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Using renormn»~~tion techniques on the Englert linkedwluster expansion we have derived

high-temperature series for the spin-spin correlation function of the three4imensional, plane-rotator, and

spin-infinity XY models with nearest-neighbor interactions. Analysis of our zero-field series, which are
two terms longer than earlier series for these models, gives results in basic agreetnent with earlier work.

our finite-field series, to eighth order in the interaction and second order in the field, allow a
deterinination of the gap index b„we aaert 2h = 3.33 + 0.02. The indices are compared with scaling

predictions and experimental results. Accessible critical amplitudes are determined. These are used to
test predictions of two-scale-factor universality; good agroement is observed.

I. INTRODUCTION

The determination of the critical behavior of
model systems via series expansions has proven
useful in predicting experimental results and in

testing scaling theory and the universality hypothe-
sis. ' In this paper, we present series results
for several nearest-neighbor planar models, spe-
cifically the spin-infinity XF and the plane-rotator
models for the fcc, bcc, and sc lattices. These
models consist of spins 8; at all sites r of the lat-
tice interacting with their nearest neighbors and

an external field H through a Hamiltonian of the
form

—PX=K Z (S~rS;, +SpS$, )/s +hZ Sg/s,
&r, P'& r (1 1)

where K=- PJ, J being the interaction strength,
h
-=Pgp,~H, s is the spin quantum number, and the

second sum is over all lattice sites and the first is
over all nearest-neighbor pairs. For the spin-
infinity XF model 0&/s is a three-dimensional
classical rotor of unit length, while, for the plane-
rotator model, Sg/s is again a classical rotor of
unit length but now it is constrained to two dimen-
sions, having no z component.

Via computer codes, which have also generated
high-temperature series for the Ising and Heisen-
berg models, ' which agree with presently extant
series, we have generated high-temperature series
for the correlation function

(S*S-',) ( Q

(1 2)

All coefficients Q(r, i, 0) have been determined for
i &10 for the fcc lattice and for i (11 for the bcc
and sc lattices; all coefficients Q(r, i,, 1) have been
determined for i~8. 6 From these series, Eq.
(1.2), we are able to construct the series for the
various correlation-function moments

where distances I rI are measured in units of the
nearest-neighbor distance. These moments are
expected to have a leading singularity of the form

P e )' IIII 2 Illa' e ] If/If

The analysis of these series and of the energy-
density series determined from the nearest-neigh-
bor correlation function

z= zr, r(iT, , i)= zv. ,( e. ,
JA

X.&,(1 —a)
(1 5)

where A is the specific-heat amplitude, allows the
determination of the critical indices y, v, g, M, ,
and n and of the critical amplitudes U„A, and the
U„.' We present the series for the energy den-
sity and several correlation-function moments in

Table I. We discuss analysis determining values
of T„y, v, and g from our zero-field series which
are two terms longer than previous series. '

These values presented in Table II are in good
agreement with results from shorter series. We
present and discuss analysis for determining values
of n and 24. This is the first reporting of a value
of 2& for these classical systems.

lt is consistent with the universality hypothesis
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TABLE I. High-temperature series.

