Magnetic Symmetry of Rare-Earth Orthochromites and Orthoferrites

Tsuyoshi Yamaguchi*
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan

Kunirô Tsushima

Broadcasting Science Research Laboratories of Nippon Hôsô Kyôkai, Kinuta, Setagaya-ku, Tokyo 157, Japan
(Received 16 September 1972; revised manuscript received 11 June 1973)

Abstract

A new magnetic symmetry of the rare-earth orthochromites and orthoferrites (RMO_{3}) below the second Néel temperature due to the reordering of the rare-earth spins is proposed. It is shown that the magnetic symmetry group is lowered to the subgroup of index two, thereby keeping the unit cell invariant. The proposed symmetry is shown to be consistent with the previously observed spin configuration of $R M O_{3}$ such as $\mathrm{GdCrO}_{3}, \mathrm{DyFeO}_{3}$, and DyCrO_{3}, and would also be consistent with those of other $R M \mathrm{O}_{3}$. Although symmetry arguments and the calculation of the free energy show that two spin configurations are stable, in GdCrO_{3}, a future measurement of the magnetoelectric tensor would determine which configuration GdCrO_{3} has. It is further predicted that the magnetoelectric effect should be observed in any $R M O_{3}$ below the second Néel temperature.

I. INTRODUCTION

One of the fundamental problems in the rareearth orthochromites and orthoferrites (RMO_{3}, R is a rare earth and M is Cr or Fe) is concerned with the magnetic symmetry below the second Néel temperature $T_{N 2}$ due to the reordering of R^{3+} spins, where according to existing theory ${ }^{1}$ the magnetic symmetries of the observed M^{3+} and R^{3+} spin configurations are not compatible with each other.
$R M O_{3}$ are weak ferromagnets resulting from a small canting of the antiferromagnetic M^{3+} spins. ${ }^{1,2}$ Just below the first Néel temperature $T_{N 1}$ (where the M^{3+} spins order), the M^{3+} sublattice moments and the net moment are observed to lie either along the a axis and the c axis, respectively, in most of $R M \mathrm{O}_{3}$, or along the c axis and the a axis in some $R \mathrm{CrO}_{3}(R=\mathrm{Nd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Yb}) .{ }^{2}$ The net moment of the R^{3+} spins is polarized parallel or antiparallel to the net M^{3+} moment by the $M^{3+}-R^{3+}$ magnetic interactions. Although the R^{3+} spins of this state are sometimes said to be polarized quasiparamagnetically, they should be considered to have a magnetic ordering given in Table I. As the temperature is lowered, the R^{3+} moment increases and the spin reorientation occurs at T_{2} and T_{1} (or at T_{r}) in most of $R M O_{3} .^{2}$ Finally, below $T_{N 2}=1-4 \mathrm{~K}$, a different configuration of R^{3+} spins is caused by the $R^{3+}-R^{3+}$ interaction.

The R^{3+} spin configuration below $T_{N 2}$ can not be explained by the existing theory, ${ }^{1}$ which assumes that the magnetic symmetry group is the same for both above and below $T_{N 2}$. Bertaut et al. ${ }^{3-5}$ have investigated the R^{3+} spin configurations in some $R M \mathrm{O}_{3}$ under the assumption that the magnetic unit cell is different from the paramagnetic one. For instance, the spin configuration of Tb^{3+} spin in $\mathrm{TbCrO}_{3}{ }^{4}$ is assumed to belong to a two-dimension-
al irreducible representation associated with the wave vector $\overrightarrow{\mathrm{k}}=\left(0, \frac{1}{2}, 0\right)$, that is, the magnetic unit cell is twice the paramagnetic one in the direction of the b axis. Following the procedure of Bertaut et al., we have to assume that the magnetic unit cell is different from material to material. ${ }^{5}$

Experiments on some $R M O_{3}$ near $T_{N 2}$ have shown that the transition at $T_{N 2}$ is of second order. ${ }^{6,7}$ Here, it should be noted that a phase transition is of second order if the symmetry of a crystal changes in such a way that the number of symmetry operations after the transition is reduced to half that before transition. ${ }^{8}$ Lowering symmetry can be realized either by (i) a doubling of the unit cell for a given crystal class, or by (ii) a halving of the number of rotations and reflections for a given unit cell. Bertaut et al. have investigated just the first case to explain the magnetic symmetry below $T_{N 2}$. ${ }^{3-5}$ In this paper, we shall show that case (ii) is more plausible than case (i) to describe the magnetic symmetry below $T_{N 2}$ in $R M O_{3}{ }^{9}$

II. MAGNETIC SYMMETRY

A. Spin Structure

Table I gives all the spin configurations of $R M \mathrm{O}_{3}$ derived with the assumption that the magnetic and the paramagnetic unit cells are the same. ${ }^{1}$ In $R M O_{3}$ containing magnetic R^{3+} ions, the observed spin configuration just above $T_{N 2}$ belongs either to $\Gamma_{2}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}\right)$ or to $\Gamma_{1}\left(A_{x}, G_{y}, C_{z}: C_{z}^{R}\right)$ (Ref. 2) and is compatible with this table. Below $T_{N 2}$, owing to the $R^{3+}-R^{3+}$ magnetic interaction, a new R^{3+} spin configuration appears, as will be shown below.

Now, we point out some experimental results requiring a new explanation of the magnetic symmetry below $T_{N 2}$. (a) In GdCrO_{3}, where the single-ion

TABLE I. Compatible spin configurations in $R M O_{3}$ for $T \geq T_{N 2}$. (After Bertaut; see Ref. 1).

	M^{3+}	R^{3+}
Γ_{1}	A_{x}, G_{y}, C_{z}	
Γ_{2}	F_{x}, C_{y}, G_{z}	C_{z}^{R}, C_{y}^{R}
Γ_{3}	C_{x}, F_{y}, A_{z}	C_{x}^{R}, F_{y}^{R}
Γ_{4}	G_{x}, A_{y}, F_{z}	F_{z}^{R}
Γ_{5}		G_{x}^{R}, A_{y}^{R}
Γ_{6}		A_{z}^{R}
Γ_{7}		A_{x}^{R}, G_{y}^{R}
Γ_{8}^{R}		

anisotropy of the Gd^{3+} ion can be neglected, the magnetically observed results ${ }^{7}$ show that the Gd^{3+} spin configuration below $T_{N 2}=2.42 \mathrm{~K}$ is antiferromagnetic along the c axis and ferromagnetic along the a axis, and that the Cr^{3+} spin configuration is (F_{x}, G_{z}) which belongs to the Γ_{2} configuration. However, we see from Table I that although the ferromagnetic Gd^{3+} spin configuration F_{x}^{R} is compatible with the Cr^{3+} configuration (F_{x}, G_{z}) mentioned above, the antiferromagnetic configuration of the Gd^{3+} spins along the c axis is forbidden. (b) In DyFeO_{3}, where the Dy^{3+} anisotropy is large, the Ising-like spin of Dy^{3+} ion will be confined to the direction of the anisotropy axis. The Dy^{3+} spin in DyAlO_{3} (nonmagnetic M^{3+} ion) has been analyzed to be confined in the $a-b$ plane, the angle between the Dy^{3+} spin and the b axis being $33^{\circ} .^{10,11}$ The Dy^{3+} spin configuration below $T_{N 2}$ is $\Gamma_{5}\left(G_{x}^{R}, A_{y}^{R}\right)$. How-

TABLE II. Symmetry operations for various spin configurations. The screw axis $\stackrel{\rightharpoonup}{C}_{2 \alpha}(\alpha=x, y, z)$ is parallel to the α axis indicated in Fig. 1 of Ref. 2. The center of inversion i is at each M^{3+} site, and R is the time-reversal operation. (+) means that the spin configuration is invariant to the corresponding operations.

	Γ_{1}	Γ_{2}	Γ_{3}	Γ_{4}	Γ_{5}	Γ_{6}	Γ_{7}	Γ_{8}
M^{3+}	$A_{x} G_{y} C_{z}$	$F_{x} C_{y} G_{z}$	$C_{x} F_{y} A_{z}$	$G_{x} A_{y} F_{z}$				
R^{3+}	C_{z}^{R}	$F_{x}^{R} C_{y}^{R}$	$C_{x}^{R} F_{y}^{R}$	F_{z}^{R}	$G_{x}^{R} A_{y}^{R}$	A_{z}^{R}	G_{z}^{R}	$A_{x}^{R} G_{y}^{R}$
field		H_{x}	H_{y}	H_{z}		E_{x}	E_{y}	E_{4}
E	+	+	+	+	+	+	+	+
$\widetilde{C}_{2 x}$	+	+			+	+		
$\stackrel{\sim}{2}_{2 y}$	+		+		+		+	
\widetilde{C}_{28}	+			+	+			+
i	+	$+$	+	+				
$i \bar{C}_{2 x}$	+	+					+	+
$i \widetilde{C}_{2 y}$	+		+			+		+
$i \mathrm{C}_{2 k}$	+			+		+	+	
R								
$R \vec{C}_{2 x}$			+	+			+	+
$R \tilde{C}_{2 y}$		+		+		+		+
$R \mathrm{C}_{2 x}$		+	+			+	+	
$i R$					$+$	+	$+$	+
$i^{R} \mathcal{C}_{2 x}$			+	+	+	+		
$i R \mathrm{C}_{2 y}$		$+$		+	$+$		+	
$i R \mathrm{C}_{2 \varepsilon}$		+	$+$		$+$			$+$

ever, the configuration of Fe^{3+} spins is $\Gamma_{1}\left(A_{x}, G_{y}\right.$, C_{z}), which is incompatible with that of Dy^{3+} spins. (c) The Cr^{3+} and Dy^{3+} sublattice spins of DyCrO_{3} favor the $\Gamma_{2}\left(F_{x}, C_{y}, G_{z}\right)$ and $\Gamma_{5}\left(G_{x}^{R}, A_{y}^{R}\right)$ configurations, respectively. ${ }^{7,10,11}$ These two configurations are not compatible with each other. Furthermore, the observed spontaneous magnetization along the a axis 7 is too large for the weak ferromagnetic moment F_{x} of Cr^{3+} ions, and is too small for the Dy ${ }^{3+}$ ferromagnetic moment F_{x}^{R} of the $\Gamma_{2}\left(F_{x}^{R}, C_{y}^{R}\right)$ configuration which is compatible with the Cr^{3+} configuration. Note that this $\Gamma_{2}\left(F_{x}^{R}, C_{y}^{R}\right)$ configuration is the spin-flopped configuration of $\Gamma_{5}\left(G_{x}^{R}, A_{y}^{R}\right)$.

