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The transverse dynamic susceptibility for the modified Zener model of ferromagnetism is calculated in
order to ex~mme the behavjor of neutron scattering resonances at lour temperatures and at the Curie
temperature Tc. The relationship of these calculations to those for a pure itinerantwlectron ferromagnet
is discussed. The inadequacy of the random-phase approximation in describing the behavior of the spin
waves for Ni near Tc is also discussed.

Herring' suggested that the model proposed by
Zener for the ferromagnetism in mixed-valence
transition-metal oxides may be applicable to de-
scribe the ferromagnetism in transition metals.
The Zener model as applied to transition metals,
referred to here as the modified Zener model

(MZM}, has been described at some length in pa-
pers by Arai and ParrineQo and Bartel. The es-
sential features of the model are a lattice of metal
atoms, some with x d electrons and some with

(@+1)d electrons where the d shell is neither
empty nor full; the x d electrons at each atomic
site are coupled according to Hund's rule to yield
the spin of maximum multiplicity, ' and the addition-
al electron is itinerant and couples to the localized
spin according to Hund's rule. The model is also
appropriate for describing the ferromagnetism of
an s-d exchange model where the d electrons pro-
duce the localized spin and the itinerant electrons
are s-like.

The purpose of this paper is threefold. First,
the behavior of the spin-wave (SW) resonances as
they interact with the Stoner continuum and as the
temperature nears the Curie temperature T& will
be examined. Secondly, the features peculiar to
the MZM will be discussed. These goals will be
accomplished through model calculations of the
imaginary part of the transverse dynamic suscepti-
bility which is related to the transverse inelastic
neutron-scattering cross section. ' The calculated
behavior of the resonances energetically outside,
near, and inside the Stoner continuum will be dis-
cussed. As far as I am aware, the report of cal-
culations of the resonance line shapes for T = T~
is the first of its kind for either a MZM or a pure
itinerant-electron ferromagnet. Finally, the in-
adequacies of the random-phase approximation
(RPA) as applied to Ni will be pointed out

In the MZM the itinerant electrons are treated
using a Hubbard-model Hamiltonian HIf, and the
itinerant electron couples to the localized spin S
by a term —2Jo& ~ S„where o', is the itinerant-
electron-spin operator for an electron on site i

and J is the interaction parameter. The Hamil-
tonian for the MZM is H~ plus a term which is a
sum over the lattice sites of the above interaction
term. The transverse inelastic neutron scattering
cross section is related to the imaginary part of
the transverse dynamic susceptibility X (q, &o)

which in turn is related to the transverse-spin
Green's function for the itinerant electrons. '
Here q is the wave vector and co is the angular fre-
quency. In Ref. 4 the methods and decoupling pro-
cedures used by Doniach and %ohlfarth and

Izuyama et a/. were employed with the result that
in the RPA the Green's function is given by Eq.
(18) of Ref. 4 and X (q, &o) becomes'

-(») 'x'(a, ~)
1-[f 2Z'&/(S~ -est)jX'(a, ~) '

where I is the Coulomb repulsion energy param-
eter for electrons of opposite spin localized on the
same site in Hz, nf is the itinerant-electron polar-
ization, and S is the localized-spin polarization
which is assumed to be the same at all sites. The
unenhanced susceptibility X (q, ur) is given by

(2)

where

~ =In/+ 2JS

is the Stoner splitting, where n„; is the thermal
average of the electron number operator, and here
ag is the single-band fcc tight-binding energy de-
scribed by Eq. (45} of Ref. 4. The susceptibility
given by Eq. (1) is an exchange enhanced suscepti-
bility where the effective exchange constant now
depends on ~

I,«(~) =I —2J S/(8'&o —Zng) .