Energy-density series XY models

bcc sc

A, o

A, o

—0.666 666 666 6667K
—0.888 SSS 888 888SE
—1.934 814 814 8148K
—4.306 172 839 5062K

—10.120 997 732 426K
—24. 999 907 505 389K
—64. 068 393 665 724E7

—169.135013 639 6M
-457.375893 262 VOE

—1261.449 180 583 SE

fcc
—l.5E
—3.OE
—8.0625K

—24. 375K
—79.0625E

—272. 781 25E
—988.699 707 031 23K'7

—3716.652 03.8 2290K
—14 361.191927 081E
—56 709.592 106 838K

fcc

0.333 333 333 3333
l.333 333 333 3333E
4. 977 777 777 7778K

18.062 222 222 222K
64.430 052 910053K

227. 242 752 666 50K
795.125 171187 8IE

2765. 786 2111960K
9576.891 123 8627K

33041.37185S 582K
113660.843 571 96K

—0.066 666 666 6667
—1.066 666 666 6667K

—10.184 126 984 127K2
—75.757 037 037 037K

—484. 655 230 032 75K
—2800. 269 684 72 33K

—15029.546 014 957E
—76276. 570 633 887K

—370458.303 869 20K

1.333 333 333 3333K
10.666 666 666 6667K
61.202 962 962 963K

304. 355 555 555 56K
1395.062 077 76S4K
6063.V04 336 1608K

25385.751 429 221K
103345.820 691 37K
411692.989 813 38E

1611852.655 816 5K

—0.444 444 444 4444E
—0.717 037 037 0370K
—1.578 921 082 8364K
-4.213 025 605 2306K'7

—12.70 683 784 7755K
—41.553 506 328 525K

Plane-rotator models

bcc

-1.OK
—2. 875K

—ll. 645 833 333 333K
—61.082 356 770 832K7

—371.660774 739 42E
—2471.742 950 0630K

XY models

bcc

0.333 333 333 3333
0.888 888 888 8889K
2. 133333 333 3333K
5. 088 395 061 7284K

ll. 768 324 514 991Ã
27. 128 432 014 781E
61.687 063 184 121K

139.984 552 140 82E
315.270 393 008 89K
709.030 767 134 67E

15S7.022 622 3068Kio
3548.437 787 0962K'~

—0. 066 666 666 6667
—0.711111111llllE
—4.419 047 619 0476K2

—21.455 238 095 238K
—89.439 599 563 282K

—336.846 206 097 25E
—1177.946 071 4897K
—3895.262 271 3870K7

—12324. 618 179 271K

0.SSS88S 888 8889K
4. 740 740 740 7407K

17.730 370 370 370K
57.647 407 407 407K

172.314495 11492E
488. 602 790 142 12K

1333.374 769 8042E
3538.521 728 5087K
9185.745 625 9118K

23435 452 243 359K&o

58937.272 744 813K

—0.333 333 333 3333K
—0. 211851 851 8519E
—0.228 564 70S 834M
—0.303 471 1756856E'
—0.455 222 648 9979K
-0.V4781V 0561V61 "

sc

-0.75K
-0.656 25E
—1.515 625K
—3.737 548 828 1249KY

—11.223 60S 398 326K'
—37.093 871 938 728K

sc

0.333 333 333 3333
0.666 666 666 6666K
l.155 555 555 5556K'
1.979 259 259 2593K
3.282 962 962 9630K
5.419763 164 5251K
8.819 246 941 5750K

14.309 753 090 152E
23.037 912 169482E
37.017 678 860 159K
59.194 607 980 728K
94.524 494 584 240K

—0.066 666 666 6666
—0. 533 333 333 3333K
—2.425 396 825 3968K'
—8.533 333 333 3333K

—25.668 426 303 855K
—69.587 430 587 049K

—174.894 80 941 539K
—415.182892 01106K
—942. 234 454 545 75E

0.666 666 666 6666K
2. 666 666 666 6666E2
7.312 592 592 5926K

17.256 296 296 296K
37.277 540 942 303K
76.168 646 566 445K

149.516 630 747 5M
285. 016 619163 95K
530.944 10917244E
971.273 672 93946+1o

1750.365 7844 886K
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TABLE T. (Continued)

Plane-rotator models

520V

A,o

A, o

fcc

0.5
3.OK

16.GZ

87.375K
453.OZ'