In order to explain the magnetic symmetry of $R M \mathrm{O}_{3}$ below $T_{N 2}$, we assume that at $T_{N 2}$ Landau's second-order phase transition takes place and the magnetic symmetry group is lowered to the indextwo subgroup, the magnetic and the paramagnetic unit cells remaining the same. Now the symmetry operations for $R M O_{3}$ crystals above $T_{N 2}$ are given in Table II, where the transformation properties of the magnetic and electric fields are also given for later use. The order of magnetic groups Γ_{1} through Γ_{8} is eight for all. At $T_{N 2}$ Landau's second-order phase transition occurs and the number of symmetry operations is reduced to half that above $T_{N 2}$. Thus, the order of the magnetic group below $T_{N 2}$ should be four. Table III gives the spin configurations and the magnetic symmetries compatible with our assumption.
(a) For instance, the two symmetry groups D_{2} $\left(C_{2}\right) \underline{2} 22$ of the $\Gamma_{26}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}, A_{z}^{R}\right)$ configuration and $C_{2 v}\left(C_{s}\right) 2 m^{\prime} m$ of the $\Gamma_{27}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}\right.$, G_{z}^{R}) configuration are both the index-two subgroup of the group $D_{2 n}\left(C_{2 n}\right) m^{\prime} m^{\prime} m$ of the Γ_{2} configuration. The Γ_{26} and Γ_{27} configurations are invariant to operations ($E, \tilde{C}_{2 x}, R \tilde{C}_{2 y}, R \tilde{C}_{2 z}$) and $E, i \tilde{C}_{2 x}, i R \tilde{C}_{2 y}$, $R \tilde{C}_{2 z}$), respectively. If we apply these to GdCrO_{3}, Table II shows that the Gd^{3+} antiferromagnetic configuration along the c axis is either A_{z}^{R} for the Γ_{26} or G_{z}^{R} for the Γ_{27} configuration. (b) On the other hand, the symmetry group $D_{2}\left(D_{2}\right) \underline{2} 22$ of the $\Gamma_{15}\left(A_{x}\right.$, $\left.G_{y}, C_{z}: G_{x}^{R}, A_{y}^{R}, C_{z}^{R}\right)$ configuration is the index-two

FIG. 1. Spin configuration in $R M \mathrm{O}_{3}$ below $T_{N 2}$. (a) The $\Gamma_{15}\left(A_{x}, G_{y}, C_{z}: G_{x}^{R}, A_{y}^{R}, C_{z}^{R}\right)$ configuration. (b) The $\Gamma_{27}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}, G_{z}^{R}\right)$ configuration.

TABLE III. Magnetic symmetry of various spin configurations.

	Magnetic symmetry group	Spin configuration
	$\begin{aligned} & D_{2 h}\left(D_{2 h}\right) m m m \\ & D_{2 h}\left(C_{2 h}\right) m^{\prime} m^{\prime} m \end{aligned}$	$\begin{aligned} & \Gamma_{1} \\ & \Gamma_{2}, \Gamma_{3}, \Gamma_{4} \end{aligned}$
$T \geq T_{N 2}$	$\begin{aligned} & C_{2 h}\left(C_{2 h}\right) 2 m \\ & \left.C_{2 h}\right) 2 m i \underline{2 m} m^{\prime} \end{aligned}$	$\begin{aligned} & \Gamma_{12}, \Gamma_{13}, \Gamma_{14} \\ & \Gamma_{23}, \Gamma_{24},{ }^{2} \Gamma_{34} \end{aligned}$
$T \leq T_{N}{ }^{\text {c }}$	$\begin{aligned} & D_{2 h}\left(D_{2}\right) m^{\prime} m^{\prime} m^{\prime} \\ & D_{2 h}\left(C_{2 v}\right) m m m^{\prime} \end{aligned}$	$\begin{aligned} & \Gamma_{5}^{b} \\ & \Gamma_{6}, \Gamma_{7}, \Gamma_{8} \end{aligned}$
	$\begin{aligned} & D_{2}\left(D_{2}\right) 222 \\ & D_{2}\left(C_{2}\right) \underline{2} 22 \\ & C_{2 v}\left(C_{2 v}\right) 2 m m \\ & \left.C_{2 v} V_{2}\right) 2 m^{\prime} m^{\prime} \\ & C_{2 v}\left(C_{s}\right) \underline{2} m^{\prime} m \end{aligned}$	$\begin{aligned} & \Gamma_{15}{ }^{\mathrm{c}} \\ & \Gamma_{26}, \Gamma_{37}, \Gamma_{48} \\ & \Gamma_{16}, \Gamma_{17}, \Gamma_{18} \\ & \Gamma_{25},{ }^{\mathrm{d}} \Gamma_{35}, \Gamma_{45} \\ & \Gamma_{27}, \Gamma_{28}, \Gamma_{36}, \Gamma_{38}, \Gamma_{46}, \Gamma_{47} \end{aligned}$
Not realized	$\begin{aligned} & C_{2 h}\left(C_{2}\right) 2 m^{\prime} \\ & C_{2 h}\left(C_{s}^{\prime}\right) \underline{2} m \end{aligned}$	$\begin{aligned} & \Gamma_{56}, \Gamma_{57}, \Gamma_{58} \\ & \Gamma_{67}, \Gamma_{68}, \Gamma_{78} \\ & \hline \end{aligned}$

${ }^{2}$ The spin reorientation region. See Ref. 2.
${ }^{\mathrm{b}} \mathrm{RAlO}_{3}(R=\mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy})$ See Ref. 11.
${ }^{c} \mathrm{DyFeO}_{3}$.
${ }^{\mathrm{d}} \mathrm{GdCrO}_{3}$.
${ }^{6} \mathrm{DyCrO}_{3}$.
subgroup of that $D_{2 h}\left(D_{2 h}\right) m^{\prime} m^{\prime} m$ of the Γ_{1} configuration. The Γ_{15} configuration is invariant to operations ($E, \tilde{C}_{2 x}, \tilde{C}_{2 y}, \tilde{C}_{2 z}$). This is applied to DyFeO_{3} and the (G_{x}^{R}, A_{y}^{R}) configuration of Dy^{3+} spins is compatible with the G_{y} configuration of Fe^{3+} spins. (c) Furthermore, DyCrO_{3} has the $\Gamma_{25}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}\right.$, $C_{y}^{R} ; G_{x}^{R}, A_{y}^{R}$) configuration, which means that the $\Gamma_{2}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}\right)$ configuration is mixed with the $\Gamma_{5}\left(G_{x}^{R}, A_{y}^{R}\right)$ configuration. The magnetic group of the Γ_{25} configuration is $C_{2 v}\left(C_{2}\right) 2 m^{\prime} m^{\prime}$, which is the index-two subgroup of that $D_{2 h}\left(C_{2 h}\right) m^{\prime} m^{\prime} m$ of the Γ_{2} configuration and consists of elements ($E, \tilde{C}_{2 x}$, $i R \tilde{C}_{2 y}, i R \tilde{C}_{2 g}$). More detailed discussion of DyCrO_{3} will be given in Sec. II(E). (d) Finally, any other $R M \mathrm{O}_{3}$ below $T_{N 2}$ would have one of the $\Gamma_{i j}(i=1-4$ and $j=5-8$) configurations given in Table III. The Γ_{15} and Γ_{27} spin configurations are illustrated in Figs. 1(a) and 1(b), respectively. The Γ_{26} configuration is obtained by exchanging the spins $\stackrel{S}{S}_{7}$ and \vec{S}_{8}.

B. Hamiltonian

The Hamiltonian of our system is given as

$$
\begin{equation*}
\mathfrak{H}=\mathscr{F}^{N}+\mathfrak{K}^{N-R}+\mathfrak{K}^{R}, \tag{1}
\end{equation*}
$$

where the first term represents the Hamiltonian for M^{3+} ions which is shown, from the symmetry considerations, to be the same as those given in Ref. 2. The second term represents the Hamiltonian for the interaction between M^{3+} and R^{3+} ions and the third that for R^{3+} ions. The term \mathcal{H}^{H-R} consists of the isotropic, antisymmetric and anisotropic symmetric exchange interactions:

$$
\begin{equation*}
\mathcal{H}^{M-R}=\tilde{\mathcal{H}}_{\text {iso }}+\tilde{\mathcal{H}}_{\text {ant } 1}+\tilde{\mathfrak{H}}_{\mathrm{symm}} \tag{2}
\end{equation*}
$$

