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The origin of the magnetic anisotropy energy of the europium monochalcogenides has been investigated.
The contribution from the magnetic dipolar interaction was considered, in addition to the single-ion
anisotropy, and the expression for the temperature dependence of the cubic anisotropy constants X, and X,
is derived for various spin values using the molecular-field approximation. It is found that for large spins
both X, and K, increase with temperature, attain a maximum, and then decrease smoothly to zero at the
Curie temperature. The origin of the above temperature dependence is discussed. The experimental results
for the magnetic-anisotropy measurements are explained in terms of the dipolar interaction and the
single-ion anisotropy. The agreement between theory and experiment provides the first clear example of the
importance of the dipolar anisotropy energy in cubic ferromagnets.

1. INTRODUCTION

The europium monochalcogenides, EuO, EuS,
EuSe, and EuTe are magnetic insulators having the
NaCl structure. The ground state of a Eu* ion is
an orbital singlet with spin S=%. In the crystalline
state the magnetic moment of the Eu?* ion is well
localized and is about7ug. The compounds EuO and
EuS are ferromagnetic below 69.2 and 16.5 K, re-
spectively.! Although EuSe is antiferromagnetic
below 4.6 K, spins in this crystal are ferromag-
netically aligned by magnetic fields above 5 kOe. 2

The magnetic anisotropy constant and its tem-
perature dependence have been measured by Miyata
and Argyle on EuO 3 using a torque method and by
Everett and co-workers on EuO, * EuS, * and EuSe ®
using a ferromagnetic-resonance technique. The
magnetic anisotropy energy of cubic crystals is
represented by

E s = Ki(adad + adad+ adal) + Ky(adaiad) , (1)

where a;, az, and ag are the direction cosines of
the magnetization with respect to the cube edges.
The observed experimental results of K; and K,
are as follows:

(i) K;: The signs of K, for these crystals are all
negative. The magnitude of K; of EuO decreases
with temperature similar to what is expected from
the crystalline field anisotropy energy of one-ion
type.” The decrease of K, for EuS is less rapid
than the prediction of the one-ion model. The mag-
nitude of K, for EuSe decreases still more slowly,
being almost constant to near the zero-field order-
ing temperature.

(ii) K,: The anisotropy constant K, for EuO has
positive sign at low temperatures. As the tem-
perature is increased, its value decreases rapidly
and passes through zero and then reapproaches
zero from the negative side. The temperature de-
pendence of K, for EuS is similar to that of EuO,
but its tendency is more pronounced. In the case
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of EuSe, K, starts from negative value at low tem-
perature, its absolute magnitude increases as tem-
perature increases, goes through a maximum, and
approaches zero asymptotically. The behavior of
this temperature dependence may imply that some
anisotropy energy, which has negative sign for
both K; and K, and whose absolute magnitude has

a maximum at an intermediate temperature, is
superposed onto the usual crystalline field anisot-
ropy energy.

To explain this temperature dependence men-
tioned above, we considered the following mech-
anism. Since the ground state of Eu* is an S
state and since its magnetic moment is very large,
the anisotropy energy coming from the magnetic
dipolar interaction may be considerable and com-
parable to the crystalline field anisotropy energy
of one-ion type. There is, of course, no first-
order dipolar contribution to the anisotropy energy
because of the cubic symmetry of these crystals.
However, the higher-order effects of the dipolar
interaction contribute to the cubic anisotropy en-
ergy as pointed out by Van Vleck® as early as 1937.
This mechanism may be understood in the following
way. The dipolar interaction does not commute
with the exchange interaction. Thus the dipolar
interaction disturbs the perfect parallelism of the
spin arrangement in the ferromagnetic state at ab-
solute zero of temperature. The energy associated
with the dipolar interaction depends on the direc-
tion of the magnetization and therefore contributes
to the cubic magnetic anisotropy energy. The
mechanism of this interaction is essentially of
quantum-mechanical nature. If we assume classi-
cal spins, we can show that when the dipolar in-
teraction is weaker than the exchange interaction
by a certain amount, a ferromagnetic arrangement
of spins is stable and the classical dipolar interac-
tion does not give rise to the anisotropy energy.
Actually, the expressions for K; and K, which are
given in Sec. II vanish at absolute zero when a
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classical limit is taken. From the standpoint of
the spin-wave approximation, it has been shown
that the anisotropy energy can be expressed as a
zero-point energy of ferromagnetic spin waves.®

In obtaining the temperature dependence of the
anisotropy energy, Van Vleck used the molecular-
field approximation, and Kasuya, 10 Charap and
Weiss, !! and Keffer and Oguchi'? used the spin-
wave approximation. Since we have an interest in
the semiquantitative nature of the anisotropy energy
in the whole temperature range, we discuss the
temperature dependence on the basis of the molec-
ular-field approximation.

Van Vleck has obtained the expression for K,
which comes from the mechanism mentioned above
and has given the calculated values for the cases of
spin 3 and 1. As seen from his results, the de-
crease of K; with temperature is very slow com-
pared to those of other mechanisms. For large
spins, we found the temperature dependence very
different from those of the usual mechanism, in
which K, decreases much more rapidly than the
magnetization. It will be seen that K, due to the
dipolar interaction increases with temperature, at-
tains a maximum, and then decreases smoothly to
zero at the Curie temperature. Thus, a broad peak
appears around T/ T,~0.45 and its height with re-
spect to the value at T=0 increases as the value of
spin increases. We obtained a similar result for
the temperature dependence of K,.

By combining the anisotropy energy of this mech-
anism with the crystalline field anisotropy energy
of one-ion type, we could explain semiquantitatively
the temperature dependence of the anisotropy en-
ergy of the europium chalcogenides.

