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The hyperfine constant of Fe+' ion is calculated by the linked-cluster many-body theory procedure. The
first-order contribution representing exchange-core-polarization {ECP) effect leads to a hyperfine constant of
—45.46 MHz. Electron-electron interaction effects involving both consistency and correlation contribution
are found to be about 12% of the ECP effect. Comparison is made with experimental hyperfine fields in

solid state from Mossbauer studies, and the relative importance of covalency effects as compared to
electron-electron interaction effects on the hyperfine constant are discussed.

I. INTRODUCTION

The hyperfine interaction in iron-group ions in
the solid state is a very interesting property be-
cause it gives important information about the na-
ture of the electron distribution in the solid, par-
ticularly as it pertains to the extent of the covalent
binding in iron-group compounds. To obtain this
kind of information it is important to have a knowl-
edge of the free-ion hyperfine constant to deter-
mine the difference between the free-ion hyperfine
field and that in the solid state. Unfortunately, it
has not been possible so far to study experimentally
the hyperfine interaction in paramagnetic ions them-
selves, although measurements have been done' in
iron-group atoms. One has therefore to rely on
theoretical methods to study the hyperfine interac-
tions in free iron-group ions. For this purpose it
is desirable to use a method which has proven to be
accurate from calculations in atomic systems
where experimental hyperfine constants are avail-
able. One such method which we intend to follow
here is the linked-cluster many-body perturbation-
theory (LCMBPT) procedure, which has been ap-
plied successfully to the study of the hyperfine con-
stants in a number of atoms —among them alkali
atoms, excited states of second-group atoms, and
more complicated atoms such as boron, nitrogen, ~

phosphorous, and oxygen. The system we will
study in the present work is the ferric ion, both be-
cause of the availability of its hyperfine constant in
the solid state, from Mossbauer work, ' and because
this is a spherical system where many-body calcu-
lations are less cumbersome than for nonspherical
systems. One other bonus of this procedure is that
it gives the shell-by-shell contributions of both
one-electron and many-electron contributions to
hyperfine constant which can be related to experi-
mental data which should be obtainable from re-
cently developed techniques involving internal con-
version. ~ The exchange-polarization effect is also
interesting because of its relationship to energy
splitting of different spin states, which has been
recently observed through x-ray photoemission
technique. '

In Sec. II we will briefly discuss the procedure,
the choice of the basis set for the evaluation of per-
turbation diagrams, and a few technical details of
the calculation characterizing the ferric ion; we
also present the important diagrams that occur in
the evaluation of the hyperfine constant and their
physical meanings.

Section GI will deal with values of the various
diagrams and, through their combi. nation, the con-
tributions to the hyperfine constant that one can
obtain, namely, from exchange polarization, self-
consistency, and correlation effects. A compari-
son will be made of the one-electron contribution
with results from a number of other methods,
among them unrestricted Hartree-Fock" (UHF),
moment perturbation'~ (MP), and exchange polar-
ization'~ (EP). Since Mossbauer data are available
in the solid, an analysis will be made of the rela-
tionship between the results of our calculation and
experimental hyperfine-constant data. Some con-
clusions are given in Sec. IV.

II. THEORETICAL PROCEDURE

Since the details of the LCMBPT procedure have
appeared earlier in the literature, we shall pre-
sent only a few points of the procedure typical of
the present system, namely, the type of the poten-
tial used, the basis set, and the physical meaning
of different diagrams involved. Due to the spheri-
cal symmetry of our system, the only relevant hy-
perfine operator to consider is the contact one.

A. Resume of LCMBPT

The nonrelativistic total Hamiltonian for an atom-
ic system of N electrons can be written as

x=ZT, +Z v„, (l)

where T, stands for the sum of the kinetic energy
and nuf'. lear Coulomb potential of the ith electron
and v, ,- is the electrostatic interaction between elec-
trons i and j. One needs the exact solution of the
Schrodinger equation:

&+o=&+o .
In applying the perturbation procedure, we replace
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3C by a central field Hamiltonian,

Xo = Z (Tg + V(), (3)
~=1

and X =SC -360 is treated as a small perturbation.
The single-particle potential V, is selected in such
a way that the one-electron equation

(T+ V)9'( = &((((}(

is conveniently solvable for a complete set of bound
and continuum states having eigenvalues z, . We
have used the restricted Hartree-Fock- (RHF) type
V" ' potential for V in E(l. (4), the matrix ele-
ments of which are given by~