The expression of this Hamiltonian is a little different from that of Ref. 2, since the inversion is no longer the symmetry operation of $R \mathrm{RO}_{3}$ below $T_{N 2}$. The term \mathscr{K}^{R} consists of four parts, the isotropic, the antisymmetric, and the anisotropicsymmetric exchange interactions between R^{3+} spins and the anisotropy energy of R^{3+} ions whose site symmetry is C_{s} :

$$
\begin{align*}
& =\sum_{k k, \lambda l} J_{k l}^{\prime}{ }^{k \lambda} \overrightarrow{\mathrm{~S}}_{k}^{k} \cdot \overrightarrow{\mathrm{~S}}_{l}^{\lambda}+\sum_{k k, \lambda l} \overrightarrow{\mathrm{D}}_{k l}^{\prime k \lambda} \cdot\left(\overrightarrow{\mathrm{~S}}_{k}^{k} \times \overrightarrow{\mathrm{S}}_{l}^{\lambda}\right) \\
& +\sum_{k k, \lambda l} \overrightarrow{\mathrm{~S}}_{k}^{\kappa} \cdot \overrightarrow{\mathrm{a}}_{k l}^{k \lambda} \cdot \overrightarrow{\mathrm{~S}}_{l}^{\lambda} \\
& +\sum_{k k}\left\{D_{k}^{\prime k}\left(S_{k z}^{\kappa}\right)^{2}+E_{k}^{\prime k}\left[\left(S_{k x}^{\kappa}\right)^{2}-\left(S_{k y}^{k}\right)^{2}\right]\right. \\
& \left.+p_{k}^{\prime k}\left(S_{k x}^{k} S_{k y}^{K}+S_{k y}^{k} S_{k x}^{\kappa}\right)\right\} \\
& + \text { (fourth-order terms) } \\
& + \text { (sixth-order terms) . } \tag{3}
\end{align*}
$$

Now, we introduce average sublattice spins denoted by \vec{S}_{i}, where

$$
\begin{equation*}
\overrightarrow{\mathrm{S}}_{i}=N^{-1} \sum_{\mu} \overrightarrow{\mathrm{S}}_{i}^{\mu} \tag{4}
\end{equation*}
$$

and N is the number of unit cells in the crystal. Further, we use new isotropic exchange-interaction constants multiplied by the number of nearestneighbor spins as follows ${ }^{2}$:
$\tilde{J}=2 \tilde{J}_{15}, \quad \tilde{J}^{\prime \prime}=2 \tilde{J}_{18}, \quad \tilde{J}^{\prime}=2 \tilde{J}_{17}, \quad \tilde{J}^{\prime \prime \prime}=2 \tilde{J}_{18}$,
$J_{A}^{\prime}=4 J_{55}^{\prime}, \quad J_{B}^{\prime}=2 J_{58}^{\prime}, \quad J_{C}^{\prime}=8 J_{57}^{\prime}, \quad J_{D}^{\prime}=4 J_{58}^{\prime}$.
Similarly, the antisymmetric and the anisotropicsymmetric exchange-interaction constants multiplied by the number of nearest-neighbor spins are used below in this paper. Symmetry considerations show that these constants are given as those in Table IV(a)-IV(f). Then, the Hamiltonians (2) and (3) are given in Appendix, where Bertaut's irreducible bases $\overrightarrow{\mathrm{F}}, \overrightarrow{\mathrm{G}}, \overrightarrow{\mathrm{C}}$, and $\overrightarrow{\mathrm{A}}^{1,2}$ are used.

C. Spin Configuration of GdCrO_{3}

We first consider the spin configuration of GdCrO_{3} below $T_{N 2}$. The Gd^{3+} anisotropy energy of GdCrO_{3} is small as compared with other interaction energies such as the $\mathrm{Cr}^{3+}-\mathrm{Gd}^{3+}$ and $\mathrm{Gd}^{3+}-\mathrm{Gd}^{3+}$ exchange interactions. ${ }^{2,12,13}$ Thus, the Gd^{3+} spin is not confined to its own single-ion anisotropy axis but to the direction of the effective field due to the magnetic interactions with Cr^{3+} and Gd^{3+} spins.

The Hamiltonian (1) is also written as ${ }^{2}$

$$
\begin{equation*}
\mathfrak{H}=\mathfrak{K}_{0}+\mathscr{K}_{a}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{C}_{0}=\frac{1}{2}\left(J_{A}-J_{B}+J_{C}-J_{D}\right) \overrightarrow{\mathrm{G}}^{2} \tag{7}
\end{equation*}
$$

TABLE IV. (a) Isotropic exchange interaction constants between M^{3+} and R^{3+} spins. $\left\{\right.$ For $T \geq T_{N 2}, \tilde{J}^{\prime \prime \prime}=\tilde{J}$ and $\tilde{J}^{\prime \prime \prime \prime}=\tilde{J}^{\prime}$ [see Table I(d) of Ref. 2]. $\}$ (b) Antisymmetric exchange interaction constants between M^{3+} and R^{3+} spins. \{For $T \geq T_{N 2}, \overrightarrow{\mathrm{D}}^{\prime \prime}=\tilde{\mathrm{D}}$ and $\tilde{\mathrm{D}}^{\prime \prime \prime \prime}=\overrightarrow{\mathrm{D}}^{\prime}$ [see Table I(e) of Ref. 2].\}

	(a)				(b)									
	\vec{S}_{5}	$\overrightarrow{\mathrm{S}}_{6}$	$\stackrel{\rightharpoonup}{5}_{7}$	$\overrightarrow{\mathbf{S}}_{8}$		\vec{S}_{5}		\vec{S}_{6}			S_{7}		$\stackrel{\rightharpoonup}{S}_{8}$	
$\overline{\mathrm{S}_{1}}$	\tilde{J}	$\tilde{J}^{\prime \prime}$	\tilde{J}^{\prime}	$\tilde{J}{ }^{\prime \prime \prime}$	(\tilde{D}_{x},	\tilde{D}_{y},	\tilde{D}_{z})	($\tilde{D}_{x}^{\prime \prime}$, $\tilde{D}_{y}^{\prime \prime}$,	$\left.\tilde{D}_{g}^{\prime \prime}\right)$	(\tilde{D}_{x}^{\prime},	\tilde{D}_{y}^{\prime},	$\left.\tilde{D}_{\underline{\prime}}^{\prime}\right)$	($\tilde{D}_{x}^{\prime \prime \prime}$, $\bar{D}_{y}^{\prime \prime \prime}$,	$\left.\tilde{D}_{2}^{\prime \prime \prime}\right)$
S_{2}	$\tilde{J}^{\prime \prime}$	\tilde{J}	$\widetilde{J}^{\prime \prime \prime}$	\tilde{J}^{\prime}	$\left(-\tilde{D}_{x}^{\prime \prime}\right.$,	- $\tilde{D}_{y}{ }^{\prime \prime}$,	$\left.\tilde{D}_{E}^{\prime \prime}\right)$	$\left(-\tilde{D}_{x}-\tilde{D}_{y}\right.$,	$\left.\tilde{D}_{k}\right)$	(- $\tilde{D}_{x}^{\prime \prime \prime}$,	- $\tilde{D}_{y}^{\prime \prime \prime}$,	$\left.\tilde{D}_{E}^{\prime \prime \prime}\right)$	$\left(-\tilde{D}_{x}^{\prime}, \quad-\tilde{D}_{y}^{\prime}\right.$,	$\left.\tilde{D}_{8}^{\prime}\right)$
\vec{S}_{3}	$J^{\prime \prime \prime}$	\tilde{J}^{\prime}	$J^{\prime \prime}$	\tilde{J}	(- $\tilde{D}_{x}^{\prime \prime \prime}$,	$\tilde{D}_{y}^{\prime \prime \prime}$,	- $\tilde{D}_{\underline{\prime}}^{\prime \prime \prime}$)	(- $\bar{D}_{x}^{\prime}, \quad \bar{D}_{y}^{\prime}$,	$\left.-\tilde{D}_{\underline{z}}^{\prime}\right)$	(- $\tilde{D}_{x}^{\prime \prime}$,	$\tilde{D}_{y}^{\prime \prime}$,	- $\tilde{D}_{E}^{\prime \prime}$)	$\left(-\tilde{D}_{x}, \quad \tilde{D}_{y}\right.$,	$\left.-\tilde{D}_{k}\right)$
\vec{S}_{4}	\tilde{J}^{\prime}	$\tilde{J}^{\prime \prime \prime}$	\tilde{J}	$\tilde{J}^{\prime \prime}$	(\tilde{D}_{x}^{\prime},	- \tilde{D}_{y}^{\prime},	$\left.-\tilde{D}_{\underline{z}}{ }^{\prime}\right)$	($\tilde{D}_{x}^{\prime \prime \prime}$, - $\tilde{D}_{y}^{\prime \prime \prime}$,	$\left.-\tilde{D}_{E}^{\prime \prime \prime}\right)$	(\tilde{D}_{x},	$-\tilde{D}_{y}$,	$-\tilde{D}_{z}$)	($\tilde{D}_{x}^{\prime \prime},{ }^{\prime} \tilde{D}_{y}^{\prime \prime}$,	$\left.-\tilde{D}_{z}^{\prime \prime}\right)$

TABLE IV. (d) Isotropic exchange interaction constants between R^{3+} spins. (e) Antisymmetric exchange interaction constants between R^{3+} spins. (For $T \geq T_{N 2}$, $B_{x}^{\prime}=B_{y}^{\prime}=C_{y}^{\prime}=D_{x}^{\prime}=0$, since the symmetry group contains the inversion operation.)