II. CALCULATION OF DIPOLAR ANISOTROPY ENERGY

The interactions responsible for the magnetic
anisotropy energy of the europium monochalcogen-
ides are considered to be the dipolar interaction
and the fine-structure coupling of europium ions,
i.e., the one-ion mechanism. Since a europium
ion has a large magnetic moment, the magnetic
dipolar interaction may be considerable. In addi-
tion to this magnetic interaction, an anisotropic
exchange interaction may exist between ions and
this interaction may have the bilinear form with
respect to spin components: Z; ; 2, ,J{7SySy;. It
is seen from symmetry considerations that the in-
teraction between the second-nearest neighbors in
the fcc lattice of europium ions should be of the
dipolar type. Between the first-nearest neighbors,
there may exist, along with a term of the dipolar
type, a term of a different type. By neglecting
this term, we assume the pseudodipolar-type inter-
action for the anisotropic exchange interaction.
Hereafter, the dipolar interaction includes both the
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magnetic and the pseudodipolar interactions. Since
there is no contribution to the anisotropy energy
from cross terms between the dipolar interaction
and the fine-structure coupling, these interactions
contribute to the anisotropy energy additively. In
this section we calculate the anisotropy energy
which comes from the dipolar interaction. The
one-ion-type anisotropy energy from the fine-
structure coupling will be given in Sec. IV.

We shall consider the Hamiltonian consisting of
the exchange, Zeeman, and dipolar interactions.
From this Hamiltonian we calculate the free en-
ergy which depends on the direction of magnetiza-
tion and obtain the cubic anisotropy constants K,
and K,. The exchange interaction is expressed as

H,= -‘ZJDJ‘,§, .§, =:L:/[J“5, .6, -2d,,8,+5,
-7, @ =5)- 6, -5)1 (@)
where J;; is tL\e exchange integral between the ith
and jth ions, S, is the spin of the ith ion, and g; is
the thermal average values of S;. We neglect the
last term in Eq. (2), which indicates the spin fluc-
tuation. This approximation is equivalent to the
molecular-field approximation. If we consider
the fact that the values of G,’s in the crystal are

all equal to each other in the ferromagnetic state,
the exchange Hamiltonian is written as

H, = NJo?=2J5- 21§, , ®3)
i

where J=7,J;,, and N is the total number of euro-
pium ions. The Zeeman energy is

HZ:gIJ'Bﬁ.EEI . (4)
i

Adding the Hamiltonian (3) and (4), we define the
unperturbed Hamiltonian H, as

Hy=NJo?+ (gupH - 2J5)- 238, . (5)
i

If the dipolar interaction is represented by V, -the
free energy of this system is written

F=—=kg TInTr ¢®Ho*") | (6)

B being 1/k,T. Expanding ¢®‘#0*” in Eq. (6) in
terms of V, we have

F=Fy(0)+AF(o, V), (7)

where
Fy=NJo?— ks TInTr
X exp (— ﬁ(gugﬁ -2J0)- Z‘>§‘) (8)

and
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-8Ho[ (B - -
AF(o, V)= -kgTIn(l _Tr e®#o{[ V(B dB, - [, V(B)) dByf, V(Be)dBy+-++} ) , ©)
Tr e™8Ho
[
in which function of o, and V and shown to be a quantity of
. der V2. If Eq. (12) is inserted into Eq. (7), the
= PHOV gBHo | 10 or q. (7),
vig)=¢ € (10) free energy is expressed as a function of o, and V
Taking the derivative of Eq. (7) with respect to ¢ instead of 0 and V. The result of the calculation
equal to zero, we obtain shows
_Tr Seexp[- B(gHgH ~ 2J0) ] F=NJoi-kTInTr
Tr exp[— B(gigH - 2J0) ]
xe 2J0, — gligH) 20 Seg) + AF(0,) + O((A0)?) .
_( 1 ) 8AF(o, V) ’ 11) xp(ﬁ( 0= &Hs )‘ u) (09) + O((A0)?)
2NJ 80 (14)
where S, is the component of the spin operator The first and second terms in the right-hand side
along the axis of quantization. The magnitude of of Eq. (14) are isotropic terms and do not contrib-
o included in Eq. (7) is determined by solving the ute to the anisotropy energy. The third is the term
above equation. The last term of Eq. (11) gives responsible for the anisotropy energy. We calcu-
an anisotropy in the magnitude of c. We express late the value of this term to third order with re-
o as the sum of an isotropic o, and anisotropic Ac spect to V and obtain the anisotropy constants K,
part: and K,. The last term is a quantity of order of V*
_ and is neglected.
0=00+A0, (12) The function AF(o,, V) given by Eq. (9) is ex-
with o, being defined by the solution of the equa- panded in terms of V. The first-order term in V
tion, does not give rise to the anisotropy energy, since
this term is quadratic in the direction cosines of
00=T; r§:ex1[)£ B? (gn ?{H— 255‘3“)81‘] . @13) the molecular field and the crystals under consider-
xp &hs oS ation are of cubic symmetry. The second term is
From Eqgs. (11) and (13), Ao is expressed by a calculated as
}
2) 1 ’ ’ e‘”" 1 ’ ’ -8Ey
AF?P == T (M| V|MYM|V| M) ZZ——-5— 2 (M| V| MW M'| V| M)pePBn (15)
Zy My Ey—-Ey 22y yu
Ey#Ey Ey=Eye
with
2p= ?e"g" , (16)

where | M) and E, denote the eigenstate and eigenvalue of the unperturbed Hamiltonian (5). For the third-
order term we have