There are two types of resonances determined
by the singularities in X' (g, ~). SW excitations
occur when the values of q and ~ do not produce a
branch cut in Xo(q, ra), and single-particle or
Stoner excitations occur when the values of q and
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8'(g =E, = Jng+2JF (5)

and D can be determined from Refs. 5 and 6. The
dispersion curve, including the two SW branches
and the Stoner excitations, is shown schematically
in Fig. 1. The existence of an acoustic branch
does not depend upon the coupling of an itinerant
electron and a localized spin and exists even if
J=0 or S =0. An acoustic branch has been ob-
served in some transition metals and alloys.
The SW dispersion curve for a pure itinerant-elec-
tron ferromagnet (J'= 0 or S = 0) would be similar
to that of the MZM, Fig. 1, except that there would
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WAVE VECTOR q

FIG. 1. Schematic drawing of the excitation spectrum
for the modified Zener model. Shown are the acoustic
and optic spin-wave branches and the continuum of Stoner
excitations. The dashed portions of the curves indicate
that the excitations are not well defined. Here 4 is the
Stoner splitting, Eq. (3), Schmo is the q = 0 optic branch
energy, Eq. (5), and it is assumed in the figure that I& J.

ur produce a branch cut in X'(q, &o).
' Since there

are two ineguivalent spin systems in the MZM,
localized, and itinerant electron, one expects, and

it has been demonstrated in Ref. 4, that there
should be an acoustic and an optic branch to the
SW spectrum. The energies for the acoustic and

optic branches are

(q) = Dqm, acoustic branch, (4)

g~, (q) = II~0+ D(I@&so/Jr —1)q, optic branch,

where

not be an optic branch and the acoustic branch
would have larger initial values (larger D) and a
higher maximum energy than for the MZM. On the
other hand, the optic branch does depend on the
coupling of an itinerant electron to a localized
spin. As far as I am aware, the optic branch has
not been observed in itinerant electron ferromag-
nets of the type discussed here. The reasons for
the failure to observe the optic branch may be that
(i} the energy E, is too large and outside the range
of normal neutron energies (it is estimated that
E„~0. 1 eV) or (ii) the optic branch energy is too
close to that of the Stoner excitations and thus
these are not well defined excitations as will be
shown. The dashed portions of the curves in Fig.
1 signify that the SW excitations are not well de-
fined excitations as they "enter" the Stoner con-
tinuum.

The imaginary part of the dynamic susceptibility
is found by solving for the imaginary part of
y' (q, v+iO). For &o-&u+i0, )t (q, &u+iO) becomes
complex

X'(q, ~+f0) =[X'(q, ~)] +i[X'(q, ~)l",
where [y (q, ~)]' is the principal part of the sum in
Eq. (2) and [X (q, &o)]" is given by

[X'(q, (o)]"= vN 'Z[ng», -ng]5(h(o —(eg-(f -) -b).
(6)

[X (q, u)]" is the density of Stoner states. When q
and &o are such that [X (q, &u)]"= 0, the resonances
are outside the Stoner continuum and are of the SW
variety. These SW resonances are extremely
sharp, ' therefore, to give these resonances a finite
width and intensity, a small phenomenological
damping parameter F will be assumed. From Eq.
(1}the ImX' (q, ur+i0) becomes

Im}( -(q, &o + i0)
[x'(q, ~)]"

I rf(+)[X'(q, ~)]')'+(f.n(~}[X'(q, ~}]"]'' .
(7)

Forq and u such that there is no branch cut in

X (q, v}, [X (q, &u}]"is replaced by a constant I'.
In order to be able to calculate [X (q, ur)]' and

[X (q, &u)]", it is necessary to determine self-con-
sistency nf, S, and the Fermi energy E~. This
was accomplished using Eqs. (15}, (16), (24)-(26},
and (45} of Ref. 4 and techniques outlinel' in Ref.
4. The summation for [y (0, 0)]' is in agreement
(to within -2%) with the exact value of nr/n.
Extrapolated and smoothed values of [y (q, ur)]'
were used in the calculation of Imp' (q, ar+ iO),
since the position and shape of the resonances are
extremely sensitive to the values of [X (q, v)]' used.

In the model calculation to be discussed below,
the behavior of the S%' resonances will be examined
for the case when there is no Stoner gap at the zone
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boundary (i.e. , the Stoner continuum intersects the
5+=0 axis for a lql& lq ~l). The dispersion
curve is illustrated in Fig. 1. To illustrate the
behavior of Iml[' (q, &o), /was taken less than I,
and from a close examination of Eqs. (1) and (4) it
is clear that 0~ S~ & Jnf and Jnf & For„«. In the
regime of q and &0 such that [X (q, &0)]"= 0, a damp-
ing parameter I was chosen somewhat arbitrarily.
It was found that the resonances became sharper
and more intense and the sloping background be-
came less pronounced for the smaller values of I'
that were used.