	(d)					(e)						$\overrightarrow{\mathrm{S}}_{8}$		
	\vec{S}_{5}	\vec{S}_{6}	$\stackrel{\rightharpoonup}{\mathrm{S}}_{7}$	\vec{S}_{8}	$\stackrel{\rightharpoonup}{S}_{5}$	\vec{S}_{6}			\vec{S}_{7}					
$\stackrel{\bar{S}_{5}}{ }$	J_{A}^{\prime}	J_{B}^{\prime}	${ }^{\text {J }}$ C	$J_{\text {d }}$		${ }^{(} B_{x}^{\prime}$,	B_{y}^{\prime},	0)		C_{y}^{\prime},	$\left.C_{R}^{\prime}\right)$	(${ }_{x}^{\prime}$,	0 ,	$\left.D_{z}^{\prime}\right)$
\vec{S}_{6}		J_{A}^{\prime}	J_{D}^{\prime}	J_{C}^{\prime}					$\left(-D_{x}^{\prime}\right.$	0 ,	$\left.D_{s}^{\prime}\right)$	(0,	$-C_{y}^{\prime}$,	$\left.C_{8}^{\prime}\right)$
\vec{S}_{7}			J_{A}^{\prime}	$J_{B}^{\prime \prime}$								(B_{x}^{\prime},	$-B_{y}^{\prime}$,	0)
\vec{S}_{8}				J_{A}^{\prime}										

TABLE IV. (f) Anisotropic-symmetric exchange interaction constants between R^{3+} spins. $a_{z z}^{\prime}=-\left(a_{x x}^{\prime}+a_{y y}^{\prime}\right), b_{k z}^{\prime}=-\left(b_{x x}^{\prime}+b_{y y}^{\prime}\right), C_{k z}^{\prime}=-\left(C_{x x}^{\prime}+c_{y y}^{\prime}\right)$, and $d_{k z}^{\prime}=-\left(d_{x x}^{\prime}+d_{y y}^{\prime}\right)$. (For $T \geq T_{N 2}, a_{k x}^{\prime}=a_{y z}^{\prime}=c_{y s}^{\prime}=d_{s x}^{\prime}=0$, since the symmetry group contains the inversion operation.)

40^{∞}

TABLE V. Orders of magnitudes of various exchange constants and of the single-ion anisotropy constants for GdCrO_{3}. Compare with Table II of Ref. 2.

	1	ϵ	ϵ^{2}	ϵ^{3}	ϵ^{4}
$M^{3+}-M^{3+}$	J	$\overrightarrow{\mathrm{D}}$	$\overleftrightarrow{\mathrm{a}}$		
M^{3+}			K		
$M^{3+}-R^{3+}$		\tilde{J}	$\widetilde{\vec{D}}$	$\stackrel{\mathrm{a}}{ }$	
$R^{3+}-R^{3+}$			J^{\prime}	$\overrightarrow{\mathrm{D}^{\prime}}$	$\stackrel{\leftrightarrow}{\mathrm{a}}$
R^{3+}				K^{\prime}	

is the unperturbed isotropic Hamiltonian given in Ref. 2 and \mathscr{H}_{a} is the anisotropic part of the Hamiltonian. The free energy $\langle\mathfrak{C}\rangle$ of the system is given, to the first-order perturbation of \mathcal{F}_{a}, by

$$
\begin{equation*}
\langle\mathfrak{F}\rangle=-k T \ln \operatorname{Tr} e^{-\beta \mathcal{X}_{0}}+\left\langle\mathfrak{F}_{a}\right\rangle, \tag{8}
\end{equation*}
$$

where the angular brackets denote the thermal average taken with respect to the density matrix ρ_{0} $=e^{-\beta 3 x_{0}} / \mathrm{Tr} e^{-\beta 30_{0}}$. Here, we approximate the mean value of the product of spin operators by the product of the mean values of spin operators: $\left\langle\vec{S}_{i} \vec{S}_{j}\right\rangle$ $=\left\langle\overrightarrow{\mathbf{S}}_{i}\right\rangle\left\langle\overrightarrow{\mathbf{S}}_{j}\right\rangle$.

To simplify the calculation, it is convenient to know the order of magnitudes of parameters. For GdCrO_{3} they are given in Table V, where ϵ represents $|\vec{D}| / J \sim 10^{-2}$, the order of magnitudes of the overt and hidden canting angles of Cr^{3+} spins. We assume that the antisymmetric and the aniso-tropic-symmetric exchange-interaction energies, respectively, between the orbitally nondegenerate ions such as Gd^{3+} and Cr^{3+} ions in GdCrO_{3} are one and two orders of magnitudes smaller than the corresponding isotropic exchange interaction energy. Furthermore, we assume the anisotropy term $K^{\prime}=\left(D^{\prime}, E^{\prime}, p^{\prime}\right)$ of Gd^{3+} ion 13 to be of the order of $\boldsymbol{\epsilon}^{\mathbf{3}}$.

Since the real spin configuration of GdCrO_{3} cannot be identified definitely by the magnetic data ${ }^{7}$ alone, we assume in this subsection that GdCrO_{3} has the $\Gamma_{27}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}, G_{z}^{R}\right)$ configuration below $T_{N 2}$. From the Hamiltonians (9a)-(9d) of Ref. 2 and (A1)-(A7) of this paper, the normalized free-energy of the Γ_{27} spin configuration is found to be

$$
\begin{aligned}
F= & \langle\mathfrak{H}\rangle /\left\langle S_{\mathrm{Cr}}\right\rangle^{2} N \\
= & \frac{1}{2}\left(J_{A}+J_{B}+J_{C}+J_{D}\right) F_{x}^{2}+\frac{1}{2}\left(J_{A}+J_{B}-J_{C}-J_{D}\right) C_{y}^{2} \\
& +\frac{1}{2}\left(J_{A}-J_{B}+J_{C}-J_{D}\right) G_{z}^{2} \\
& +\left(D_{y}+B_{y}\right) F_{x} G_{z}-\left(B_{x}-C_{x}\right) C_{y} G_{z}+D G_{z}^{2} \\
& +s\left[\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right) F_{x} F_{x}^{R}\right. \\
& +\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right) C_{y} C_{y}^{R}
\end{aligned}
$$

$$
\begin{align*}
& -\left(\tilde{D}_{x}+\tilde{D}_{x}^{\prime \prime}-\tilde{D}_{x}^{\prime}-\tilde{D}_{x}^{\prime \prime \prime}\right) G_{z} C_{y}^{R} \\
& \left.+\left(\tilde{D}_{y}+\tilde{D}_{y}^{\prime \prime}+\tilde{D}_{y}^{\prime}+\tilde{D}_{y}^{\prime \prime \prime}\right) G_{x} F_{x}^{R}\right] \\
& +s^{2}\left[\frac{1}{2}\left(J_{A}^{\prime}+J_{B}^{\prime}+J_{C}^{\prime}+J_{D}^{\prime}\right)\left(F_{x}^{R}\right)^{2}\right. \\
& +\frac{1}{2}\left(J_{A}^{\prime}+J_{B}^{\prime}-J_{C}^{\prime}-J_{D}^{\prime}\right)\left(C_{y}^{R}\right)^{2} \\
& \left.+\frac{1}{2}\left(J_{A}^{\prime}-J_{B}^{\prime}+J_{C}^{\prime}-J_{D}^{\prime}\right)\left(G_{z}^{R}\right)^{2}\right], \tag{9}
\end{align*}
$$

where terms smaller than the order of ϵ^{2} are omitted. s is the ratio of the mean values of the Gd^{3+} and Cr^{3+} spins, $\left\langle S_{\mathrm{Gd}}\right\rangle /\left\langle S_{\mathrm{Cr}}\right\rangle$, which is the only parameter depending on the temperature.

In the classical-spin approximation, equilibrium directions of the sublattice spins are defined in terms of ψ, ϕ, Φ, and Φ^{\prime}, where ψ and ϕ are the overt and hidden canting angles of Cr^{3+} spins, respectively, 2Φ is the angle between two sublattices of Gd^{3+} spins \vec{S}_{5} and $\overrightarrow{\mathrm{S}}_{8}$ or $\overrightarrow{\mathrm{S}}_{8}$ and $\vec{S}_{7}, 2 \Phi^{\prime}$ is the angle between \vec{S}_{5} and \vec{S}_{8} or \vec{S}_{7} and \vec{S}_{8} which gives the G_{k}^{R} configuration [see Fig. 1(b)]. This angle Φ^{\prime} can be taken as an order parameter of the second-order phase transition at $T_{N 2}$. Then, the normalized basis vectors are expressed in terms of ψ, ϕ, Φ, and Φ^{\prime} as follows:

$$
\begin{align*}
& F_{x}=\sin \psi \sim \psi, \tag{10a}\\
& C_{y}=\cos \psi \sin \phi \sim \phi, \tag{10b}\\
& G_{z}=-\cos \psi \cos \phi \sim-1, \tag{10c}\\
& F_{x}^{R}=\cos \Phi, \tag{10d}\\
& C_{y}^{R}=\sin \Phi \cos \Phi^{\prime}, \tag{10e}\\
& G_{z}^{R}=\sin \Phi \sin \Phi^{\prime} . \tag{10f}
\end{align*}
$$

The minus sign in Eq. (10c) shows that the upspins of the G_{ε} configuration of Cr^{3+} ions are $\overrightarrow{\mathrm{S}}_{2}$ and \vec{S}_{4} and the down-spins are \vec{S}_{1} and \vec{S}_{3}, which is the configuration below the spin-reorientation temperature of the $\Gamma_{4} \rightarrow \Gamma_{2}$ type. ${ }^{2}$ Inserting Eq. (10) into Eq. (9) and minimizing Eq. (9) with respect to ψ, ϕ, Φ and Φ^{\prime}, we obtain the expression for the free-energy as a function of the temperature T. Minimization of the free-energy with respect to these angles gives the following four equations:

$$
\begin{align*}
& \psi= {\left[\left(D_{y}+E_{y}\right)-s\left(\tilde{J}+\tilde{J^{\prime \prime}}+\tilde{J^{\prime}}+\tilde{J^{\prime \prime \prime}}\right) \cos \Phi\right] / 2\left(J_{D}+J_{B}\right), } \\
& \phi=-\left[\left(B_{x}-C_{x}\right)+s\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J^{\prime}}-\tilde{J^{\prime \prime \prime}}\right) \sin \Phi\right. \tag{11}\\
&\left.\times \cos \Phi^{\prime}\right] / 2\left(J_{B}-J_{C}\right), \tag{12}\\
&\left(J_{B}-J_{C}\right)\left(\tilde{J}+\tilde{J^{\prime \prime}}+\tilde{J^{\prime}}+\tilde{J^{\prime \prime}}\right)^{2}\left(s_{0}+s \cdot \cos \Phi\right) s \cdot \sin \Phi \\
&+\left(J_{D}+J_{B}\right)\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)^{2}\left(s_{0}^{\prime}-s \cdot \sin \Phi \cos \Phi^{\prime}\right) \\
& \times s \cdot \cos \Phi \cos \Phi^{\prime} \\
&-4\left(J_{D}+J_{B}\right)\left(J_{B}-J_{C}\right) s^{2} \sin \Phi \cos \Phi\left[\left(J_{D}^{\prime}+J_{B}^{\prime}\right)\right. \\
&\left.-\left(J_{B}^{\prime}-J_{C}^{\prime}\right) \cos ^{2} \Phi^{\prime}\right]=0, \tag{13}
\end{align*}
$$