2317.093 75E
11742. 679 6875Z
59 110.856 445312KV

296 031.61165364K
1476 556.3897949K
7340 722. 3167912K

-0.1875
-4.GK

—63.843 VGK2

—700.875E
—6585.832 03125K

—55 703.343 75K
—436 585.100830 07Z

—3229 669.823 2421K~
—22 831 488. 242 724K

3.OK

36.OK

306.375K
2243. 25Z

15068.968 75K
95 688.156 25K

583 946.856 445 31K
3459 600.292 3177Z

20 031441.019026Z
113878 974.706 68K~o

bcc

0.5
2. OK

7.QK

24. 25Z
81.OIC

269. 229 166 66666K
881.588 541 66666E

2878. 516 276 0416K
9323.895 182 2916K

30 142.589 941405K
96 965.248 920 352K

311485.772 423 55K

—0.1875
—3.OK

—27. 5625Z
-196.5E

—1196.679 6875K
-6561.3125Z

—33 319.651 855 469K
—159703.636 718 VGK~

-731363.484 895 82E
—3228 774. 96 430 65Z

2. OK

16.OK

88. 25Z
420. OE

1829.229 166 6667K
7532. 979 166 666VZ

29792. 016 276 042K
114389.177 083 33K
429 115.892 024 73E

1580 539.358 8758K
5734 156.830 1925K~~

sc

0.5
1.5K
3.75K
9.1875K

21.VGK

51.171875K
118.527 343 VGE

273.473 144 531 25K7

626. 002 441 406 24E
1429.408 764 6482K
3248. 075 703 9377K
7367.687 320 6967K

-0.1875
—2.25Z

—15.046 875K~
-77.0625K

—335.326 171875Z
—1309.851 5625K
—4730.152954 1015K

—16100.564 941 406KT
—52 310.525 903 319K

1.5K
9.OK

36.1875Z
123.VGZ

385.296 875K
1130.671 875Z
3180.332 51,9 5312K
8671.888 671 8750K

23 Q79. 21Q 522 461K
60 257.659 651 689K'

154 873.212 516 OOZ

TABLE II. Values of the indices for several planar systems.

System

spin-~ XF
spin-~ XF and plane
rotator

spin-1/2 XT

Supe rflui
transition

Renormaliz ation
group Q= 2

Lieb model

Ref.

this
work

10

13

14

15

16

12

1.312+ 0.006

1.32+ Q. 01

1.318+0.010

1.35 + 0.02

1.30

1.31+0.03

0.670+0.007

0.670+ 0.006

0.674+0. 001

0.04+0. 01

0.039

0.0+0.1

-0.02+0. 03

—0.01+0.01

-0.06~0, ~0.0

0.00+ 0.05

3.33+0.02

3.3~0.1
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TABLE III. Values of K~ and several indices for the planar models considered here.

XY model

fcc
bcc
sc

Plane-rotator model

3.3417+ 0.0007
2. 175+ 0.003
1,552+ 0.003

1.318+ 0.010
1.32+ 0. 03
1.32~0.04

sv= 2v

0.669+0.005 0.025+ 0. 005
0, 668 + 0.010 0.027 + 0.008
0.668 + 0.010 0. 025 + 0. 012

fcc
bcc
sc

4.820 + 0.003
3.121+0.005
2. 203 + 0.006

1.323 + 0.015
1.32+0.03
1.32+ 0. 05

0.670+0. 007
0.673 + 0. 010
0.675 + 0. 015

0.028+ 0. 005
0, 027+ 0. 010
0.03 + 0.02

to expect that all planar systems, those with a
two-dimensional order parameter, mill have the
same critical properties. This includes the planar
models discussed here and elsewhere and the
superfluid transition in liquid helium. Comparing
our results with those from other planar systems,
we find negligible differences consistent with uni-
versality '8'x~~s We also find good agreement
with the predictions of scaling theory for the in-
dices.

Va1ues for the common correlation-function
amplitudes, consistent with our values for the
indices and the critical temperature, are presented
and discussed within the framework of two-scale-
factor universality. ' ' These investigations are
especially interesting since most previous tests
involved lattice dependence only.