The behavior of the acoustic-branch and optic-
branch resonances for the MZM, determined from
Eq. (7), as functions of &0 for various q in the [100]
direction are illustrated in Figs. 2 and 3, respec-
tively. Upon examination of Eq. (1), a significant
decrease in Imp (q, 0r) as K&o/& IIt' (nt' 0.4) would
be a characteristic of the MZM and would not be
the case for a pure itinerant-electron ferromagnet
(J=O or S=0). However, the resonance is well
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FIG. 2. Imp (q, co) as a function of S(d/J at T=O for
various q. The resonances are the acoustic branch spin-
wave resonances. For the top three curves the reso-
nances are outside the Stoner continuum while for the
bottom curve any resonance would be inside the Stoner
continuum. I' was chosen to be equal to J for this figure
a dr/J=90.

FIG. 3. Imp (q, co) as a function of %co/J at T=O for
various q. The resonances are the optic-branch spin-
wave resonances. For the top three curves the resonances
are outside the Stoner continuum while for the bottom
curve the weak resonance is inside the Stoner continuum.
I' was chosen to be equal to J for this figure and I/J = 90.

away from this point, II00/Z=nf, such that the
anticipated decrease would probably not be ob-
servable. (The pure itinerant-electron ferromag-
net will be referred to as the J= 0 case. ) The
sloping background to the resonance is a charac-
teristic of the MZM as well as when J= 0, and the
amount of slope depends upon the choice of I . A
characteristic of the acoustic and optic branches
for the MZM and the acoustic branch for J= 0 is
that as the SW excitation approaches the Stoner
continuum the resonance is repelled somewhat.
This behavior is illustrated by comparing the Iql
=0.30lq I curve with the Iq I=0. 10lq I and
0. 20I q~ I curves of Figs. 2 and 3. For I q I

=0.40lq I the SW has entered the Stoner continu-
um and for the acoustic branch, Fig. 2, ImX' (q, 00)

does not show a resonance; whereas, for the optic
branch, Fig. 3, a very broad and very weak reso-
nance is apparent. Inside the Stoner continuum
[y0(q, &0)]"40 and depends upon q and &0 and is not
in general a constant. The widths, intensities,
and the sloping background for the resonances out-
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side the Stoner continuum depend upon the choice
of I'.

In Fig. 4 the behavior of Im)[' (q, &u) for the
MZM as a, function of q in the [100] direction for
various R~/J (k~/J'&nf) is illustrated. For Rr/J
& 0. 06 the resonances are well outside the Stoner
continuum. The behavior of the resonance just
outside the Stoner continuum is illustrated by the
her/J= 0. 06 curve. When ku&/8=0. 10 the resonant
condition, f,«(&o)[)[ (q, &u)]'= I, is not satisfied;
however, ImX' (q, &u} still shows some sort of
maximum. The characteristic feature of ImX' (q, &o)

becoming very small at a q(lql/[q I-O. 36) cor-
responding to the entering of the SW excitations
into the Stoner continuum is common to the MZM
and the J=0 case. This decrease is due in part to
a maximum in [X (q, &o)]' as a function of q for a
fixed co at the entry point into the Stoner continuum.
The behavior of Im)[' (q, &o} inside the Stoner
continuum is illustrated in Fig. 4 when I q[/I q ~l
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FIG. 5. Imp (q, (d) as a function of Iq I/ Iq I at
T=T~ for two co's. Representation of the behavior of the
resonances at T=Tz, where Imx (q, ~) is inside the
Stoner continuum for the q's and cu's shown. Here I/J
= 90.
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FIG. 4. Imx (q, co) as a function of (q I/ Iq~I at
T = 0 for various (d. Behavior of the acoustic-branch
spin-wave resonances as they enter the Stoner continuum
is illustrated. ImX (q, (d) is in the Stoner continuum for
Iq I &0.36 Iq~ I. For Sco/J=0. 10 the resonant condi-

tion in Eq. (7) is not satisfied. F was taken equal to
S~/J and I/J= 90 in each curve. Note the change in
scale in the figure.

