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The effect of paramagnetic impurities on the nuclear spin-lattice relaxation time in metals is
investigated by applying the theory of Slume and Hubbard in an appropriately generalized form. The
calculations are carried out at finite temperature and magnetic field strength assuming that the
Ruderman-Kittel-Kasuya-Yosida interaction, couples the impurity spins. The effect of approximating this
interaction by I/r is examined as is the temperature, magnetic field, and impurity-concentration
dependence of the relaxation time. Quantitative results are obtained using panuneters appropriate to the
rare-earth alloy La, Gd, A1, and a comparison is made with experiment; agreement is generally good.

I. INTRODUCTION

Time-dependent spin correlations are of great
importance in magnetic resonance and relaxation
phenomena. Blume and Hubbard' recently devel-
oped a general formalism for calculating the time
dependence of the correlation function of a system
of spins coupled via the Heisenberg exchange inter-
action. We have used this formalism to calculate
the magnetic field dependence of the spin-lattice
relaxation time T, in solid He'; measurements'
show that T, is proportional to e "'"o at large ~,
where (d is the Larmor frequency of the spins in
the applied field and ~0 is a constant. Our calcu-
lations also give this field dependence which is not
found in any of the phenomenological approaches to
relaxation phenomena.

The theory of Blume and Hubbard may also be
used to explain how paramagnetic impurities affect
nuclear-spin relaxation. It has long been known
from experiments' that a relative concentration c
of paramagnetic impurities changes the inverse
spin-lattice relaxation time by an amount d(1/T, )- c "~ for c close to 1 and by an amount 4(1/T, )- 1/c for c «1; in the latter regime, the spin-cor-
relation function is a Lorentzian. These experi-
mental facts, as well as some other novel features
of the time dependence of the correlation function,
may be derived by applying the theory of Ref. 1
with suitable modifications to take the randomness
of the impurity positions into account. The results
are consistent with the experiments of McHenry et
al. on La, ,Gdglm alloys and with some earlier
work on a similar system.

The model in Ref. 6 is typical of those used in
studies of the effect of paramagnetic impurities on
the nuclear spin-lattice relaxation time; the re-
laxation of the nuclear spins is enhanced through
their dipole-dipole (d-d) interaction with the para-

magnetic ions which are considered to be randomly
distributed and which couple via the Ruderman-
Kittel-Kasuya- Yosida (RKKY) interaction. There
is much speculation concerning the nature of the
interaction between the nuclear spin and that of the
paramagnetic impurity; the treatment given in Ref.
6 is sufficiently general that it may be extended to
other types of interaction rather trivially.

There are several approximations in Ref. 6
which have been improved upon in the present work
in order to make a quantitative comparison with
experiment. First, when calculating the nuclear
spin-lattice relaxation time in Ref. 6, the angular
part of the d-d interaction was replaced by a con-
stant; this was believed to alter the magnitude of
the result but not its functional dependence on any
physical parameters. Second, the oscillations in
the RKKY interaction were discarded in Ref. 6 so
that the paramagnetic iona interact via a 1/2 law

where r is the interimpurity distance. This ap-
proximation is commonly used' but is certainly
of questionable validity when the concentration of
impurities is not too small. Finally, at finite (as
opposed to infinite) temperature we should im-
prove the calculations of Ref. 6 by distinguishing
between the longitudinal and transverse parts of
the spin-correlation function. " The extension to
finite T introduces some important corrections to
results which were previously given in the litera-
ture and which are based on the phenomenological
theory. In connection with this point, see also
Ref. 9.

The remainder of this paper is organized as
follows: In Sec. II, we review briefly the formal-
ism of Blume and Hubbard and also derive equa-
tions for the longitudinal and transverse parts of
the spin-correlation function at finite T. Section
III contains a discussion of the results and a com-
parison with the experiments' on La, ,od,Al~.
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Finally, in Sec. IV, we demonstrate the power of
the formalism by indicating how it may be applied
to the physically very different problem of NMR
studies on orthohydrogen (o-Ho) impurities in solid
parahydrogen (p-Ho). In this system, the intra
d-d interaction of the o-Hz molecules is influenced
by a much stronger electric quadrupole-quadru-
pole interaction'o which varies as I/ro.