(3 _l_ ’ ’ ” v eBEu
AF® = H'HZI)'”“ M| V| MM | v M" M| v ) G B EE)
Ey#By4Epyee
'Elz_ Z {(m|v | s |V m") | V| may+ (| v " Y |V | aOY o | v
s
EyaEyee
ePEu _ Be'ﬂE‘l _L ’ ’ " ” 2 -8E
* {(Eu -Ey.)® (Ey "Eu')} 62y u,l?.u" MV |2 XM | VM) | V] 1) B2 )

Ey=Ey'=Ey’

The second-order term contributes to K; and the V= EDi (A+B+C+E);
third-order term contributes to both K; and K,. oy ’
A. K, Contribution from AF® A=SyS(r ?, - 3{?,) ,

The Hamiltonian for the dipolar interaction can
be expressed in terms of the spin operators as = - 1(8387+ 8183, - 3¢%) (18)
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C=~3(SiS + S Sty (& = imy,)
= 2(S7Se; + SesSPE (&g, +imyy)
E=-3SiSj(ky; —imy,)? = $8785(8,, + i),
where S, is the { component of the spin operator

at the lattice site 7, and S} and Sj are the spin
raising and lowering operators, respectively. The

ap® =P

¥ 20 5w

¢ axis is taken in the direction of the molecular
field, and ¢ and 1 axes are perpendicular to the ¢
axis and to each other. The coefficient D,, includes
the contribution from the magnetic and the pseudo-
dipolar interactions. In the case of the pure mag-
netic dipolar interaction, D;, is equal to g2u27;}

If the dipolar Hamiltonian, Eq. (18) is inserted into
Eq. (15), and the summation over M’ is carried

out we have

b z;o‘,p,,,( 184M| Sey Sy SeaSes| M) (2, = 382,)(r2, - 3¢2,)

- &8(M| 885387+ 57518385 M) (3, -3;,,)(r,,, 3¢ ,)-1<M| S75¢,54Se:

+ Spy js!ks‘“”) iy &gy +iny ) e (Epy — 1"7m) o

AT |M> Eii(Eyy —imy ) (B + mht) -

<M| S1S¢; S5

(Mls S;818% | M)

X (& + M) 2 (E gy = imu)? +§2-u<MI SISJSES;|M> (Egy = iy (& +i77m)2), (19)

where
u=gugH+2J|0g| . (20)

The value of « corresponds to an increase in en-
ergy due to the change of the { component of a spin
by one, and J;5;, Z»; iS a summation over the
europium ion sites. In Eq. (19) the first, second,
third and fourth, and the last two terms are, re-
spectively, from the combination of the dipolar
Hamiltonian A-A, B-B, C-C, and E-E, and all the
cross terms, e.g., A-B, A-C, etc., vanish.

To illustrate the computational procedure, which
we shall use to calculate K, from AF'®, we con-
sider the contribution to K, from the first term in
Eq. (19). In this term, the part which is fourth
order in { can only contribute to K;. X ¢ is ex-
pressed in terms of its direction cosines a;, a3,
and ag referred to the cubic axes, x, y, and 2,
and taking account of cubic symmetry, this term,
denoted by AF® (A-A), is written

AF@ (4 A)_-gﬁZ}e = 23 (M |S¢iSe; SenSer | M)
20 1> k51

X R(ij, kl)(aia+ ada3+alal)
+constant term in o , (21)
where
R(#j, kl) = Dy;D,,(~ x’?; RS
+2%15 Y45 %1 V) - (22)

Since the total spin state |M) is expressed by a
product of the individual spin states in the molec-
ular-field approximation, the coefficient of a?a?
+adad+adal in Eq. (21), K,(A-A), is written as

K(A-A)=- 93({5,)*2 2 R(ij, kl)

i>§ »>1

+2(sz><s,>2 Z ER(:], il) +(S2)? ZR(z],zy))
(23)

In Eq. (23), the sum }, represents J, with 1#4, j,
2,1 represents X, , with &, 1#4, j while (S,) and (S%)
denote thermal averages in the molecular field.

As seen from Eq. (22), the multiple sum of R(:j, kl)
vanishes when any one summation index includes
all lattice points; we can write

T SR, i)
i>i 1
=23 23R, il) - 22 R(3j, if)
i>5 1 i>j
- -3 R, 17 (24)
F)
and
z E R(ij, k1) = E E R(ij, k1)
125 B>1
-2 Z)R(ij,iz) - 2 R(ij,ij)
i> 1 i>F
=-J§ER(ij, i) . (25)
i

With the use of the relations (24) and (25), Eq.
(23) becomes
Ky(A=A) = -+ NB((S2) - (Sp)?)® L R(ij,i5) .  (26)

i

This is the contribution to K; from the first term
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in Eq. (19). Although other terms in Eq. (19) in-
clude ¢ and 7 along with ¢, these terms are reduced
to functions of only ¢ and » and thus the lattice
sums for these terms yield the same form as that
of the first term (see the Appendix). Therefore,
the second term through the sixth term in Eq. (19)
are calculated in the same way as the first term.
Doing these calculations, we obtain the expression
for K, as

K, =9N |- 18{(s®) - (sp)%?
—#5B{[S(s+1) = (SPP - (s )}
= (1/u) (SH{(SE) = (Sp)?} +(1/8u)(S, )
x{s(s+1) -(Sf)}]ZJ)R(ij,ij) . (27)

J

e-BE‘

27
MNp_.C-C)=_2t
AF; (B-C-C) 8"‘? 20 1>5 ©>1 m>n

A. KASUYA AND M. TACHIKI 8

This result, first obtained by Van Vleck, has been
given to illustrate the method used in calculating
AFY