&n[V"-'[b&=2[&on](1/r»)[sb&-&~[(1/r»)[b &].
n=i

A normalized zero-order determinantal wave func-
tion Co can be formed out of N of these single-par-
ticle states, satisfying the Schrodinger equation

oCo = &o@'o

The normalized eigenfunction 4o can be generated~
I

from 4o by using the linked-cluster expansion. '4

The expectation value of an operator 0 can then be
written as

&o&= &e, i oi +,&

= Z Z(4,
~

[X'(E,-X,) ']"O-[(E, -X,) 'X']-~4,&, ,
n~o It~0 (8)

where L indicates that only linked diagrams are to
be considered.

B. Basis Set

For the evaluation of the diagrams associated
with the perturbation expansion in E(l. (6), one needs
a complete set of basis states which are eigenfunc-
tions of the zero-order Hamiltonian 360.

The complete orthonormal basis set generated by
this potential has an infinite number of bound and
continuum states. The s, p, and d states were gen-
erated in the V" ' potential, ' with the missing or-
bital N in E(l. (4) corresponding to a 3s, 3p, or Sd
electron, respectively. For all other excited
states, a 3d electron was missing. The equations
for P(nl; r), which is r times the radial wave func-
tions, are given as follows. For ns states we have

(
d2

+———[}'(r}+2}'&(Bs,3s ~ r}+12}'(3(, 3P; r}+101(3d31';r}]+, Rc„)r r

&& P(ns} r) + —[Yo(ls, nsi r)P(18 3 r) + Fo(2s, nsi r)P(2s; r)

+ Yq(2p, ns; r)P(2p; r) + Yq(Sp, nsi r)P(3p; r) + —,
'

Y[,(Sd, ns; r)P(3d; r)] = 0 .

For gp states we have

d'
~+—————[F(r)+4FO(Ss, Sso; r)+10FO(Sp, Sp; r) —sit Ym(Sp, Sp; r)+1QYO(Sdo, 3do; r)]+2s~

xP(np; r)+ —(~ [Fq(ls, np; r)P(ls; r)+ Yq(2s, np; r)P(2so; r)+ Y~(3s, np; r)P(3so; r)]
2

+ Yo(2p, np; r)P(2p; r) + I- Y2(2p, np; r)P(2p; r) + 3$ Yz(3p, np; r)P(3p; r)

+ ~ Yq(Sd, np; r)P(3d; r) +
$q Y3(3d, np; r)P(3d; r)}= 0 . (8)

For nd states we have
I

2+—————[F(r) + 4YO(Ss, 3s; r) + 12Fo(3p, 3p; r) + 8 Yo(3d, 3d; r) —3$ Yz(3d, 3d; r)

—+63 Y4(3d, 3d; r)] + 2c„~ P(nd; r) + —(—', [Y2(ls, nd; r)P(1s; r) + Yz(2s, nd; r)P(2s; r)

+ Yz(3s, nd; r)P(3s; r)]+ +5 [Y&(2p, nd; r)P(2p; r) + Y&(Sp, nd; r)P(3p; r)]

+ 3~5 [Fm(2p, nd; r)P(2p; r) + Y3(3p, nd; r)P(3p; r)]+»~ Ym(3d, nd; r)P(3d; r)

+ P3 Y4(3d, nd; r)P(3d; r)}= 0 .
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And for nf states we have

d
s+——~-—[F(r}+4FO(3so, 3s; r) +12FO(3p, 3p; r)+8FO(3d, 3d; r)dr' r ~r r

—$ Fz(3d, 3d; r}—Q F4(3d, 3d; r)] + 2@„&'P(nfl r) +—
(~~ [Fz(is, nf; r)P(1s; r)

+ Fz(2s, nf; r}P(2s; r}+Yq(3s, nfl r)P(3s i r)]+ fz [Fm(2P, nf; r}P(2$; r)

+ Fs(3p, nf; r)P(3p; r)]+ z$ [F4(2p, nfl r)P(2p i r)+ F4(3p, nf; r)P(3p; r)]