II. THEORETICAL BACKGROUND

The quantity that we wish to calculate is the
spin-correlation function of nuclear spins I, lo-
cated at positions r, which interact with paramag-
netic impurity spins Sz at r~ via a dipole-dipole in-
teraction '"

purities,

G) &t& (6Sx&x&(f))/( 6Sx&x&(0)) (4)

where 5$, is the response to a unit external field,

6Sx&x)(f) if [Sx&x)(f) Sx&x)(ft)] ed&'dft

[,] denotes the commutator. It may be showno

that 6S&'(f) is proportional to the Fourier trans-
form of )&'(r&, (d)/&o, y,

" being the dynamical sus-
ceptibility. '5

In the short-time approximation, 'o
68&(t) satis-

fies the operator equation"~

6S
&

- ih &(f) xS &(t),
where

h, (t) = —Z J(& „)S,{f) (8)

where rs = r, —r& and 7z(yz) is the gyromagnetic
ratio of the nuclear (impurity) spine. 'o The Zee-
man energy of the spins in an external magnetic
field Ho= Hz is

Srz = —yrBo~l&'- ysBo ~sf
f

(2)

where the superscript z (or x or y) on the spin
operator denotes the Cartesian component.

In computing the spin-correlation function of
the impurities, we may neglect H~~ because it is
much weaker than the interaction between two
paramagnetic spins; this is taken to be the RKKY
interaction,

J' g S, 'Sd
R«v 2 (2k z )o

x ~cos2krr„—( sin2k~r, & (
2kzr&

Here k~ is the Fermi momentum of the electron
liquid in the host material and J' is the coupling
constant in the RKKY interaction,

J' = 8n'z&t[N(czar]

where zz is the Fermi energy N(zz) the density of
states at the Fermi surface, and J the strength of
the conduction-electron-impurity spin- exchange
coupling.

In what follows, we use a rotating frame of
reference so that S'e"""becomes simply S' in
our equations; also, we subtract (S') from S&'.

and relabel the difference S&. Here (S') is the
ensemble average of the z component of the im-
purity spin operator and ~, = y, HO is the Larmor
frequency of the impurity spins; S' are the usual
spin raising and lowering operators.

Our procedure is, first, to compute the nor-
malized longitudinal (transverse) dynamical re-
sponse function G&")(t) of the paramagnetic im-

J(r)=, cos2kzx-
Jt sin2k~r
)p r 2k~ r

Further, G,
'"' may be written as

xt (t ) = etxt —(Ed (rd )f d t,f ' d t

x(Sq(t, )Si(to)+ Si(t&)Sq(to))

Gt(f)=exp — ZJ'(r„)f dt, f 'dto
0 0

x(S;(t,)S~(t,)+ Sf(t) )Sf(f,)) (8)

These equations must be solved simultaneously.
First, we introduce the fluctuation-dissipation
theorem to convert the correlation functions into
G' and G'; following Hubbard, ' we write

and

(S', (f)Sf (0)) = Tg'G&(f)

(S~(t)Sf*(0))= Ty'Gy(t),

(8)

(10)

where Tg'=S SB,(x)/Sx and T&&'=S B,(x)/x; here
B,(x) is the Brillouin function of order S and x
= y, SHo/T Equations (9).and (10) are valid when
T is higher than the magnetic transition tempera-
ture of the spins; Eqs. (7) and (8) reduce to the
corresponding equation of Ref. 1 when the high-
temperature approximation is used, B,(x)/x
= —,'S(S+ 1).

We next apply a cumulant expansion to Eqs. (7)
and (8) in order to average over the random vari-
able r&,. assuming the system is homogeneous so
that the average of G, , called G, is independent of
i, we obtain

d rx'(t)=e p{-c (( — "'"""'))
r& 0
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and

Here a' is the volume per molecule in the crystal;
also

(13)

and

tt
y'(t) = S ' dt' (t —t')G '(t') . (14)

Some higher-order terms in c~ have been ne-
glected in Eqs. (11) and (12); consequently, they
are only applicable at small impurity concentra-
tions. However, when c becomes of order 1, the
important part of G(t) is at small t such that Z(a)t
~1, in which regime G(t)-e ' "". In this range
of t the (neglected) higher-order terms appear as
a series in powers of cZz(a)tz. They are not quali-
tatively different from the leading term so far as
the c dependence is concerned; thus Eqs. (11) and

(12) may be more useful than anticipated at large
impurity concentrations.

The quantity which is actually measured is the
time dependence of the fluctuations in the nuclear
spin or g' "'(t)=-(5I' ")(t))/(5I' "'(0)), where we as-
sume homogeneity and drop the subscript identi-
fying a particular spin. These functions can be
found using exactly the same approach as before.
The d-d interaction between two nuclear spins is
much smaller than that between a nuclear spin and
an impurity; so we may keep only the latter and
find, for g'(t),

surface. The procedure used in solving is simply
to iterate zt, starting from G'"'(0)=1; this is
quite easy since the right-hand sides of Eqs. (11)
and (12) depend only on G'"'(zt') at arguments t'
~ t. The iterations are carried to zt sufficiently
large that both correlation functions are smaller
than 10 ~.