B. K, Contribution from AF(3)

The third-order free energy AF'® is calculated
by inserting the dipolar Hamiltonian Eq. (18) into
Eq. (17). In this case the nonvanishing terms in
Eq. (17) are the following combinations of the Ham-
iltonian [Eq. (18)]: A-A-A, B-B-B, A-B-B, A-C-C,
A-E-E, B-C-C, B-E-E, and C-C-E. We now
show the calculation of Eq. (17) for the combination
B-C-C as an example. If the summation over M
and M"” in Eq. (17) is carried out, we have for the
first term in Eq. (17), similar to Eq. (21) for K,

M
2 20 23 AM|{S}Sy;S1S:SemS H M) R(ij, kL, mn)aalal

- -3"-(2 AS*S P2 T 20 R(3j, ki, mk) +2(S) ((S*S™HS*S"Sp) +(S"S*)(S~5*Se))

)
8u i>5 kém

X 22 Z:)R(ij, ij, mi) +{{S*S"S})? 20 RGj, ij, 4) + 2¢{S* S }*(S}) 20 20 R(ij, ki,jk))a%aﬁa’; ,
i>im 1>F i>i

where the curly brackets in the angular brackets
{...) denote that {4B}=AB+BA and {ABC}=ABC
+CBA. The expression for R(, kl, mn) is similar
to that of Eq. (22) and is written

R(ij, kl, mn) = 3DuDqu[xf‘,xilem
= 353,051+ 258, V51 20n
+ 16X Y15 Y01 201 ZmnXmn
+12x,; 9y X Yur (2on = Vo) . (29

The derivation of R(#j, kI, mn) is given in the Ap-
pendix. In particular, it is shown that the other
combinations yield the same form of R(ij, kI, mn)
as for B-C-C except for the numerical factors.
In the derivation of Eq. (29), the fourth-order
terms in the direction cosines a’s are neglected,
since the contribution to K, from these terms is
shown to be an order of magnitude smaller than

27N

(28)

I

that of K, from AF?, It can be seen from Eq. (29)
that R(ij, kI, mn) possesses the same property as
R(ij, kl), i.e., R(ij, kl, mn) vanishes if any one of
the indices is summed over all the lattice sites.
Thus we have equations, which are derived in the
Appendix, similar to Eqs. (24) and (25):

22 23 R(j, ij, mj) = - SN 2 R, ij, i) (30)
i2i m i
and
T T R, it, mj) =%N<ER(z'j, i, )
i>§ 1#¢m J
- 2223 R(ij, i1, li)) . (31)
J#l

Using the above relations (30) and (31), AF{®(B-
C-C) becomes

AF{?(B-C-C)=-1g (z {s*sP2((sE) - (S)?) 2;,333(,-1, il 1)+ ({S* S8 - 2(S ) {S* S H { S, §*S7D

+48:5"SDY D RUs i, ) ot

From this equation, we see that there are two dif-
ferent types of contributions to K,. The difference
is characterized by the configuration of the sum-

(32)

]
mation indices in R, i.e., R(ij, ij, ij) and R(ij, jl,

17). However, we find that the contributions from
the former type are negligibly small compared to
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the latter at absolute zero of temperature: We
neglect the contributions from the former type
hereafter. Since the combinations A-E-E and
A-B-B yield only the former type, we neglectthese
combinations accordingly. If we make the same
calculations for the second term in Eq. (17), we
have

AF{®(B-C-C)= f%(s‘s‘)(s-sv

X ((S2) - (S, )?) 2223 R(ij, jl, 13)
i#l

X aadad . (33)
The third sum in Eq. (17) vanishes for B-C-C
combination. Consequently, from Egs. (32) and
(33) the contribution to K, from the B-C-C com-
bination is obtained as

21N

KZ(B-C—C)= - W

(S¢)?
X ((S2) - (8,)?) 2222 R(j, 1, 13) . (34)
7#l

J

Doing the same calculation as the B-C-C combina-
tion mentioned above, we obtained the contributions
to K, from the other combinations as follows:

A-A-A: -9B%(Se)-(S));
B-B-B: &p?
{S(S+1) = (SH}{S(S+1) = (S22 - (S,)?]

a-c-c: ~Ta(sy) (sB) - (s (35)
B-E-E: - —3—%3(50 [{s(s+1) = (SHN2-(S¢)*]
217 2 2
+Eu—z<5¢> {s(s+1)=(s&} ;
E-C-C: - %(saa((si) {8 ;

with each term multiplied by the common factor

N 2225 R(j, j1, 13) .

j*1

Summing these contributions, we finally obtain

Km0 (- (D) - (507" + B3 15+ 1) ~ (S5 + 1) ~ (3} - (5]

~ 2B (50) (59 - (50092 = B () (5 +1) = (SPP ~(¢)7]

—%(saa((s%)— (s¢>z)+f:—uz-(sg>z{s(3+ 1)—<s§>}) 'Z?E)R(ij, il 1) .

At absolute zero, only the last term in large pa-
rentheses in Eq. (36) remains. We have

27NS?

KfT=0)=T52

223 R(ij, 31, 1d) . (37)
Fid]

For checking the arithmetical correctness of Eq.
(36) we note that since « defined in Eq. (20) trans-
forms like a vector, only terms in H® or higher-
order terms can exhibit a dependence on the direc-
tion cosine of the form aafad. If the thermal
average values of spins included in Eq. (36) are ex-
panded in terms of u, K, should vanish unless one
goes to the sikth power of u. Equation (36) fulfills
this condition.