+ +z F&(3d, nf; r)P(3d; r) + @ Fz(3d, nf ~ r}P(3d i r)+ I F5(3d, nf; r}P(3d; r) ] = 0,

where

F(r) = 4Y&(ls, ls"; r}+4FO(2s, 2s i r) + 12FO(2po, 2p; r)
and

+a k

Y~(nl, n l; r) = r ~z P(nl; r )P(n l; r }dr
"0

(10)

z'=xi. X, (12)

where I and J are the spin of nucleus and elec-
tronic angular momentum, respectively, and A is
the magnetic hyperfine-coupling constant. From
Eqs. (11)and (12), A in Hz can be written as

A='—' "'"." 4 J. M. 2" ~ 4 J.M.3 IMzaz~h
(13)

We consider the case where J= M~ = S= &. To ob-
tain A, one evaluates the expectation value in Eq.
(13), which in the LCMBPT formalism is given by
Eq. (6), with the operator 0 being given by 2s,,6(r).
To get the value of A in Hz from the individual dia-
grams which are evaluated inunits of a~, it is
clear from Eq. (13) that one has to apply the multi-
plying factor

s ~ (14)
pe

The normalization procedure is the same as in our
earlier paper.

In Eqs. (7)-(10) the core wave functions indicated
by superscript 0 refer to those used in the con-
struction of the potential terms. For these, we
have used Clementi's RHF wave functions. '

C. Description of Hyperfine Operator and Diagrams

As mentioned earlier, the present system is in
the 6S state, and hence only the Fermi-contact part
in the hyperfine Hamiltonian exists. The contact
Hamiltonian can then be written as

16v gsjls y g~ (~ )
Ia~

The corresponding spin Hamiltonian is

Various terms in the perturbation series in Eq.
(6) can be obtained by assigning integral values (in-
cluding 0) to m and n The t.erms in this series can
be represented by Feynman-like diagrams drawn
according to rules described in the LCMBPT liter-
ature. ~ For these diagrams the hyperfine opera-
tor is represented as a wiggly iine followed by a
letter c. The holes are shown by lines directed
down and the particles by lines directed up. A

horizontal dotted line corresponds to the electron-
electron interaction. The diagrams corresponding
to m and n orders in Eq. (6) are referred to as (m,
n) diagrams. For example, the m=0, n=1 dia-
gram in Fig. 1 is referred to as the (0, 1) diagram.
Diagrams in Fig. 2 are referred to as (1, 1) dia-
grams and those shown in Fig. 3 are (0, 2) dia-
grams. Due to the hermiticity of the operator in-
volved in Eq. (13), the contributions from (m, n) and

(n, m) di.agrams are equal. Only diagrams sur-
viving after cancellations due to the spin and the
potential are shown in Figs. 1-3.

Figure 1 represents the exchange-core-polariza-
tion (ECP) effect involving the action of the spin-up
valence electron on the core electrons. Diagrams
2(a)-2(f) represent (1, 1) diagrams involving com-
binations of ECP and one order of electron-elec-
tron interaction of the one-electron type. Of these,

FIG. 1. Exchange-core-polarization diagram.



RAY, LEE] AND DAS

C c
I

(a) (b) (c)

j Ibm ~~m

(e)

Pm

(g) (h)

FIG, 2. (1„1)diagrams.

2(a) and 2(b) are combinations of ECP and pertur-
bations which are the result of the use of the V" '
potential. Diagrams 2(c) and 2(d) represent the
second order of ECP. Diagrams 2(e) and 2(f) rep-
resent the influence of consistency effects on ECP.
Diagrams 2(g)-2(j) involve correlation effects in
which two electrons are simultaneously excited,
2(i) and 2(j) being, respectively, exchange counter-
parts of 2(g) and 2(h).

The diagrams in Fig. 3 belong to the (0, 2) cate-
gory. Diagram 3(a) represents one order in the
electron-electron interaction beyond ECP before
the contact vertex is applied. For m =n, this dia-
gram is referred to as a ladder diagram, which is
a consequence of the V" ' potential. Such a dia-
gram does not occur for m =n= 3s. When m4n,
this diagram represents an indirect ECP effect,
one polarized shell influencing the hyperfine con-
tribution from another. For such a diagram n does
not have to be an s state. Diagrams 3(b)-3(e) are
analogous in physical meaning to diagrams 2(a) and
2(b). Diagrams 3(f}and 3(g) represent higher-
order effects associated with ECP and in this re-
spect resemble diagrams 2(c) and 2(d). Diagrams
3(h) and 3(i) like 2(e) and 2(f) represent an inter-
play of consistency and ECP, while 3(j)-3(m) rep-
resent correlation effects.

c c

(b) (c)

up to principal quantum number n = 10, while the k
values that characterize the continuum states were
chosen appropriately to apply a 12-point Gauss-
Laguerre integration technique for k space. The
conversion factor X in Eq. (14), which converts the
values of diagrams in a.u. (a& ) to MHz, was cal-
culated 7 to be 28. 872.