II. CRITICAL INDICES

B. Determination of n

Using the energy-density series in Table I, we
formed specific-heat series

9EC=—= ~ a„K"=At"I+a.
fl n2

(2. 1)

From these and the values of K,', we formed the
standard ratio sequence for the index, in this case

22

both our uncertainty in reading the Neville table
and the uncertainty in K,'. We also formed ratio
series which allowed a K,-independent determina-
tion of v and qv: The values indicated by this anal-
ysis are consistent with the values from the K,-
dependent analysis. The values of each of the
indices y, v, and pv for all these planar systems
are identical to within the uncertainties suggesting
the universal values presented in Table II.

A. Determination of K,', y, v, and qv
l „=nK, a„/a„, n+ 1 .— (2. 2)

Using straight ratio and log-derivative ratio
methods, we determined sequences for T, from the
moment series p.„o, -1~n~2. We then used a
Neville table to extrapolate these sequences. We
feel the index-independent tests, especially the
log-derivative tests, are the most reliable in find-
ing the value of K,~, in that they do not contain the
obvious built-in bias of the index-dependent
tests. "4 Our analysis indicates the values shown
in Table III. These values are identical, to well
within the quoted uncertainty, with the results of
index-dependent tests using previously determined
values of y and v.

The values we find for y, v, and gv =-2v -y,
shown in Table III, are consistent with earlier re-
sults7', but because our series are longer, we
feel our results are more reliable. Straight ratio
and log-derivative ratio methods enabled us to
form sequences for y, v, and qv from moment
series and various products of moment series using
the above values for K,'. Neville table extrapola-
tions of these sequences indicate the values pre-
sented in Table DI; the quoted uncertainties reflect

Knowing only the first few terms in this sequence,
we attempted the extrapolate to its limit using the
Neville table, the two-dimensional array '

(2. 2)

In this array, the l„' are the linear extrapolants of
l„, the l„ the quadratic extrapolants, and so forth.
The Neville table for the series (2. 1) is presented
in Table IV. Although these extrapolations are not
particularly smooth or well behaved, they are bet-
ter behaved than specific-heat extrapolations for
other models. " Also presented in Table IV are
those values for n which feel are indicated by
these extrapolations. The uncertainties quoted
reflect our estimated uncertainty in reading these
tables; the effect of the uncertainty in K, is neg-
ligible due to the irregularity of these tables.
Other methods of analysis give consistent results.
It should be noted that these tables favor a slightly
negative value for a and that the values of the index
for all these planar systems are identical to within
the uncertainties suggesting the universal value
n = —0.02+0. 03.
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TABLE IV. Neville table extrapolations of specific-heat series for the indexe.

5209

XY' model

fcc, e = —0.02+ 0.03
0 1

Plane-rotator model

fcc, e= —0.02+0. 04
1 2

5
6
7
8
9

10
11

0.6641
0.5167
0.4351
0.3683
0.3200
0.2831
0.2534

-0.0727
0.0269

-0.0322
—0.0185
—0.0116
—0.0142

0.2262
—0.1800

0.0227
0.0124

—0.0248

0.5089
0.3647
0.2949
0.2638
0. 2392
0.2150
0.1925

—0.2121
—0.0545

0.0776
0.0670
0.0209

—0.0092

0. 2607
0.4079
0.0353

—0.1407
—0.1294

bcc, e = —0.02 + 0.04
0 1

bcc, e = —0.04+0. 07
1 2

6
8

10
12

0.5511
0.3683
0.2779
0.2232

-0.1803
—0.0836
-0.0505

0.0615
0.0157

0.3862
0.2616
0.2125
0.1724

—0.1124
0.0165

—0.0281
0.2097

-0.1172

sc, e=0.0+0.3
0 1

sc, e=0.0+0.2
1

6
8

10
12

0.4924
Q. 3141
0.2014
0.1660

—0.2207
—0.2495
—0.0109

—0. 2927
0.4663

0.5870
0.1351
0.1836
0.1635

-1.2206
0.3777
0.0630

2.7752
—0.5665

TABLZ V. Neville table extrapolations of ~~/~o for the index 2b.