$\sin \Phi \sin \Phi^{\prime} \cdot\left\{\left[\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)^{2}-4\left(J_{B}-J_{C}\right)\right.\right.$

$$
\left.\times\left(J_{B}^{\prime}-J_{C}^{\prime}\right)\right] s \cdot \sin \Phi \cos \Phi^{\prime}-\left(\tilde{J}^{\prime}+\tilde{J}^{\prime \prime}-\tilde{J^{\prime}}\right.
$$

$$
\begin{equation*}
\left.\left.-\tilde{J}^{\prime \prime \prime}\right)^{2} s_{0}^{\prime}\right\}=0 \tag{14}
\end{equation*}
$$

$$
\begin{align*}
& s_{0}=\frac{2\left(\tilde{D}_{y}+\tilde{D}_{y}^{\prime \prime}+\tilde{D}_{y}^{\prime}+\tilde{D}_{y}^{\prime \prime \prime}\right)\left(J_{D}+J_{B}\right)-\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)\left(D_{y}+B_{y}\right)}{\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2}} \tag{15}\\
& s_{0}^{\prime}=\frac{2\left(\tilde{D}_{x}+\tilde{D}_{x}^{\prime \prime}-\tilde{D}_{x}^{\prime}-\tilde{D}_{x}^{\prime \prime}\right)\left(J_{B}-J_{C}\right)-\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)\left(B_{x}-C_{x}\right)}{\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}-\tilde{J}^{\prime \prime \prime}\right)^{2}} . \tag{16}
\end{align*}
$$

The angles Φ and Φ^{\prime} which are assumed to be generally of the order of 1 are determined by Eqs. (13) and (14). The stability conditions with respect to ψ and ϕ

$$
\begin{align*}
& \frac{\partial^{2} F}{\partial \psi^{2}}=2\left(J_{D}+J_{B}\right)>0, \tag{17}\\
& \frac{\partial^{2} F}{\partial \phi^{2}}=2\left(J_{B}-J_{C}\right)>0 \tag{18}
\end{align*}
$$

are always satisfied. ${ }^{2}$ For a stable configuration the following equations should be positive:

$$
\begin{align*}
\frac{\partial^{2} F}{\partial \Phi^{2}}= & {\left[\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2} / 2\left(J_{D}+J_{B}\right)\right] } \\
& \times\left(s_{0}+s \cdot \cos \Phi\right) s \cdot \cos \Phi \\
& -\left[\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)^{2} / 2\left(J_{B}-J_{C}\right)\right] \\
& \times\left(s_{0}^{\prime}-s \cdot \sin \Phi \cos \Phi^{\prime}\right) s \cdot \sin \Phi \cos \Phi^{\prime} \\
& -2 s^{2} \cos 2 \Phi \cdot\left[\left(J_{D}^{\prime}+J_{B}^{\prime}\right)-\left(J_{B}^{\prime}-J_{C}^{\prime}\right) \cos ^{2} \Phi^{\prime}\right] \tag{19}\\
\frac{\partial^{2} F}{\partial \Phi^{\prime 2}}= & s \cdot \sin \Phi\left\{-\left[\left(\tilde{J}+\tilde{J^{\prime}}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)^{2} / 2\left(J_{B}-J_{C}\right)\right]\right. \\
& \times\left(s_{0}^{\prime}-s \cdot \sin \Phi \cos \Phi^{\prime}\right) \cos \Phi^{\prime} \\
& \left.+2\left(J_{B}^{\prime}-J_{C}^{\prime}\right) s \cdot \sin \Phi \cos 2 \Phi^{\prime}\right\} \tag{20}
\end{align*}
$$

Equations (13) and (14) give an unstable solution (I), and two sets of stable solutions (II) and (III).

Case I. $\sin \Phi=0$. In this case, Eq. (20) shows that the spin configuration is stationary and not stable. Following Eqs. (10d)-(10f), the configuration of Gd^{3+} spins is completely F_{x}^{R}, which means that the Gd^{3+} spins are polarized parallel or antiparallel to the net moment F_{x} of Cr^{3+} spins.

Case II. $\sin \Phi^{\prime}=0$. The angle Φ is determined by Eq. (13):

$$
\begin{align*}
& \left(J_{B}-J_{C}\right)\left(\tilde{J}+\tilde{J^{\prime \prime}}+\tilde{J^{\prime}}+\tilde{J^{\prime \prime \prime}}\right)^{2}\left(s_{0}+s \cdot \cos \Phi\right) s \cdot \sin \Phi \\
& \quad+\left(J_{D}+J_{B}\right)\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J^{\prime}}-\tilde{J^{\prime \prime \prime}}\right)^{2}\left(s_{0}^{\prime}-s \cdot \sin \Phi\right) s \cdot \cos \Phi \\
& \quad-4\left(J_{D}+J_{B}\right)\left(J_{B}-J_{C}\right)\left(J_{B}^{\prime}+J_{C}^{\prime}\right) s^{2} \sin \Phi \cos \Phi=0 \tag{21a}
\end{align*}
$$

This equation is similar to Eq. (37a) of Ref. 2 except for the last term which results from the Gd^{9+} $-\mathrm{Gd}^{3+}$ exchange interaction. Using the angle Φ determined by Eq. (21a), the equilibrium values of
other angles are obtained as

$$
\begin{align*}
& \Phi^{\prime}=0, \tag{21b}\\
& \psi=\left[\left(D_{y}+B_{y}\right)-s\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right) \cos \Phi\right] / 2\left(J_{D}+J_{B}\right), \tag{21c}
\end{align*}
$$

$\phi=-\left[\left(B_{x}-C_{x}\right)+s\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)\right.$

$$
\begin{equation*}
\times \sin \Phi] / 2\left(J_{B}-J_{C}\right) \tag{21d}
\end{equation*}
$$

This corresponds to the $\Gamma_{2}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}\right)$ configuration above $T_{N 2}$. The stability conditions of Eqs. (19) and (20) should be satisfied.

Case II. In this case we have

$$
\begin{equation*}
s \cdot \sin \Phi \cos \Phi^{\prime}=B \tag{22}
\end{equation*}
$$

where
$B=\frac{s_{0}^{\prime}\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J^{\prime}}-\tilde{J}^{\prime \prime \prime}\right)^{2}}{\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)^{2}-4\left(J_{B}-J_{C}\right)\left(J_{B}^{\prime}-J_{C}^{\prime}\right)}$.
The angle Φ is determined by the following equation:

$$
\begin{align*}
& \left(J_{B}-J_{C}\right)\left[\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2}-4\left(J_{D}+J_{B}\right)\left(J_{D}^{\prime}+J_{B}^{\prime}\right)\right] \\
& \times s^{3} \cos ^{3} \Phi+\left(J_{B}-J_{C}\right)\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2} s_{0} s^{2} \cos ^{2} \Phi \\
& -\left\{\left(J_{B}-J_{C}\right)\left[\left(\tilde{J}+\tilde{J^{\prime \prime}}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2}-4\left(J_{D}+J_{B}\right)\left(J_{D}^{\prime}+J_{B}^{\prime}\right)\right] s^{2}\right. \\
& +\left(J_{D}+J_{B}\right)\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)^{2} s_{0}^{\prime} B \\
& -\left(J_{D}+J_{B}\right)\left[\left(\tilde{J}+\tilde{J^{\prime \prime}}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)^{2}-4\left(J_{B}-J_{C}\right)\left(J_{B}^{\prime}-J_{C}^{\prime}\right)\right] \\
& \left.\times B^{2}\right\} s \cdot \cos \Phi-\left(J_{B}-J_{C}\right)\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2} s_{0} s^{2}=0 . \tag{24a}
\end{align*}
$$

By using the angle Φ determined by Eq. (24a), Eqs. (22), (11), and (12) give the other stable angles to be

$$
\begin{align*}
\Phi^{\prime} & =\cos ^{-1}[B /(s \cdot \sin \Phi)], \\
\psi & =\left[\left(D_{y}+B_{y}\right)-s\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right) \cos \Phi\right] / 2\left(J_{D^{+}} J_{B}\right), \\
\phi & =-\left[\left(B_{x}-C_{x}\right)+B\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right)\right] / 2\left(J_{B}-J_{C}\right) . \tag{24c}
\end{align*}
$$

This corresponds to the $\Gamma_{27}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}, G_{z}^{R}\right)$ configuration below $T_{N 2}$. Also in this case the stability conditions of Eqs. (19) and (20) should be satisfied.