IIl. TEMPERATURE DEPENDENCE OF DIPOLAR
ANISOTROPY ENERGY

The anisotropy constants K, and K, as a function
of temperature can be calculated from Eqgs. (27)
and (36), respectively. The results are plotted in

(36)

[

reduced units, K(7T)/K(0) versus T/T,. Figure 1
shows K,(T)/K,(0) for various spin values at zero
external magnetic field. For S=3%, the value of
K(T)/K,(0) is almost constant until about 7/ 7T,
=0.3 and decreases smoothly to zero at the Curie
temperature, in agreement with the values calcu-
lated by Van Vleck. However, as the magnitude of
spin increases, K,(7)/K;(0) starts rising around
T/ T, =0.1, attains a broad maximum at about T/7T,
=0.45, and approaches zero at 7= T,. The value
of [Ky(T)/K;(0)]pay is roughly proportional to S, in-
creasing about 10% for an increase in spin value

of 3. Figure 2 shows K,(T)/K,(0) vs T/ T.. Essen-
tially the same results are obtained for K,, except
that K, increases more rapidly than K, and the
maximum value occurs at a slightly lower temper-
ature than that of K;. The value of K,(T)/K,(0)
near T= T, decreases as the sixth power of the
magnetization as expected. Figures 3 and 4 indi-
cate the effect of the external magnetic field on K,
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FIG, 1. Temperature dependence of reduced dipolar
anisotropy constant K, (T)/K;(0) for various spin values,

and K, for S=1. A reduced unit of H,,,/ (ks Tc/
glp) is used for the external magnetic field, and
the values of K, and K, are normalized to those at
T=0and H=0. The increase of the anisotropy
constants near the Curie temperature is due to the
forced anisotropy caused by the induced magneti-
zation from the external field.

The general behavior which characterizes the
dipolar anisotropy energy in cubic crystals is that
the anisotropy constants K; and K, increase with
temperature to T/ T, ~0.5 and this increase in the
anisotropy constants depends strongly on the value
of S. When Sis varied, the values of the anisot-
ropy constants change due to the change in the
quantization of spin. We shall see how the differ-

2(T) / K3(0)

o

=)

o
(5
[ TR TR TR TR 1]

REDUCED ANISOTROPY CONSTANT K.

Duuuun nnn

| I | N
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FIG. 2. Temperature dependence of reduced dipolar
anisotropy constant K,(T)/K,(0) for various spin values.
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FIG, 3. Magnetic field dependence of the dipolar an-
isotropy constant K((T',H)/K(0, 0) for spin % The re-
duced unit & is equal to H/ (k5T c/glig).

ence in the quantization leads to the difference in
the temperature dependence of the anisotropy con-
stants. We note here that when Sis varied, there
will also be a change in the magnitude of the mag-
netic moment guzS. However, this change will
merely act as a multiplicative factor to the anisot-
ropy constants and will not affect the temperature
dependences. Therefore to see the essential dif-
ference in the temperature dependence of the an-
isotropy constants for different values of S, it is
more appropriate to rewrite the expressions for
the anisotropy constants where the magnitude of
ghgS is kept constant. This is equivalent to treat-
ing the spins with different values of S as carrying

T T T T T T T T ]

S=%
/’
W

1.0/ -
L—h=0.0

—h = 0.04
h = 0.08 ]
h=0.12
h=0.16

REDUCED ANISOTROPY CONSTANT Ky(T,H)/K5(0,0)

| | I | | | | |
O oI 02 03 04 05 06 07 08 09 IO
REDUCED TEMPERATURE T/T,

FIG. 4. Magnetic field dependence of the dipolar an-
isotropy constant K, (T, H)/K,(0, 0) for spin %.



8 ORIGIN OF THE MAGNETIC ANISOTROPY ENERGY OF THE ... 5305

the same magnetic moments but having different
quantization. At 7=0, only the last term in Eq.
(27) remains and we rewrite the last term as

K1(0)=(1/8u)(S){S(S+1) - (S}
x 23 R(ij, ) «< 1/8. (38)
j

Here the quantity u, as defined in Eq. (20), is the
change in the unperturbed energy when a spin is
flipped by one unit. In the above equation, we
must also let the unperturbed energy, the ex-
change, and the Zeeman be independent of the mag-
nitude of S and thus we have let ux<1/S. There-
fore we see that K, decreases as the value of Sis
increased. The above result is expected if we re-
call that the origin of the dipolar anisotropy energy
at T=0 arises from the quantum fluctuation of
spins. Since the quantum fluctuation decreases as
the value of Sis increased, we have a decrease in
the value of K;. The above fact explains the effect
of the external magnetic field on the anisotropy en-
ergy. Figures 3 and 4 show that at low tempera-
tures anisotropy constants decrease as the magnet-
ic field is increased. This is due to the suppres-
sion of the quantum fluctuation of spins by external
magnetic field. Inthe limit of S—«, K, vanishes
as expected. Since we have treated the exchange
energy being constant of S, if we let S+« and

ug —~ 0 while keeping the magnitude of gz S con-
stant, it is equivalent to assuming classical spins
in the expression of K, and there should be no an-
isotropy in this limit. At finite temperatures, Eq.
(38) becomes