Our calculation includes all the diagrams up to
second order except a few second-order diagrams
involving 1s hole lines, since we obtained a very
small contribution from the ls core to the (0, 1) re-
sult.

In Tables I-III, where values of various dia-
grams are given, superscripts + are used to indi-
cate the spins associated with the corresponding
one-particle states. In these tables, particularly
II and III, we have listed individually only the val-
ues of those diagrams which contribute more than
Q. 2 MHz. For the rest of the diagrams, only the
net sum is indicated.

We first discuss the (0, 1) results, which corre-
spond to contributions to the ECP effect. The con-
tributions to the (0, 1) diagram of Fig. 1 from vari-
ous hole states are listed in Table I in the second
column. This column is referred to as unladdered
to distinguish it from the third column, which in-
volves ladder corrections characteristic of the
choice of the potential used. Thus diagrams 3(c),
3(e), and 3(g} with m = n represent hole-hole ladder
corrections. For the V" ' potential used here,
these diagrams exist only for m =n = 2s, 1s and
represent corrections which are a consequence of
the difference between the one-electron energies
for these states in the VN ' potential and the actual
Hartree-Fock energies. Diagram 3(a,) with m = n

III. RESULTS AND DISCUSSION

Our results for the various diagrams are pre-
sented both with respect to orders of perturbation
and to exchange-core-polarization, consistency,
and correlation effects. Before considering the
results explicitly, we would like to point out a few
technical details about the calculation.

The nature of the convergence with respect to l
of the particle states observed in the present work
and in earlier work on atomic hyperfine interaction
indicated that it was sufficient for our work to use
up to f states in evaluating the diagrams. For par-
ticle states of particular / we included bound states

(e)

~ C

(j)

{m)

~&G. 3. (0, 2) diagrams.

9
(k)
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TABLE I. Contributions in MHz from (0, 1) diagrams and comparison of the results with
other works.

EP5

1s
2s
3s

Total

Unladdered

0. 103
-47.643

3.743
—43. 797

Laddered

0. 105
—49. 305

3.743
—45. 457

0, 29
—51.50

3.56
—45. 65

'Local
Approx.

0. 29
—49. 84

5. 76
-43.79

Corrected for
Local Approx.

0.29
-49.40

3.70
—45. 41

csee Ref. 18. bsee Ref. 13.

=2s, 1s and 3(b) and 3(f) with m =2s, Is represent
hole-particle ladder diagrams. The influence of
these ladder diagrams is incorporated in the third
column, the Ss contribution being unaffected by
ladder effects, since there are no ladder diagrams
involving the Ss hole state for the choice of the
V potential made in this work. We have com-
pared the shell-by-shell contributions from the
(0, 1) diagrams with other perturbation approaches.
Thus the fourth column lists the state-by-state
contribution obtained by the moment-perturbation
procedure, involving the calculation of perturba-
tions of the core states by the nuclear hyperfine in-
teraction. The fifth column gives corresponding
results by the exchange-perturbation procedure, '
involving perturbed wave functions for the cores
due to the exchange potential produced by the Sd
electrons. For the results in both the fourth and
fifth columns, a local approximation devised by
Sternheimer" was employed. The sixth column in-
cludes corrections due to the difference between the
local approximation and the nonlocal Hartree-Fock
potential. Comparing the fifth and sixth columns,
the influence of the nonlocal potential correction is
seen to be most significant for the outermost-core
3s states, as one would expect since these are the
least bound of all the cores. The agreement, shell
by shell between the (0, 1) results and the MP and
EP results, is very good in spite of the fact that
these latter perturbation procedures involve totally
different techniques from the LCMBPT procedure
employed here. It is interesting that the incorpo-
ration of nonlocal effects improves the agreement
between the EP and our results for the 3s state.
One might expect a similar trend for the MP case
on incorporating nonlocal effects, improving its
agreement with the LCMBPT result.