XY' model

fcc, Eh=3. 33+0.01
0 1 2

Plane-rotator model

fcc, M=3.34+0.02
1 2

3
4

6
7
8

3.433
3.408
3.391
3.380
3.372
3.366

3.305
3.308
3.312
3.315
3.317

3.314
3.320
3.324
3.325

3.328
3.331
3.327

3.529
3.488
3.461
3.442
3.429
3.419

3.324
3.326
3.330
3.334
3.337

3.329
3.340
3.347
3.346

3.353
3.360
3.344

bcc, Rb, = 3.33+ 0.03
0 2

bcc, Eh=3. 34+0.04
1 2

3.678
3.457
3.403
3.380

3.431
3.396
3.376
3.365

3.237
3.295
3.310

3.343
3.327
3.327

3.324
3.325

3.314
3.328

3.845
3.558
3.473
3.435
3.415
3.539
3.473
3.436
3.415

3.271
3.302
3.323
3.332

3.317
3.344
3.3/7

3.373
3.343 3.320
3.344 3.347

nlrb

sc, M=3. 33+0.03
0 1

sc, 24 = 3.33+ 0.04
0 1 2

3.865
3.492
3.431
3.403

3.491
3.424
3.401
3.386

3.119
3.310
3.318

3.325
3.342
3.335

3.406
3.326

3.356
3.326

4. 086
3.593
3.504
3.460

3.616
3.504
3.463
3.438

3.101
3.326
3.326

3.335
3.363
3.350

3.438
3.325

3.383
3.335
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C. Determination of 2h

Using the series
oo

UPn, o P C If& n. o ~-oo
rrPno yo ~n, o

(2 4)

tional values are not excluded by the data, but the
series analysis prefers the somewhat different
values shown in Table II. Even recent experimen-
tal results for the superfluid transition in liquid
helium opt for a higher value of v and a slightly
negative value of n. '

D. Scaling, Universality, and the Superfluid Transition

How do the values we have determined for the
indices agree with scaling predictions, and what

predictions does scaling enable us to make about
undetermined indices' According to scaling the

following quantities should be zero; using our
values of the indices, as presented in Table II, we
find

2 —n —3v = 0. 01 + 0. 05,

3v+ y —2~ = 0. Ol + 0. 05,
(2. 3)

so that scaling predictions are obeyed to within
sizable uncertainties, which are large enough to
mask violations greater than the apparent viola-
tions observed for the Ising model. ~ ~ Because
the indices obey scaling to well within the uncer-
tainties in the indices, we can use scaling rela-
tions to predict values for undetermined indices
such as P and 5:

P=& -y=0. 34? +0.020, =4. 8~0.3;
y

(2 6)

we employed standard ratio methods to determine
the index 2~. Presented in Table V are the Neville
table extrapolations, Eq. (2.3), of sequence (2. 2)
using the series po o/po o as well as the values for
2A which we feel are indicated by the analysis.
The uncertainties quoted here reflect not only our
uncertainty in reading these extrapolations but also
the effect of the uncertainty in K, on these extrap-
olations. Other analyses, the results of which are
consistent with those presented here, include log-
derivative tests and K,-independent ratio-series
tests. Consistently with our analysis, we suggest
the universal value 24 = 3.33+0.02 for all these
planar systems.