K,(T)xconst in S for large S, (39)

and the other three terms in the large square
brackets of Eq. (27) also yield the same form as
Eq. (39). Equations (38) and (39) indicate that at
very low temperatures the value of K; decreases
in going from small Sto large S, while at inter-
mediate temperatures the value of K, does not
change much for different values of S. When S is
of the order of unity, K, should not vary much over
a wide range of temperature. For large S, how-
ever, the value of K, at low temperatures is re-
duced appreciably due to the decrease in the quan-
tum fluctuation so that K; becomes smaller at low
temperatures than at intermediate temperatures
and thus K, increases with increasing temperature.
This behavior is shown in Fig. 5, in which we have
plotted K, vs T/ T, where the magnitude of the mag-
netic moment guyS is kept constant. In Fig. 1 we
note that the height of the broad maximum in-
creases as the value of S is increased and one
might suspect that our expression for K,; would not
yield a finite value at the classical limit. In Fig. 5
we see that when the limit is properly taken the

maximum value of K, approaches a finite value.
The above discussions lead to the following in-
terpretation of the temperature dependence of the
dipolar anisotropy energy in cubic crystals. Clas-
sically, all the spins in a cubic ferromagnet point
in the same direction at absolute zero and the en-
ergy associated with dipolar interaction does not
depend on the direction of the spins with respect to
the cubic axes. However, when the dipolar inter-
actions are considered quantum mechanically, be-
cause of the terms nondiagonal in 2, S, the dipolar
interaction causes the spins to fluctuate around the
direction of the magnetization. The energy asso-
ciated with this quantum fluctuation depends on
the direction of the magnetization with respect to
the cubic axes and thus gives rise to the anisot-
ropy energy. Therefore the interaction involved
in the anisotropy energy at T=0 is purely quantum
mechanical so that the anisotropy energy depends
strongly on the value of S. As the temperature is
raised, the thermal fluctuation of the spins is in-
troduced in addition to the quantum fluctuation.
For small S, since only a few levels of the energy
states are available between the ground state and
the state of the complete reversal of the spin,
raising of temperature does not introduce much
the additional disturbance of the parallel arrange-
ment of the spins. For large S, the anisotropy
energy is very small at T=0. When the tempera-
ture is raised the spins begin to fluctuate thermally
and tend less and less parallel to each other so as
to minimize the total free energy. This fluctua-
tion is larger for large S and thus gives additional
contribution to the anisotropy energy.
Investigations of the spin-wave analysis for tem-
perature dependence of the dipolar anisotropy en-
ergy have been done by several authors. '>'2 They

o 0ol 02 03 04 05 06 07 08 09 10
T
/Tc

FIG. 5. Dependence of the dipolar anisotropy con-
stant Ky on spin values when the magnitude of the mag-
netic moment gugS is held constant.
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have carried out the analysis by assuming the
strong correlation between the neighboring spins
and shown that K; decreases with temperature as
the tenth power of the magnetization when T< T,
which seems to be contradicted by our results.

We have used the molecular-field approximation

to obtain the semiquantitative nature of the anisot-
ropy energy in the whole temperature range and
found that the temperature range in which the di-
polar interaction gives the significant contribution
is around T/T.=0.5. At this temperature range,
still ~90% of the magnetization remains but the
average angle of the spins with respect to the di-
rection of the magnetization is already large (~25°),
indicating a considerable departure of the spins
from the parallel arrangement. It is also noted

in our results that the tenth-power law does not
seem to represent either quantitative or qualitative
description of the temperature dependence of the
dipolar anisotropy energy.

Comparing our expression of K; with that of the
spin-wave results, we find that several terms,
which are important at high temperatures (7/ T,
~0.5), are neglected in the spin-wave analysis.

It would be interesting to investigate the contribu-
tion of these terms in the spin-wave analysis and
compare with the molecular-field results.

IV. COMPARISON WITH EXPERIMENT

The temperature dependence of the anisotropy
constants K, and K, in EuO, * EuS, ® and EuSe ® has
been measured by Everett and co-workers using
ferromagnetic resonance. Miyata and Argyle®
determined K; in EuO from torque measurements
and interpreted their results using the Wolf” single-
ion theory. They obtained good agreement using
a single cubic crystal parameter b,. The ferro-
magnetic resonance determination of K; by Everett
and co-workers essentially corroborated the torque
measurements, while they determined, in addition,
the temperature dependence of K,. These authors
used the Wolf single-ion theory as extended by von
Molnar!3 to include the crystal-field term in bg in
an attempt to fit the results obtained for K,. This
analysis showed that a single-ion interaction alone
was not sufficient to describe the experimental re-
sults. A similar situation exists in EuS and EuSe
with evidence for a second contribution becoming
more pronounced in progressing towards EuSe.

We have reanalyzed the results for K; and K, in
EuO, EuS, and EuSe assuming that the dipolar con-
tribution is important, in addition to single-ion
terms. To obtain the values of K; and K, due to
the dipolar interaction, the quantity » and the lat-
tice sums, R(#j, #j) and R(éj, j1, I7) in Egs. (27) and
(36), must be evaluated. For the quantity », as
defined in Eq. (20), the exchange constant J is
estimated from the ferromagnetic Curie tempera-
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ture for EuO and EuS, and from the paramagnetic
Curie temperature (6 K) for EuSe.!* The g values
are 2 in these compounds. For the lattice sums,
since Eu® is an S-state ion we expect that the con-
tributions of the pseudodipoles are small and about
of the same order as the pure magnetic dipoles in
the europium monochalcogenides. We define D,
as

D¢,=(gzu%/’r;5,)(1+cu) ’ (40)

where C;; indicates the contributions from the
pseudodipole interaction. Considering the short-
range nature of the pseudodipole coupling, we as-
sume that C;, are nonzero only between the nearest-
neighbor and the next-nearest-neighbor pairs. We
define

C, between nearest-neighbor pairs,

C;;= (C, between next-nearest-neighbor pairs,

0 otherwise. (41)

Since we have two independent experimentally mea-
surable quantities, K; and K,, we can determine C;
and C, independently. For the above definition of
Dy, Eq. (22) takes the form

§<1 +Cy,)2(3x%, 32 - x:,yr};’ , (42)

and we have a similar expression for the summa-
tion of R(j, 11, Ii) for K,. In the case where only
the pure magnetic dipole is considered (C;= C,=0),
the numerical values of the above sums in units of
14 with q being the lattice constant are given in
Table I for simple cubic, fcc, and bce lattices.

