f(q, p, p')G(p')G(p'+q)A(qp'), (18)

which is represented graphically in Fig. 4.

b)

V

+

FIG. 2. Graphical representation of A(q) and the def-
inition of the effective field strength.

FIG. 4. Graphical representation of the integral
equation for A.
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In order to calculate the dielectric constant E,

all current approximations replace I(q, P, P') by
I(q), where p and p' have been averaged over the
Fermi sphere. Replacing I by T in Eq. (13) we
can solve for A, giving

1
1-I(qh(q)' (14)

independent of p, as we mentioned before.
In order to obtain a form similar to Eq. (3) we

decompose I in two parts: the bare Coulomb inter-
action plus a new four-point function which we shall
call J.

We may write the two dielectric functions as

FIG. 6. Correspondence between g& and A shown
here.

or
X r=X +X ft)Xz

cutting a single internal potential line. The total
susceptibility is written in the form of a Dyson
equation in terms of the irreducible polarization
x"'

( ) 1 4(qh(q)
1 —~(qh(q)

(15)
X

err

XT 1
(17)

which is graphically represented in Fig. 5.
We have shown the graphs corresponding to Sec.

II in Fig. 6.
It is straightforward to prove that

n(q) = 1 —I (q)X(q) . (16)

Another way to analyze the linear response of
the electron gas is to reduce the problem to the
calculation of the irreducible polarization dia-
grams, ' ' i.e. , those which cannot be split by

FIG. 5. Graphical representation of the integral equa-
tion for X&.

We must remark here that any approximations
made in order to obtain Jmust be consistent with
those made to obtain X, so that no important sum
rule is violated.

T(q) is usually assumed to be only a function of
the wave vector q. This is an additional approxi-
mation which is certainly not correct for other
systems, for example, an assembly of interacting
permanent dipoles. In the RPA we have Z(q) =0.

Using Eq. (16) it is very simple to generalize
some results obtained by Pines for the RPA, if we
replace &Rpg by ~. As an illustration, we may
write for the structure factor'

&(q) = (I/»(0 l[p'(q)]*[p'(q)]
I »

where the matrix elements of p' are

[ s()] [p(q)]no
n(q, &o„)'

the states under consideration being states of the
noninteracting gas. The polarization cloud around
the fluctuation is really related to the electron-
test-charge dielectric function.

IV. COMPARISON WITH OTHER FORMULATIONS

x'" = x/(I —dx). (18)

The simplest approximation for J is to average

J .' v(p -—p')G(p')t (p'+q)

J &v(p p'))p o vs~(p')G(p'+q)

over the Fermi sphere, as was done by Hubbard.
The ~ factor comes from the fact that v does not
Qip spins. In Kleinmann's approximation, the
integral

1 1 v(p-p ) 3d(dd p2 CO Cps + Z~ps CO + ~ —Cps++ i~pi+&

is performed by extending ro to the whole complex
plane and closing the path with a semicircle in the
lower part of the complex plane. d(q) becomes

1 v(p -p') d'p'
Jq =—

3 fi +etr —cps~ +l6pg~

1 v(p -p')d p'n .„
2 + + 'fpg+ Ept + Rpg

The averaging process is performed at this
point by averaging v(p -p') inside the Fermi sur-
face for P and P' in the first term on the right-
hand side and, in the second term, averaging v
over p inside the Fermi surface and over p' inside
the surface centered on q. One then finds the two
terms shown in Ref. 9.

The formalism of Singwi et al. can also be un-
derstood as a very intuitive approximation for the
electron-hole interaction inside the bubble. They
assume that the electric field acting on an electron
occupying point r at time I; is of the form

Vg(r, t) = J VP(r -r ')n(r ', t) d y'

+ J VP(r —r ') n(r ', t)[g(r —r') —1]d r ', (19)
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the second term of the right-hand side of E(I. (19)
is the direct electron-hole interaction, if we put

(-Q) instead of Q, since -n(g- I) is the hole den-
sity around the particle at r, and holes carry a
positive charge. In Singwi et al. 's paper the inter-
action was changed to

v((r, ~l= Jv((r -&(F'~la'r'

+ -V'P r-r" n„r, t'

assuming a shielded interaction between electrons
and holds.

In Singwi's approximation [E(I. (19)j J(q) is given
by

d
W ]

It seems to be a very difficult task to put the
above theory into a graphically simple expansion
and, to the author's knowledge, no one has made
any substantial progress in this direction.
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