Up to the order of ϵ^{2}, the free-energies $F\left(\Gamma_{2}^{1}\right)$, $F\left(\Gamma_{2}^{\mathrm{II}}\right)$, and $F\left(\Gamma_{27}^{\mathrm{III}}\right)$ of three cases I, II, and III, respectively, are given as

$$
\begin{align*}
F\left(\Gamma_{2}^{\mathrm{I}}\right)= & F^{\mathrm{Cr}}-\left[\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2} / 2\left(J_{D}+J_{B}\right)\right] \\
& \times s\left(s+s_{0}\right)+\frac{1}{2}\left(J_{A}^{\prime}+J_{B}^{\prime}+J_{C}^{\prime}+J_{D}^{\prime}\right) s^{2}, \tag{25a}\\
F\left(\Gamma_{2}^{\mathrm{II}}\right)= & F^{\mathrm{Cr}}-\left[\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2} / 2\left(J_{D}+J_{B}\right)\right] \\
& \times\left(s_{0}+s \cdot \cos \Phi\right) s \cdot \cos \Phi+\left[\left(\tilde{J}+J^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J^{\prime \prime \prime}}\right)^{2} /\right. \\
& \left.2\left(J_{B}-J_{C}\right)\right]\left(s_{0}^{\prime}-s \cdot \sin \Phi\right) s \cdot \sin \Phi \\
+ & \frac{1}{2}\left[\left(J_{A}^{\prime}+J_{B}^{\prime}+J_{C}^{\prime}+J_{D}^{\prime}\right) \cos ^{2} \Phi\right. \\
& \left.+\left(J_{A}^{\prime}+J_{B}^{\prime}-J_{C}^{\prime}-J_{D}^{\prime}\right) \sin ^{2} \Phi\right] s^{2}, \tag{25b}\\
F\left(\Gamma_{27}^{\mathrm{III}}\right)^{\prime}= & F^{\mathrm{Cr}}-\left[\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2} / 2\left(J_{D}+J_{B}\right)\right] \\
& \times\left(s_{0}+s \cdot \cos \Phi\right) s \cdot \cos \Phi \\
& +\left[\left(\tilde{J}+\tilde{J^{\prime \prime}}-\tilde{J^{\prime}}-\tilde{J}^{\prime \prime \prime}\right)^{2} / 2\left(J_{B}-J_{C}\right)\right]\left(s_{0}^{\prime}-B\right) B \\
& +\left(J_{B}^{\prime}-J_{C}^{\prime}\right) B^{2}+\frac{1}{2}\left[\left(J_{A}^{\prime}+J_{B}^{\prime}+J_{C}^{\prime}+J_{D}^{\prime}\right) \cos ^{2} \Phi\right. \\
& \left.+\left(J_{A}^{\prime}-J_{B}^{\prime}+J_{C}^{\prime}-J_{D}^{\prime}\right) \sin ^{2} \Phi\right] s^{2}, \tag{25c}
\end{align*}
$$

where $\boldsymbol{F}^{\mathrm{Cr}}$ is the free-energy of Cr^{3+} spin system:

$$
\begin{align*}
F^{C r} & =F_{0}+D-\left[4\left(J_{D}+J_{B}\right)-\left(J_{A}+J_{B}+J_{C}+J_{D}\right)\right] \\
& \times\left(D_{y}+B_{y}\right)^{2} / 8\left(J_{D}+J_{B}\right)^{2}-\left[4\left(J_{B}-J_{C}\right)\right. \\
& \left.-\left(J_{A}+J_{B}-J_{C}-J_{D}\right)\right]\left(B_{x}-C_{x}\right)^{2} / 8\left(J_{B}-J_{C}\right)^{2} . \tag{25d}
\end{align*}
$$

Although the configuration of case I has been shown to be unstable, the free-energy $F\left(\Gamma_{2}^{\mathrm{I}}\right)$ is also given for comparison.

In the high-temperature phase, s is relatively small and the free energy $F\left(\Gamma_{2}^{\mathrm{II}}\right)$ is the lowest. Then, the $\Gamma_{2}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}\right)$ configuration is realized. ${ }^{2}$ As the temperature is lowered, s increases and then the free energy of this configuration crosses that of the $\Gamma_{27}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}, G_{z}^{R}\right)$ configuration at a critical point s_{c}, where the corresponding temperature is defined as $T_{N 2}$. Then, Φ^{\prime} takes a nonzero value and a new antiferromagnetic configuration G_{z}^{R} of Gd^{3+} spins appears. The free energy $F\left(\Gamma_{27}^{\mathrm{III}}\right)$ is the lowest for s larger than s_{c} and the Γ_{27} configuration is realized in the lower-temperature phase. Here, although we have no available values of parameters in Eq. (25), it seems that $F\left(\Gamma_{2}^{1}\right)$ is higher than $F\left(\Gamma_{2}^{11}\right)$ or $F\left(\Gamma_{27}^{111}\right)$ for all values of s. The case I, therefore, is never realized.

Now, we can obtain the expressions of the derivatives of the angle Φ with respect to the temperature T by differentiating Eqs. (21a) and (24a) for the high- and low-temperature phases, respectively. The resulting expression is lengthy and is not given here; its derivation is quite straightforward. $\partial \Phi / \partial T$ has a finite discontinuity at $T_{N 2}$. The derivative of the angle Φ^{\prime} is obtained from Eq. (22) as follows:
$\partial \Phi^{\prime} / \partial T=\frac{[(\partial S / \partial T) \sin \Phi+(\partial \Phi / \partial T) s \cdot \cos \Phi] \cos \Phi^{\prime}}{\left(s \cdot \sin \Phi \sin \Phi^{\prime}\right)}$,
using the derivative $\partial \Phi / \partial T$ to be determined. At $T_{N 2}, \Phi^{\prime}$ is zero and Eq. (26) shows that $\partial \Phi^{\prime} / \partial T$ has an infinite discontinuity. This is characteristic of Landau's second-order phase transition. ${ }^{8}$ Similar discussions are applicable to the case where GdCrO_{3} has the Γ_{26} configuration.

D. Spin Configuration of DyFeO_{3}

We next investigate the spin configuration DyFeO_{3} below $T_{N 2}$, where the Dy^{3+} anisotropy is large enough as compared with the $\mathrm{Fe}^{3+}-\mathrm{Dy}^{3+}$ and Dy^{3+} Dy^{3+} magnetic interactions. Then, we can regard the Dy^{3+} spin as the Ising-like spin directed along its own anisotropy axis.

As mentioned previously, we assume that the spin configuration of DyFeO_{3} below $T_{N 2}$ is $\Gamma_{15}\left(A_{x}\right.$, $\left.G_{y}, C_{z}: G_{x}^{R}, A_{y}^{R}\right)$. Here, the C_{z}^{R} configuration of Dy ${ }^{3+}$ spins is omitted, since the Dy^{3+} Ising-like spin is confined to its anisotropy axis in the $a-b$ plane. The Hamiltonian of this Γ_{15} configuration is easily obtained from Eqs. (9a)-(9d) of Ref. 2 and from Eqs. (A1)-(A7) of this paper. Then, in this configuration the isotropic and the antisymmetric exchange interactions between Fe^{3+} and Dy^{3+} spins are absent and the anisotropic-symmetric exchange interaction is given as

$$
\begin{align*}
\tilde{\mathfrak{F}}_{\mathrm{symm}} / 2 N= & \left(\tilde{a}_{x x}-\tilde{a}_{x x}^{\prime \prime}+\tilde{a}_{x x}^{\prime}-\tilde{a}_{x x}^{\prime \prime \prime}\right) A_{x} G_{x}^{R} \\
& +\left(\tilde{a}_{y y}-\tilde{a}_{y y}^{\prime \prime}-\tilde{a}_{y y}^{\prime}+\tilde{a}_{y y}^{\prime \prime \prime}\right) G_{y} A_{y}^{R} \\
& +\left(\tilde{a}_{x y}-\tilde{a}_{x y}^{\prime \prime \prime}+\tilde{a}_{x y}^{\prime}-\tilde{a}_{x y}^{\prime \prime \prime}\right) G_{y} G_{x}^{R} \\
& +\left(\tilde{a}_{x y}-\tilde{a}_{x y}^{\prime \prime}-\tilde{a}_{x y}^{\prime}+\tilde{a}_{x y}^{\prime \prime \prime}\right) A_{x} A_{y}^{R} \\
& +\left(\tilde{a}_{z x}-\tilde{a}_{z x}^{\prime \prime}+\tilde{a}_{z x}^{\prime \prime}-\tilde{a}_{z x}^{\prime \prime \prime}\right) C_{z} G_{x}^{R} \\
& +\left(\tilde{a}_{y z}-\tilde{a}_{y z}^{\prime \prime}-\tilde{a}_{y z}^{\prime}+\tilde{a}_{y z}^{\prime \prime \prime}\right) C_{z} A_{y}^{R} . \tag{27}
\end{align*}
$$

Now, for the temperature above $T_{N 2}$, symmetry arguments show that $\tilde{a}_{\alpha \beta}^{\prime \prime}=\tilde{a}_{\alpha \beta}$ and $\tilde{a}_{\alpha \beta}^{\prime \prime \prime}=\tilde{a}_{\alpha \beta}^{\prime}$. Expecting that the same relations nearly hold for the temperature below $T_{N 2}$, the anisotropic-symmetric exchange interaction is small enough to be neglected. Thus, since the $\mathrm{Fe}^{3+}-\mathrm{Dy}^{3+}$ interaction is nearly absent for this Γ_{15} configuration, we can treat two spin systems of Fe^{3+} and Dy^{3+} ions to be independent of each other. Therefore, the spin configurations of Fe^{3+} and Dy^{3+} ions in DyFeO_{3} are the same as those of Fe^{3+} ions in YFeO_{3} and of Dy^{3+} ions in DyAlO_{3}, respectively. The Fe^{3+} spin configuration is $\left(A_{x}, G_{y}, C_{z}\right)$. The hidden canting angles ϕ and ϕ^{\prime} which give the A_{x} and C_{z} configurations, respectively, are given as follows ${ }^{14}$:

$$
\begin{align*}
& \phi=\left(D_{z}-C_{z}\right) / 2\left(J_{D}-J_{C}\right), \tag{28a}\\
& \phi^{\prime}=-\left(B_{x}-C_{x}\right) / 2\left(J_{B}-J_{C}\right) . \tag{28b}
\end{align*}
$$