The contributions from the (1, 1) diagrams are
listed in Table II. We have listed the results of
consistency diagrams and pure correlation dia-
grams separately. The consistency effect receives
comparable contributions from diagrams involving
both 3s and 2s states. While Ss states are more
deformable, the 2s states have greater density at

TABLE II. Contributions from (1,1) diagrams shown
in Figs. 2(a)-2(j).

Diagram

2 (a)-2 (d)

Excitation

Consistency

Contribution in MHz

—0. 009

2 (e) q=3s
q=2s
q = 3p
q=3p
q=2p

m =3s
m =2s
m =3s
m=2s
m =2s

0. 241
—0.241

0. 714
0.232

—0. 378

Other Consistency Diagrams

Total Consistency Contribution

Correlation

0. 062

0.621

2(g)
2(h)

2(i)

2{j)

q=3p
q=3p
q =3p
q =3p

=3d
q=3d
n=3p
n=M
q=3p
q=3p
q=3p
q=3d
q=3d
q=3d

m=3d
m =n=3s
m=3s n=2s
m =n=2s
m =n=3s
m =3s n=2s
m=M
m = 3s
m =n=3s
m =3s n=2s
m =n=2s
m =n=3s
m=3s n=2s
m=2s n=2s

0. 660
2. 894

—1.238
0.222
0. 385

—0. 203
—1.068
—1.063
—1.987

0. 767
—0. 205

1.952
—0. 912

0. 325

Other Correlation Diagrams

Total Correlation

Net {1,1) Contribution

0. 505

1.034

1.655

the nucleus, which leads to the comparable nature
of their contributions. A similar remark applies
to correlation effects from 2s and Ss states. The
net (I, 1) contribution of 1.655 MHz is comprised
of 0.621 MHz from consistency and 1.034 MHz
from correlation effects.

Table III presents the contributions from (0, 2)
diagrams, excluding those diagrams referring to
laddering effects which were included in Table I.
Of the two consistency diagrams 3(a) and 3(h), 3(a)
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TABLE IQ. Contributions from (0, 2) diagrams shown
in Figs. 3(a)-3(m).

DiagraIIl Excitation

Consistency

Contribution in MHz

3(a)

3(h)

m = 3s
m =1s
m =3s
m =Is
m = Is
m =2s
m =3$
m =2s

n=3p
n =2s
n=2s
n=3P
n=2p
n=2p
n=3p
n=2p

3.695
—0.234-0.243
—0. 322

0. 723
—1.875

0.457
—0.215

Other Consistency Diagrams

Total Consistency Contribution

Correlation

+ 0. 283

2. 269

3(j)

3(k)

3(l)

3(m)

q=3s
q=3p
q=3p
q=2s
q=2p
q=2p
q=3P
q=2p
q=3p
q=2p

q=3d
q=3s
q=3p
q=3d
q=3d
q=2$
q=2p
q= 3d
q=3p
q=2p

= 3p
q=2p

m =3s
m =3s
m=3s
m =3$
m =3$
m =2$'
m =3$'
m =2s
m =2$
m =3$
m =2$
m =2$
m =3s
m =3s
m=3$
m =2$
m =2s
m =2$
m=3$
m =3$
m =3s
m =3s
m =2s
m =2$
m =2$
m =2$
m=3$
m =3$
m =2s
m =2$

n=3d
n =2P
n=3d
n=3p
n=3d
n=3d
n =2P'
n =2p
n=3p
n=3d
n=3d
n=3d
n=3p
n=3d
n=2p
n=3P
n=2p
n=3d
n=3s
n=3d
n=3d
n=3P
n=3s
n=3d
n=3d
n=3p
n=2p
n=3p
n=2P
n=3p

-0.546
—0. 384
—0.758
-2. 500
—0.610

0.453
0. 388
0.224

—1.029
—0. 347

0.482
0. 366
1.016

—3.493
0.499

-0.375
—0. 348

1.754
1.072
2. 369
0.430
1.204

—0.304
-1.018
—0.633
-0.469

l. 184
1.615
0, 901
1.018

Other Correlation Diagrams

Total Correlation Contribution

Net (0, 2) Contribution

0. 184

2. 295

4. 564

is the major contributor and can be physically in-
terpreted as representing an indirect ECP effect.
Thus one could analyze this diagram as an exchange
perturbation of hole state n by the unpaired 3d
electrons~ the exchange-polarized n state then fur-
ther perturbs state m, which later then leads to a
finite spin density at the nucleus. Of the various
combinations of m and n states which contribute to

this indirect ECP diagram, the one involving m = 3s
and g=3p is seen to be the most effective. This is
understandable, because both 3d-3P and 3p-3s ex-
change interactions are strong. The n= 2p, m =2s
combination is also important, because the 2p-2s
exchange is strong and the 2s state has a large
amplitude at the origin. It is also interesting that
some of the indirect ECP diagrams involving ls
make small but significant contributions and, in
fact, stronger contributions than the direct ECP
diagram in Fig. 1. The reason for this is that,
while 1s exchanges rather weakly with 3d, it inter-
acts more strongly with the other core states, which
can then communicate by exchange with the 3d elec-
trons.