For the crystalline field contribution, we have
for the spin Hamiltonian appropriate for a S;,,
ground state'®

H=B,[03+50}]+ Bs[0§ - 2105], (43)

where O,’ are spin operators defined by Baker et
al.,® and B, and B, are related to the cubic crys-
tal-field-splitting parameters b, and bg as

b4 = 6034, bB = 1260B6 .

Using this Hamiltonian with the molecular-field ap-
proximation, the free energy in terms of b, and bg
is obtained in the form of Eq. (1) and therefore the
temperature dependence of the anisotropy constants
is calculated.:!3

Since the temperature dependence of the dipolar

TABLE I. Lattice sum R(j,jl,1i) for simple, body-
centered, and face-centered cubic lattices.

sc bece fce

—0.005 0. 046

-0.480
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FIG. 6. Comparison with experiment for K; of EuO,

The solid lines are the calculated values where the two
contributions, dipolar and crystalline, are combined and
the dashed lines are the calculated values where only the
crystalline field anisotropy is assumed to exist. The
experimental data are indicated by points.

interaction is quite different from that of the crys-
talline field effect, these contributions can be sep-
arated in the experimental data without difficulty.
We first find the ratio of the two contributions by
fitting the data for as wide a range of temperatures
as possible. From this ratio and the observed
values for K; and K,, the values of by, bg, C;, and
C, are determined independently. The results of
the fittings for K, are illustrated in Figs. 6-8.
Since the experimental results are obtained for

K/ M rather than K, we have plotted K/M versus
temperature. For the theoretical expressions of
K/M, the temperature variation of the magnetiza-
tion M was calculated using the molecular-field
approximation. The solid lines are the calculated
values where the two contributions are combined
and the dashed lines are the calculated values where
the crystalline field anisotropy is assumed to be
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FIG. 7. Comparison with experiment for K; of EuS.
(See caption to Fig. 6.)

5307

the only mechanism. The experimental results*"®
are indicated by points. Negative values of K, were
observed in all the compounds. In the case of EuO,
the crystalline field anisotropy itself roughly ex-
plains the experimental results. This should be
the case, since the observed values are too large
to be accounted for by the dipolar anisotropy except
in the temperature range 30-45 K where the di-
polar anisotropy has its maximum effect. In the
case of EuS, because of an increase in the lattice
constant, both the exchange and dipolar interaction
are decreased. However, the exchange interac-
tion decreases with increasing lattice constant much
faster than the dipolar interaction, the contribution
to the anisotropy energy, which is the ratio of the
square of the dipolar interaction to the exchange
interaction, is effectively increased. Since the
magnetic dipole interaction predicts negative val-
ues of K,, if the crystalline field effect also gives
a negative contribution, as in the case of EuO, the
two mechanisms contribute to K, additively. Re-
calling that the dipolar anisotropy energy increases
with temperature up to 7/ 7T, ~0.45, we now see
why K, of EuS decreases more slowly than K, of
EuO. This behavior of the temperature dependence
is most pronounced in EuSe, where K, is almost
constant until about the ordering temperature and
then approaches zero asymptotically.

Figures 9-11 show the results of K,. We find
that the dipolar anisotropy exhibits a more signifi-
cant effect on K, so that even EuO cannot be de-
scribed adequately by the crystalline field anisot-
ropy. Since the values of K, predicted by the two
mechanisms are opposite in sign, if they are com-
bined, K, decreases very rapidly at low temper-
atures and goes through zero around 7/ 7T, =0.5,
which is in contrast to K; where the two contribu-
tions are both negative, and therefore K, decreases
very slowly at low temperatures. This tempera-
ture dependence explains well the observed behav-
ior of K, in EuO and EuS. Inthe case of EuSe, the
experimental results of K, are well described by

EuSe K,/M
-50
-40
é -30
= 20
~
x
=10 [ ]
!
10
T(K)
FIG. 8. Comparison with experiment for K; of EuSe.

(See caption to Fig. 6.)
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FIG., 9. Comparison with experiment for K, of EuO,
(See caption to Fig. 6.)

the dipolar anisotropy alone and the contribution
from the crystalline field must be negligibly small.
The very pronounced minimum found in the experi-
mental results at T~ 3.5 K provides an evidence

of the dipolar anisotropy. It is interesting to note
that the net effect of the two competing mechanisms,
a decrease in the crystalline field and increase in
the dipolar interaction in going from EuO to EuS

to EuSe, is clearly indicated in the experimen-

tal results of both K; and K, and we have fair agree-
ment between theory and experiment.

The respective percentage contribution of the
crystalline field, the pure magnetic dipole, and the
pseudodipole for K; and K, for each compound are
given in Table II. Table III includes the cubic
crystal-field-splitting parameters b, and bg and the
pseudodipole coupling constants C; and C,. Two
sets of values are obtained for C; and C, for EuO

and EuSe. The ratio of the crystalline field and
L]
15— .
. EuS Kp/M
10— o\,
8 N
Si— \C \\\
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®e
| 1 1 | 1 | | 1
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FIG. 10, Comparison with experiment for K, of EuS.
(See caption to Fig. 6.)
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FIG, 11. Comparison with experiment for K, of EuSe.
(See caption to Fig. 6.)

the dipolar contributions is determined by extending
the theoretical calculations to T=0 after the best
fit with the experiments is obtained. A few experi-
mental points at the lowest temperature range are
neglected. Sudden rises in K, and K, for EuS at
this temperature range indicate some interference
of another mechanism.