The Dy^{3+} spin configuration is (G_{x}^{R}, A_{y}^{R}); each spin
is confined in the $a-b$ plane and canted from the b axis by 33°. ${ }^{15}$

E. Spin Configuration of DyCrO_{3}

The Cr^{3+} spins of DyCrO_{3} have the $\Gamma_{2}\left(F_{x}, C_{y}, G_{z}\right)$ configuration. Then, following Bertaut, ${ }^{1}$ the compatible configuration of Dy^{3+} spins should be $\Gamma_{2}\left(F_{x}^{R}\right.$, $\left.C_{y}^{R}\right)$. However, the Dy^{3+} spins favor the $\Gamma_{5}\left(G_{x}^{R}, A_{y}^{R}\right)$ configuration as mentioned previously. We assume that the Dy^{3+} spins are confined to its own anisotropy axis. The free energy of the $\Gamma_{2}\left(F_{x}^{R}, C_{y}^{R}\right)$ configuration is not so much higher than that of the Γ_{5} ($\mathrm{G}_{x}^{R}, A_{y}^{R}$) configuration. The difference of free energies between two configurations is of the order of the $\mathrm{Dy}^{3+}-\mathrm{Dy}^{3+}$ interaction J^{\prime} which is calculated to be nearly $0.2 \mathrm{~cm}^{-1}$ by using the experimental data. ${ }^{11}$ Here, the Γ_{2} configuration is the spinflopped configuration of Γ_{5}. In fact, Holmes et al. ${ }^{11}$ found in DyAlO_{3} that with the magnetic field applied along the a axis, the metamagnetic transition which involves a simultaneous reversal of two spins takes place at a critical field $H_{c}=11 \mathrm{kOe}$ at the temperature $T=1.45 \mathrm{~K}\left(T_{N 2}=3.52 \mathrm{~K}\right)$. Now, in DyCrO_{3}, the weak ferromagnetic moment of Cr^{3+} spins along the a axis induces the effective field acting on Dy^{3+} spins along the a axis owing to the $\mathrm{Cr}^{3+}-\mathrm{Dy}^{3+}$ interactions. The comparison with the observed data ${ }^{7}$ shows that the magnitude of this effective field is 7 kOe which is smaller than H_{c}. Then, the Dy ${ }^{3+}$ spin configuration would be mainly $\Gamma_{5}\left(G_{x}^{R}, A_{y}^{R}\right)$. However, this effective field induces the ferromagnetic moment F_{x}^{R} of Dy^{3+} spins, resulting in the Γ_{2} ($F_{x}^{R}, C_{y}^{R^{i}}$) configuration in addition to $\Gamma_{5}\left(G_{x}^{R}, A_{y}^{R}\right)$.
Thus, there is a possibility that the two spin configurations coexist stably.

This is also justified from symmetry arguments. Table II shows that the effective field and the induced Dy^{3+} spins above $T_{N 2}$ both belong to the Γ_{2} ($H_{x}: F_{x}^{R}, C_{y}^{R}$) configuration whose magnetic symmetry group is $D_{2 h}\left(C_{2 h}\right) m^{\prime} m^{\prime} m$. This magnetic group is invariant to operators ($E, \tilde{C}_{2 x}, i, i \tilde{C}_{2 x}, R \tilde{C}_{2 y}, R \tilde{C}_{2 z}$, $\left.i R \vec{C}_{2 y}, i R \vec{C}_{2 z}\right)$. At $T_{N 2}$ the reordering of Dy^{3+} spins takes place. Below $T_{N 2}$ the Dy^{3+} spins favor the Γ_{5} (G_{x}^{R}, A_{y}^{R}) configuration in addition to $\Gamma_{2}\left(F_{x}^{R}, C_{y}^{R}\right)$ due to the effective field from the Cr^{3+} spins, resulting in the $\Gamma_{25}\left(F_{x}^{R}, C_{y}^{R} ; G_{x}^{R}, A_{y}^{R}\right)$ spin configuration, whose magnetic group is $C_{2 v}\left(C_{2}\right) 2 m^{\prime} m^{\prime}$. The symmetry operations in this group are ($E, \tilde{C}_{2 x}, i R \tilde{C}_{2 y}$, $i R \tilde{C}_{2 k}$). Thus, at $T_{N 2}$ Landau's second-order phase transition occurs and the number of symmetry operators is reduced to half that above $T_{N 2}$. The spin configurations below and above $T_{N 2}, \Gamma_{25}$, and Γ_{2}, respectively, are illustrated in Figs. 2(a) and 2(b). ${ }^{16}$

Now, we calculate the free-energy of the Γ_{25} ($F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R} ; G_{x}^{R}, A_{y}^{R}$) configuration. In DyCrO ${ }_{3}$ containing orbitally degenerate Dy^{3+} ion, the orders of magnitudes of interaction parameters
are given in Table II of Ref. 2. In a procedure similar to that in Sec. IIC, we obtain the equilibrium values of the angles ψ and ϕ which define the overt canting F_{x} and the hidden canting C_{y}, respectively, of Cr^{3+} spins:
$\psi=-\left[\left(D_{y}+B_{y}\right)+s\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right) \sin \Phi_{0}\right] / 2\left(J_{D}+J_{B}\right)$,
$\phi=-\left[\left(B_{x}-C_{x}\right)+s\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right) \sin \Phi_{0}\right] / 2\left(J_{B}-J_{C}\right)$,
where s is the ratio of the induced Dy^{3+} sublattice spin to the Cr^{3+} sublattice spin and Φ_{0} is the angle between the Dy^{3+} anisotropy axis and the b axis. (Φ_{0} is taken to be 33°.) Finally, from Eqs. (A1)(A3), we obtain the effective field acting on the Dy ${ }^{3+}$ spins along the a axis as follows:

$$
\begin{align*}
& H_{\mathrm{eff}}=\left\langle S_{\mathrm{Crx}}\right\rangle\left[\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right) \psi+\left(\tilde{D}_{y}+\tilde{D}_{y}^{\prime \prime}+\tilde{D}_{y}^{\prime}+\tilde{D}_{y}^{\prime \prime \prime}\right)\right. \\
&\left.+2\left(\tilde{a}_{z x}+\tilde{a}_{x x}^{\prime \prime}+\tilde{a}_{k x}^{\prime}+\tilde{a}_{k x}^{\prime \prime \prime}\right)\right] \tag{30}\\
& \sim\left\langle S_{C r}\right\rangle\left\{2\left[\left(\tilde{D}_{y}+\tilde{D}_{y}^{\prime \prime}+\tilde{D}_{y}^{\prime}+\tilde{D}_{y}^{\prime \prime \prime}\right)+2\left(\tilde{a}_{z x}+\tilde{a}_{k x}^{\prime \prime}+\tilde{a}_{k x}^{\prime}+\tilde{\tilde{J}}_{x x}^{\prime \prime \prime}\right)\right]\right. \\
& \times\left.\left(J_{D}+J_{B}\right)-\left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)\left(D_{y}+B_{y}\right)\right\} / 2\left(J_{D}+J_{B}\right) \\
&-\left.\left\langle S_{D y}\right\rangle\right\rangle\left(\tilde{J}+\tilde{J}^{\prime \prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right)^{2} / 2\left(\tilde{J}_{D}+J_{B}\right),
\end{align*}
$$

which is expected to amount to 7 kOe at $T=1.5 \mathrm{~K}$ to fit the observed data. ${ }^{7}$

III. MAGNETOELECTRIC EFFECT

In a material which exhibits the linear magnetoelectric (ME) effect, ${ }^{17-21}$ an applied electric field E induces a magnetization M which is proportional to E, and an applied magnetic field H induces an electric polarization P which is proportional to H. Since the qualitative nature of the ME tensors is determined by symmetry, measurement of these

(a)

(b)

FIG. 2. Spin configuration in DyCrO_{3}. (a) The Γ_{25} ($F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R} ; G_{x}^{R}, A_{y}^{R}$) configuration below $T_{N 2}$. (b) The $\Gamma_{2}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}\right)$ configuration above $T_{N 2}$.

TABLE VI. Magnetoelectric susceptibility tensors for various spin configurations.

	ME tensor	Spin configuration
$T>T_{N 2}$	$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$	$\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ $\Gamma_{12}, \Gamma_{13}, \Gamma_{14}, \Gamma_{23}, \Gamma_{24},{ }^{\text {a }} \Gamma_{34}$
	$\left[\begin{array}{lll}\alpha_{x x} & & \\ & \alpha_{y y} & \\ & & \alpha_{z z}\end{array}\right]$	$\Gamma_{5}{ }^{\text {b }}$ $\Gamma_{15},{ }^{\text {c }} \Gamma_{25},{ }^{d} \Gamma_{35}, \Gamma_{45}$
	$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & \alpha_{y x} \\ 0 & \alpha_{z y} & 0\end{array}\right]$	$\begin{aligned} & \Gamma_{6} \\ & \Gamma_{16}, \\ & ,\end{aligned} \Gamma_{26},{ }^{e} \Gamma_{36}, \Gamma_{46}$
$T \leq T_{N 2}$	$\left[\begin{array}{ccc}0 & 0 & \alpha_{x z} \\ 0 & 0 & 0 \\ \alpha_{z x} & 0 & 0\end{array}\right]$	Γ_{7} $\Gamma_{17}, \Gamma_{27},{ }^{e} \Gamma_{37}, \Gamma_{47}$
	$\left[\begin{array}{ccc}0 & \alpha_{x y} & 0 \\ \alpha_{y x} & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$	Γ_{8} $\Gamma_{18}, \Gamma_{28}, \Gamma_{38}, \Gamma_{48}$

${ }^{2}$ The spin reorientation region.
${ }^{\mathrm{b}} \mathrm{RAlO}_{3}$ ($R=\mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}$); see Ref. 11.
${ }^{c} \mathrm{DyFeO}_{3}$.
${ }^{\mathrm{d}} \mathrm{DyCrO}_{3}$.
${ }^{e} \mathrm{GdCrO}_{3}$.
tensors provides a powerful tool for justifying our arguments developed in Sec. II.