III. UNIVERSALITY OF THE CRITICAL AMPLITUDES

In investigations of critical phenomena, most
attention has been paid to the indices. In part, this
is due to the relatively clear universality of the
indices. In the past few years, it has become in-
creasingly evident that the amplitudes should also
be universal, in a somewhat restricted sense. ' ~

The most explicit formulation of the universality
of the critical amplitudes is two-scale-factor uni-
versality. ' It asserts that, near the critical
point of any system, the free energy per site
E(t, h) and the correlation function can be written
in scaling form as follows:

F(e, h) =(ge)'"f(nh/(ge) )/n,
(3.1)

D((gz)"r/I, nh/(ge) o)
1 ( /t)o-2+TJ

where p'lo/n is universal. ' In these expressions
the indices as well as the functions f and D are uni-
versal, i.e. , the same for all systems with the
same symmetry, while n, l, and g are system-
dependent (nonuniversal) scale factors, and p' is
the particle density (in the case of lattice systems
the site density). Equations (3. 1) make an explicit
separation between the universal and nonuniversal
parts of these functions; they also allow us to make
explicit predictions regarding the critical ampli-
tudes. Specifically, within a given symmetry
class-in our case the set of all planar systems-
they allow us to write the amplitudes for any mem-
ber of the class in terms of the amplitudes of some
reference system in the class, the scale factors
for the member in question, and p' and p„', the
particle density for the member and the reference
system, respectively. Several examples follow':
for the susceptibility

P= —,(3v —y) =0. 346+0.014, 5 = =4. 8+0.3,
3v —y

Wo, o
= Uo, o&

"
(3.2a)

having confidence that the true values will agree
with these to within the uncertainties.

It is the contention of the universality hypothesis
that all systems with the same symmetry, in this
case all planar systems, should have the same set
of indices. The values presented in Tables II-V
support this contention to within the uncertainties
with which the indices have been determined.

The attractive fractional values y = 3, v= 3,
a = 0, and q =0 have been suggested as the universal
values for these planar systems. '7 These frac-

p. o o =sg (Ug o)p i

for the correlation length

$ = K —I/Icof",

~o = (~o)„g"/l;

for the specific heat

C =A& +a,
A = (g)o"(A)„ /n;

(3.2b)

(3.2c)

for the d = 3, h =0 correlation function in the Orn-
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stein-Zernike limit I'(r, t, 0) = 6 s "e "'/r,

I I1+1)(g) (3.2d)

for the d=3, a=0, h=0 correlation function I'(r, 0,
0) D /„u-a+a

(3.2e)

Our values for the amplitude D, were determined
using the "lattice Green's-function" result of Ref.
28, D, =I'(|},0, 0)(1 —e'), where 0 is the nearest-
neighbor displacement and a ' is 0. 020, 0. 065, and
0. 075 for the fcc, bcc, and sc lattices, respective-
ly. Values for I'(0, 0, 0) and the other amplitudes
for our planar systems were determined using
standard ratio analysis for the critical amplitudes
as discussed at length in Ref. 18. The results of
this analysis is shown in Table VI. The uncertain-
ties quoted here reflect only our uncertainty in

reading the appropriate Neville table extrapolations
and do not reflect our uncertainty in the indices
and in K,. We quote these uncertainties because
we believe it is most important to know the ampli-
tudes associated with a given set of indices and a

given K,. However, it is also important to have
some idea how the amplitudes vary with values of
K and the index within the range of our uncertain-
ty. We find, for these series, that an increase of
0. 01 in the index effects a decrease of roughly 3%

in the amplitude and that an increase of 0. 1% in

K,' effects a decrease of roughly 2%0 in the ampli-
tude. These estimates are only approximate be-
cause of the unsatisfactory behavior of the Neville
table extrapolations for these extreme values of
the parameters.

Using the amplitudes shown in Table VI, we test
predictions of two-scale-factor universality, Eqs.
(3.1) and (3.2). First, we evaluate 100np'A/v, ',
which is postulated to be universal. ' The
values, presented in Table VII, are universal to
within our uncertainty in the amplitudes. Second,
we have used Egs. (3. 2) to make three independent
determinations of the scale factors l and g. As
shown in Table VII, these independent determina-
tions give the same value for each scale factor to
within the inherent uncertainty. This is the first
determination of the scale factor relating systems
which differ in more than their lattice structure.
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