The (0, 2) correlation diagrams are seen from
Table III to consist of a number of contributions of
comparable magnitude with considerable cancella-
tions due to differing signs. The diagrams with
largest magnitudes are seen to arise from interac-
tions involving 3d, 3p, and 3s states, which corre-
late most strongly. Diagrams involving 2s states
in this order are important only when a hyperfine
vertex is attached to 2s and takes advantage of the
rel@tively large amplitude of 2s state at the nucleus.

In Table IV the net contributions from the various
orders are summarized together with separation in-
to different physical effects: ECP, consistency, and
correlation, as in Tables I-III. The net contribu-
tions from consistency and correlation are com-
parable, as indeed are the individual ones for both
(1, 1) and (0, 2) orders. On combining the net con-
sistency and ECP effects, one gets a net one-elec-
tron result for A= -42. 57 MHz. For the EP cal-
culation discussed earlier, ~ indirect ECP effects
have also been evaluated, and their inclusion leads
to A = —41.04 MHz, which is in reasonable agree-
ment with our one-electron results. Two UHF cal-
culations have been carried out, one involving a
Slater-type basis set~' and one a Gaussian. Io The
results from these calculations are, respectively,
—34. 58 and —43. 59 MHz. On including correlation
effects, our calculation leads to a net hyperfine
constant for the free ion given by A = —39. 2 MHz
or —711.9 kQe in units of field at the nucleus. An
error limit of +0.5 MHz could be added to this re-
sult due to the numerical inaccuracy, neglect of
some diagrams (as pointed out earlier), and higher
angular momentum components. It is hoped that in
the future results will be available for the free Fe'~
ion or the ion trapped in a weakly interacting en-
vironment, such as a rare-gas solid, to directly
compare with our theoretical result. For the
present, we can only use our result for A for the
free ion as a reference to compare with the values
of A in solid-state compounds to obtain the solid-
state effect on A. Thus, using recent tabulations
of Fe hyperfine-field data ' in K~NaFeF~,
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TABLE IV. Summary of contributions to hyperfine constant (in MHz).

529'l

(0, 1)
ECP

—45. 457

Consistency

0.621

Correlation

1.034

(0, 2)

Consistency

2. 269

Correlation

2. 295

Net
Consistency

2. 890

Net
Correlabon

3.329

Total

—39.238

y- Fe&O~, and FeCl3, our free-ion hyperfine re-
sult leads to + 91.9, + 196.9, and + 243. 9 kQe, re-
spectively, from the influence of sol.id-state ef-
fects. In a recent calculationai on the Mn'~ ion in
ZnF~, the influence of overlap effects was seen to
lead to a contribution of 28% of the free-ion mag-
nitude, but with positive sign. The recent UHF
calculation on K3FeF using Gaussian orbitals has
led to + 42 kOe from valence orbitals. It is not our
aim here to analyze the accuracy of solid-state cal-
culations. We can remark, however, that both the
above results are in the right direction and have the
right order of magnitude to explain the differences
between solid-state free-ion hyperfine fields. More
soli.d-state calculations, especially in the three
systems listed earlier, would be helpful in under-
standing the influence of neighboring ions in the

solid.

IV. CONCLUSIONS

%e conclude by listing a number of conclusions
that may be drawn from the present calculations
and earlier work on Mn ion: (a) Consistency and
correlation effects within the ion are an order of
magnitude smaller than the ECP effect. (b) How-
ever, for the study of solid-state effects using the
free-ion hyperfine constant as reference, consis-
tency and correlation effects are very important,
because from Table IV they are seen to be of the
same order of magnitude. (c) For the study of ECP
effects from individual shells by techniques such
as internal conversi. on, consistency and correla-
tion effects are relatively important, since they
are comparable to ECP for the Ss shell.
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