From G'"', we find g' by performing the inte-
gration indicated in Eqs. (15) and (16); for each
x and c this has been done at values of Ho such that
3.6 &Ho &24.4kOe. The Ho were chosen to coin-
cide with the fields used by McHenry et al.

Our results generally confirm those given in
Ref. 6; some new features are produced by dis-
tinguishing between G' and G' and by improving the
numerical approximations. The major points are
as follows.

The time dependence of G'"' may be summarized
as Gaussian at small t, simple exgonential at in-
termediate t, and finally - e "' ' at large t; the
regime in which we find these behaviors are un-

changed from Ref. 6 and will not be described
further here.

For small x (high-T limit), G' =-G' as expected
from the fact that B,(x)/x = 9B,(x)/Sx in this limit.
As x becomes larger, G' is smaller than G'. A

typical case is shown in Fig. 1 where G' and G'

are plotted against zt for c = 0.01 and x = 7; the
nature of the time dependence is explicitly shown
in Fig. 2 where the logarithms of the same functions
are given as functions of zt (curves A) and as func-

zt

'(t)= —,(1 — "'"' "'""")
l

(15)
d'r 6

&, a ) '

where

~t

y, =~,s' dt'(t-t') 0'(t')Ql&, (e, c)l'
Q Q

ex

+ G '(t') cos ((d,t')'~
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Further, (dD= yzy, /a', Eo= 1 —3cos 8, E,
=sin8cos8e ", and E~=sin 8e '".

III. RESULTS AND APPLICATIONS

Equations (ll)-(14) have been solved numerical-
ly to obtain G' and G' as functions of zt where z
= Rl'j(2kza) . The impurity concentration c lies in
the interval 0.1&c& 0.001 while x ranges from 0.5
to 7 and k~a=6.43. The range of c is the same as
in the experimental work of Ref. 7 while k~ a has
the value appropriate to LaA1~ assuming three con-
duction electron per atom and a spherical Fermi

N

0.2

l00

FIG. 1. C' and C~ vs st for c=o.ol, x=7. Curves
A (B) are referred to the lower (upper) abscissa.
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J zt'
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varied to some extent by varying Ho; if Ho is con-
strained to lie within certain limits (e.g. , 3.6- Ho
«24.4 kOe), then 1/I'0 may be varied by some
amount ~(1/I'0) ~ This spread in 1/I'0 depends on
x and c and also on the parameter

8zez[N(ez)Z] S
(2hz a)'

N

10 &

I04 500 1000 1500 2000

Unfortunately, z is not known with any precision;
as discussed by McHenry et al ,

' ex. perimentally
inferred values of J alone vary between 0.057 and
0.11 eV (we used J=0.08"I eV) so that z may rea-
sonably be altered by a factor of 2. For the fields
used in Fig. 3, this change of z produces a change
in n(1/I'0) by about the same factor. The impor-
tance of this point is brought out by Pigs. 4(a) and

4(b) where 1/1'0 is shown as a function of z and the
results compared with the experiments reported
in Ref. 1. At the larger concentrations (c =0.1,
0.05) there is reasonable agreement between the
calculated and measured spreads in I/I'0, but as
c decreases, the calculated a(1/I'0) ™Ch
smaller than what is measured. The agreement
can be improved somewhat by using a different
value of z; on the other hand, at least some of
the experimental spread in n(1/I'0) seems to be
produced by uncertainty in the data. Consequent-

plQ. 2. Iog~p(C~) and 1og~p(C ) plotted vs zt (curves
A refer to lower abscissa) and vs (zt)~ if2 (curves B refer
to upper abscissa) for c=0.01, x=7.

tions of (zt)' (curves B). Note that the Gaussian
behavior exists over such a short interval of zt
that it cannot be observed in this figure. The
simple exponential behavior, seen as a straight
line in curves A, dominates until G ~0. 8; for
larger t, G- e "Ir' which appears as a straight
line in curves B.

In the limit of large t, we find gI(t)-e "'"o'
in agreement with Ref. 6 where the angle depen-
dence of y3 was treated in an approximate way.
The concentration dependence of 1/I'0 is demon-
strated in Fig. 3 for several different values of
Ho and x. At small Ho, there is strong deviation
from purely linear behavior at all x for c not too
small. This effect may be traced to the integral

f dt'(t —t')G'(t') coarser'

in Eq. (16); at large Ho, &o, is large and the cosine
factor makes the integral average to 0. If Ho is
small, the cosine is essentially 1, giving a large
integral. The c dependence arises from the fact
that G'(t') decays more slowly as c is decreased;
thus decreasing c has the same effect as increas-
ing Ho. Notice that in the conventional analysis of
experimental data, ~,F» 1 is always assumed.