It is found that the cubic crystal-field parameters,
both b, and bg, decrease monotonically with in-
creasing lattice constant. The order of magnitude
of b, and bg for EuO is in agreement with the values
obtained from EPR measurements on Eu?*-doped
Ca0 ' and BaO.!® We do not find any pattern or
trend among the pseudodipole coupling constants
C, and C, for the compounds under consideration.
The results of paramagnetic resonance linewidth
measurements of Eastman, !° and von Molnar and
Lawson®® show that the pseudodipole interaction is
about of the same order as the pure magnetic di-
pole interaction in EuO and negligibly small in EuS,
which roughly supports our results. For EuSe the
values of C, and C, are not in agreement with high-
temperature linewidth measurements.® Throughout
our analysis we have assumed the spin system to be
in the ferromagnetic state. However, EuSe may
not be in a saturated state at 8.7 kOe, the applied
field at which the anisotropy measurements were

TABLE II. Percentage contribution of the crystalline
field, dipole, and pseudodipole.

EuO EuS EuSe
K K, K K, K, K,
%) %) %) %) %) %)
Cryst. 98.3 94.0 93.9 91.9 62.5 0
Dipole 0.6 0.4 6.1 8.1 9.0 13.7
Pseudo-dipole 1.1 5.6 0 0 28.5 86.3
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TABLE III, Estimated values for b, bg, C;, and C,.

EuO EuS EuSe

b, 2.3 (103 cm™) 0.29 103 em™)  0.25 (107 cm™)
bg 0.2 (102 cm™) 0.04 (107 cm™) 0

Cy (1.2 ( 0.9 0 0.85(0.9
02{2.1{—3.1 0 ; ogo.s

made; and thus further study at higher fields may
be necessary to precisely determine the value of
the pseudodipole coupling constants in this case.
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APPENDIX

In this appendix, we shall derive the expression
for R(éj, kl, mn). As is mentioned in Sec. II B, each
term of AF'® corresponding to each combination
is expressed by a product of spin matrices and a
function of £, 7, &, and ». We list the form of the
function for each combination:

‘;:‘;:‘;i (rd - 383)(r%, - 388)(r2, - 38%,), (A1)
A-C-C: .
B-C-C: (7‘%1 - 3I?J)§kl(£il - “772:!)
X Emn(En + M) +C. o (A2)
B-E-E (7'31 - 35?1)(§k1 = i)
X (Emn+ TMmn)® +C. C. (A3)
E-C-C: (&;; —iny)EplEps +iMn)
Xcmn(gmn"'inmn)"'c'c' (A4)

We have left out from each equation the coefficient
Dy,D,,D,, and also a numerical factor which is dif-
ferent for each combination. It is now desired to
transform each equation, (A2) through (A4), into
an equation which is only a function of » and {. Re-
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calling the relation, {=a;x+a,y+a32, We see that
we need to retain only the terms which are sixth
order in ¢{. Using an identity,

Tap * Tua= 2 (Ens + 10 ) E g = 71 nn)
+(Ep = ) En + M) |+ Eii b, (AD)
Eq. (A2) is transformed into

2(7’4] - SCU)CM Cmn[(rklrnm) - chlcmn] . (AG)

Similar transformations can be made for Eqs. (A3)
and (A4) using identities which consist of (T;« T,
and (F;;+ Tp;)(F;; + Tpp), respectively. Equation
(A3) becomes

(r¥, - 3L2))(2%,¢%, +lower-order terms in ), (A7)
and Eq. (A4) becomes

Errtmn(283, 838 + lower-order terms in £) . (A8)

From Eq. (A1) and Eqs. (A6)-(A8), we see that all
the combinations yield the same functional form so
far as the terms sixth order in ¢ are concerned.
Therefore, when Eqs. (Al1)~(A4) are summed over
the lattice sites, we have the summation of the form

E Z: Z;DUDlemnclzJCtzzlzsm

12§ R>1 mdn

DIDIDY DDy Dy (arxy; + a9y + aszu)z
$>§ R>1 m>n

2 2
X (a1 g + QY + AsZyy) (01X n + A2 Ymn + A3Zpm)

(A9)
which is the same, except for the numerical fac-
tors, for all the combinations. If the cubic sym-
metry of the crystal is taken into account, we ob-
tain for Eq. (A9)

2 2 2 DyDyD,, b5t t2,

125 B>1 m>n

=27 22 23 R(3j, kl, mn)adaiad

2§ R>1 m>n
+lower-order terms in o,
where

R(ij, kl, mn) = 3D ; Dy Dyl x % x4 22,

(a9")

2.2 .2 2.2 2
= 3%y X a1 Ymn + 2% 3V Z mn + 16X, 9459

X 251 ZmnXomn + 12545 V15 %01 Vi (2n = Vo)l «
(A10)

For the derivation of Eqs. (30) and (31), following
the derivation of Eqs. (24) and (25), we have

22 23 R(ij, i3, mf) = 23 23 R(3j, ij, mj) = 22 R(5j, ij, 4))
i>i m i>i m i>j
N .
= —-Z—ER(z'], ij, ij) (A11)
J

and
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| oo

) i)in(ij, il, mj)= 2 Z,> 22 R(3j, il, mj) - 2 § f)R(ij, il, mj) = 2o 2R(ij, il, 1j) = 22 R(ij, ij, ij)
i m >4 1 i>j

125 1#m i>5 m

N
YT rGj, i, ) - DT RGH, i1, 19)
2 7 2 J#1

(A12)
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