'0. 36.
The behavior of the acoustic branch resonances

for the MZM and for the J=O case is very similar.
(For J=O there is no optic branch. ) The calculated
behavior of the resonances, the sloping background,
and the reduction in intensity as the SW enters the
Stoner continuum are in agreement with experi-
mental results. '

Finally, the characteristic features of Imp' (q, ~)
for the MZM at T= Tc are illustrated in Fig. 5.
The J=O case would have similar features. The
resonances are extremely broad and very weak in
intensity. The SW constant D, Eq. (4), is tem-
perature dependent leading to a change m the dis-
persion curve and for a fixed energy would lead to
a change in the position of the resonance in q
space. The resonances in Fig. 5 show this change.
The behavior of Imp' (q, &o) at T = Tc is drastically
affected by the vanishing of the Stoner splitting 4
at T= T&. The dependence of the Stoner splitting
on the magnetization nr„and/or S is a direct conse-
quence of the RPA used to obtain a solution for
x'(q, ~).

Even though the applicability of the MZM to Fe
and Ni has not been established, it is instructive
to compare experimental results on the materials
to the predictions of this paper for the acoustic
branch SW's. Measurements of the SW spectra
of Fe and Ni' at T& T~ show the disappearance
of the resonances as the SW's enter the Stoner
continuum in a manner similar to that illustrated
by the model calculations. Measurements for Fe '
as T- T~ show that D is temperature dependent
and that resonances as a function of energy Iql

0=0. 1 A ' collapse to zero energy as T- T~. It ap-
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pears that for Fe the behavior of the inelastic neu-
tron scattering for T- T~ differs from that at low-
er temperatures in agreement with predictions
based on the model calculations of this paper.

The recent measurements for Ni~ show that at
the Larger q values D, the resonance width and in-
tensity, and the energy boundary of the Stoner
continuum appear to remain more or less unaf-
fected as T- T&. At T & T~ the observance of the
disappearance of the resonances as the SW's enter
the Stoner continuum establishes the existence of
the band of single particle excitations as predicted.
However, for T-T~ and for T&Tz the measure-
ments indicate that the SW resonances for ¹ do
not vanish which is contrary to the predictions of
the model calculations of this paper.

Recently, Cooke and Davis' have made a more
realistic calculation of Imp' (q, &o) for Ni using es-
sentiaoy a pure itinerant-electron model. In their
calculations they used a wave-vector-dependent
exchange energy I(q) and used a realistic band
structure for ¹i.They obtain good agreement be-
tween the calculated and experimental SW energies
at low T. However, they used a form of an RPA
calculation and their results are that the Stoner
splitting, which is a function of q, vanishes at
T = T& just as in this paper. Therefore, it appears
that even these more elaborate calculations cannot

explain the behavior of Imp (q, , ur) for T- Tc in
Ni. The culprit of course is the simple RPA.
Mean-field theories, of which the RPA and Har-
tree-Fock approximation are a part, produce ex-
citation energies for which the scaling with tem-
perature is q independent and predict that short-
wavelength and long-wavelength SW's renormalize
in the same way.

Recently, Lines' has investigated an improved
Green's function decoupling procedure for the
Heisenberg model which renormalizes the long-
wavelength SW's according to the magnetization
and the short-wavelength SW's according to the
nearest-neighbor spin-correlation function. A
critical wave vector is defined as q, = v/L, where
I- is some sort of coherence length for which SW's
with q &q, experience much less damping and re-
normalization than do SW's with q&q, . ' At T= T~
the long-wavelength SW's would vanish; whereas,
the short-wavelength SW's do not necessarily
vanish. It seems that a decoupling procedure in
the spirit of that used by Lines' would be appro-
priate for itinerant-electron ferromagnets. Clear-
ly, the simple RPA, which fails to take into ac-
count some very important electron correlations,
is not appropriate to describe the ferromagnetism
in at least Ni and more work is needed to include
these correlations for the larger q values.
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