For givenz and c, the value of 1/I'0 may be

IOO I I I I I I I I

o= 3.6 kOe

I 11'
/

/
/

/
/
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0001 O.OI
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O.l

FIG. 3. Theoretical inverse nuclear-spin relaxation
time 1/1 p (sec ) as a function of impurity concentration
c for values of x=y~ $ Hp/T equal to 0.5, 3, and 7 and
for fields Hp = 3,6 and 24.4 kOe.
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FIG. 4. Inverse nuclear-spin relaxation time 1/I'0 (sec ) vs x=y~$HO/T; the theoretical curves are for c=0.1, 0.05,
0.02, 0.01, 0.003, and 0.0013 at magnetic fields HO=3. 6 kOe. The experimental data are taken on samples with the

same concentration of Gd at fields of 3.6 (4), 6.3 (0), 8.1 (&&), 14.4 (), and 24. 4 kOe (0).

ly, we have not tried to improve the fit of n, (1/Fo)
by adjusting z.

We have, however, adjusted the magnitude of
1/1'0 by picking en to give the best agreement of
theory and experiment. If co~ is evaluated using
parameters appropriate to La&,Gd, A1~, it turns
out to be about a factor of 2 larger than the value
we employed. This does not necessarily indicate
an inadequacy in our treatment of the nuclear
spin-impurity interaction; we could have obtained
the same magnitude of 1/Fo by using &oD appro-
priate to La, ,Gd, Ala and by taking z a factor of 2

larger, corresponding to 8=0.12 eV. We may
conclude, then, that it is possible to obtain quite
good agreement of theory and experiment without

using any unreasonable values of the various pa-
rameters that enter the theoretical expressions.

Finally, we have also examined the effect of
approximating the RKKY interaction by simpler
expressions. In particular, the factor cos2k„r
—(sin2krr)/2krr has been replaced by (a) cos2krr
and by (b) 1. Case (a) produces almost no change
in any of the results. The reason is that in Eqs.
(11) and (12), the behavior of J'~(r) at large r
(2k'» 1) is responsible for cutting off the inte-
gration over d'r, so the (sin2krr)/2krr correction
is not important. For the same reason, our use

of the continuum approximation in place of the sum
over lattice sites has no effect on the results.

Approximation (b), on the other hand, in which
cos2k~r is replaced by 1, does introduce some
quantitative changes. The function Z~(r) is in ef-
fect made stronger by this substitution so that the
correlation functions G'~ '(t) decay more rapidly,
leading to a decrease in 1/Fo by some 35-40%.
Qualitatively, however, there is no change in the
various time, concentration, field; and temperature
dependence of the various quantitites. This sug-
gests that the oscillations in the RKKY interaction
serve only to reduce its effective strength and that
the actual period of the oscillations is unimportant
so long as it is short compared to distances over
which r varies in Eqs. (11) and (12) before the in-
tegrand goes to zero. We have tested this idea by
changing the period of the oscillations by an appre-
ciable (-20%) amount. As expected, the effect is
quite negligible.

IU. SOLID MIXTURES OF ORTHOH&DROGEN
AND PARAHYDROGEN

We have also computed the spin-lattice relaxa-
tion time of o-H& and p-H~ mixtures as a function
of o-H~ concentration c. To this end, we assume
the o-Hz molecules interact via a potential J(r)
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= J(a/r)' where J and a are constants and r is the
intermolecular distance. The relaxation time is

FIG. 5. Solid curve gives the impurity dependence
of the inverse spin-lattice relaxation time 1/I'0 = 2f,"C(t)
dt in arbitrary units. The dashed line with slope —f is
asymptotic to the theoretical curve for 1/I'0 at low im-
purity concentrations. Experimental data are also shown
for solid mixtures of o-H2 in p-H2 as a function of o-H2
concentration c.

given by I/I'o-f, with I= 2jo G(t) dt, G being the
impurity-averaged spin-correlation function of the
o-Hs. In Fig. 5, the logarithm of 1/1, is plotted
against the logarithm of c. %e find that the slope
of this line approaches the value of -+3 for c very
small and decreases monotonically as c increases,
in general agreement with the data which are taken
from Fig. 4 of Ref. 12. The magnitude of the the-
oretical inverse lifetime has been adjusted to give
the best agreement of theory and experiment at
intermediate concentrations c - 0.1.

This calculation has been included here only to
demonstrate the general applicability of our ap-
proach; it is quite incomplete in that replacement
of the electric quadrupole-quadrupole interaction
by 1/r' is a poor approximation. Also, when c is
very small, the crystal field plays an important
role. A detailed discussion of this problem will
be given elsewhere.
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