We can write the free energy of a ME material, the electric polarization, and the magnetization as

$$
\begin{align*}
& F=-\frac{1}{2} \sum_{i, j} \kappa_{i j} E_{i} E_{j}-\sum_{i, j} \alpha_{i j} E_{i} H_{j}-\frac{1}{2} \sum_{i, j} \chi_{i j} H_{i} H_{j}, \tag{31a}\\
& P_{i}=-\left(\partial F / \partial E_{i}\right)_{H, T}=\sum_{j} \kappa_{i j} E_{j}+\sum_{j} \alpha_{i j} H_{j}, \tag{31b}\\
& M_{i}=-\left(\partial F / \partial H_{i}\right)_{E, T}=\sum_{j} \chi_{i j} H_{j}+\sum_{j} \alpha_{i j} E_{j}, \tag{31c}
\end{align*}
$$

where $\kappa_{i j}$ and $\chi_{i j}$ are the usual electric and magnetic susceptibility tensors, respectively, and $\alpha_{i j}$ is the ME susceptibility tensor.

By using symmetry considerations together with Tables II and III, the ME susceptibility tensors for various spin configurations are given in Table VI. (i) Above $T_{N 2}$, the tensors vanish for all Γ_{i} ($i=1-4$) and $\Gamma_{i j}(i, j=1-4)$ configurations, since the corresponding groups involve the inversion symmetry. (ii) However, below $T_{N 2}$, all $R M O_{3}$ crystals are expected to exhibit the ME effect due to the lack of the inversion symmetry. (iii) The nonvanishing ME tensor elements of the Γ_{15} and Γ_{25} type such as DyFeO_{3} and DyCrO_{3}, respectively, are $\alpha_{x x}, \alpha_{y y}$ and $\alpha_{z z}$. Thus, the magnetic and electric fields along any crystal axis induce polarization and magnetization, respectively, along the applied field. (iv) Since $\alpha_{y z}$ and $\alpha_{z y}$ are nonzero tensor elements for the Γ_{26} configuration, the applied magnetic and electric fields along the b axis (or the c axis) induce an ME polarization and mag-
netization, respectively, parallel to the c axis (or the b axis). For the Γ_{27} configuration $\alpha_{x z}$ and $\alpha_{z x}$ elements are nonzero. Therefore, future experiments on the ME effect of GdCrO_{3} will clarify whether it has the Γ_{26} or Γ_{27} configuration. (v) All of the magnetic symmetry in $R M \mathrm{O}_{3}$ below $T_{N 2}$ are to be determined by the ME effect measurement by using Table VI.

IV. CONCLUDING REMARKS

Assuming that in $R M O_{3}$ the magnetic and the paramagnetic unit cells are the same both above and below $T_{N 2}$, we have clarified that the magnetic symmetry group is lowered to the index-two subgroup of that above $T_{N 2}$. By calculating the free energy, the spin configuration corresponding to this magnetic group has been shown to be stable. Then, we have shown that GdCrO_{3} has either the $\Gamma_{26}\left(F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R}, A_{z}^{R}\right)$ or the $\Gamma_{27}\left(F_{x}, C_{y}, G_{z}:\right.$ $\left.F_{x}^{R}, C_{y}^{R}, G_{z}^{R}\right)$ configuration, DyFeO_{3} the $\Gamma_{15}\left(A_{x}, G_{y}\right.$, $\left.C_{z}: G_{x}^{R}, A_{y}^{R}\right)$ configuration, and DyCrO_{3} the Γ_{25} ($F_{x}, C_{y}, G_{z}: F_{x}^{R}, C_{y}^{R} ; G_{x}^{R}, A_{y}^{R}$) configuration.

Furthermore, we have predicted that the ME effect may be observed in $R M O_{3}$ below $T_{N 2}$, although any $R M \mathrm{O}_{3}$ has no ME effect above $T_{N 2}$. In DyFeO_{3} and DyCrO_{3} which have the Γ_{15} and the Γ_{25} configurations, respectively, a magnetic or an electric field along any crystal axis induces a polarization or a magnetization parallel to the applied field. In GdCrO_{3} with the Γ_{26} configuration, the ME polarization and magnetization are induced along the b axis (or the c axis) with the applied magnetic and electric field along the c axis (or the b axis). If GdCrO_{3} has the Γ_{27} configuration, the role of the b axis in the Γ_{26} configuration is replaced by that of the a axis. Thus, measurements of the ME tensor determine which configuration GdCrO_{3} has. It is hoped that all the magnetic symmetry of other $R M O_{3}$ could be determined by observing the ME effect.

ACKNOWLEDGMENTS

The authors wish to thank Professor S. Sugano for helpful discussions and revising the manuscript. They are also indebted to Mr. S. Washimiya, and Professor H. Kamimura, and Professor T. Moriya for useful suggestions.

APPENDIX: HAMILTONIANS FOR THE INTERACTION BETWEEN M^{3+} AND R^{3+} IONS AND FOR R^{3+} IONS

$$
\begin{align*}
\tilde{\mathcal{F}}_{1 \mathrm{so}} / N= & \left(\tilde{J}+\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right) \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{~F}}^{R} \\
& +\left(\tilde{J}+\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right) \overrightarrow{\mathrm{C}} \cdot \overrightarrow{\mathrm{C}}^{R} \\
& +\left(\tilde{J}-\tilde{J}^{\prime \prime}+\tilde{J}^{\prime}-\tilde{J}^{\prime \prime \prime}\right) \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{G}}^{R} \\
& +\left(\tilde{J}-\tilde{J}^{\prime \prime}-\tilde{J}^{\prime}+\tilde{J}^{\prime \prime \prime}\right) \overrightarrow{\mathrm{G}} \cdot \overrightarrow{\mathrm{~A}}^{R}, \tag{A1}\\
\tilde{\mathcal{F}}_{\text {ant } 1} / N= & \left(\tilde{D}_{x}+\tilde{D}_{x}^{\prime \prime}+\tilde{D}_{x}^{\prime}+\tilde{D}_{x}^{\prime \prime \prime}\right)\left(A_{y} F_{z}^{R}-A_{z} F_{y}^{R}\right)
\end{align*}
$$

$$
H_{\text {iso }}^{\prime} / N=\frac{1}{2}\left(J_{A}^{\prime}+J_{B}^{\prime}+J_{C}^{\prime}+J_{D}^{\prime}\right)\left(\overrightarrow{\mathrm{F}}^{R}\right)^{2}
$$

$$
+\frac{1}{2}\left(J_{A}^{\prime}-J_{B}^{\prime}+J_{C}^{\prime}-J_{D}^{\prime}\right)\left(\vec{G}^{R}\right)^{2}
$$

$$
+\frac{1}{2}\left(J_{A}^{\prime}+J_{B}^{\prime}-J_{C}^{\prime}-J_{D}^{\prime}\right)\left(\vec{C}^{R}\right)^{2}
$$

$$
\begin{equation*}
+\frac{1}{2}\left(J_{A}^{\prime}-J_{B}^{\prime}-J_{C}^{\prime}+J_{D}^{\prime}\right)\left(\overrightarrow{\mathrm{A}}^{R}\right)^{2} \tag{A4}
\end{equation*}
$$

$H_{a \mathrm{ant} 1}^{\prime} / N=\left(B_{x}^{\prime}+D_{x}^{\prime}\right)\left(G_{y}^{R} F_{z}^{R}-G_{z}^{R} F_{y}^{R}\right)$

$$
\begin{align*}
& +\left(\tilde{D}_{x}+\tilde{D}_{x}^{\prime \prime}-\tilde{D}_{x}^{\prime}-\tilde{D}_{x}^{\prime \prime \prime}\right)\left(G_{y} C_{z}^{R}-G_{z} C_{y}^{R}\right) \\
& +\left(\tilde{D}_{x}-\tilde{D}_{x}^{\prime \prime}+\tilde{D}_{x}^{\prime}-\tilde{D}_{x}^{\prime \prime \prime}\right)\left(F_{y} G_{z}^{R}-F_{z} G_{y}^{R}\right) \\
& +\left(\tilde{D}_{x}-\tilde{D}_{x}^{\prime \prime}-\tilde{D}_{x}^{\prime}+\tilde{D}_{x}^{\prime \prime \prime}\right)\left(C_{y} A_{z}^{R}-C_{z} A_{y}^{R}\right) \\
& +\left(\tilde{D}_{y}+\tilde{D}_{y}^{\prime \prime}+\tilde{D}_{y}^{\prime}+\tilde{D}_{y}^{\prime \prime \prime}\right)\left(G_{z} F_{x}^{R}-G_{x} F_{z}^{R}\right) \\
& +\left(\tilde{D}_{y}+\tilde{D}_{y}^{\prime \prime}-\tilde{D}_{y}^{\prime}-\tilde{D}_{y}^{\prime \prime \prime}\right)\left(A_{z} C_{x}^{R}-A_{x} C_{z}^{R}\right) \\
& +\left(\tilde{D}_{y}-\tilde{D}_{y}^{\prime \prime}+\tilde{D}_{y}^{\prime}-\tilde{D}_{y}^{\prime \prime \prime}\right)\left(C_{z} G_{x}^{R}-C_{x} G_{z}^{R}\right) \\
& +\left(\tilde{D}_{y}-\tilde{D}_{y}^{\prime \prime}-\tilde{D}_{y}^{\prime}+\tilde{D}_{y}^{\prime \prime \prime}\right)\left(F_{x} A_{x}^{R}-F_{x} A_{z}^{R}\right) \\
& +\left(\tilde{D}_{z}+\tilde{D}_{z}^{\prime \prime}+\tilde{D}_{z}^{\prime}+\tilde{D}_{z}^{\prime \prime \prime}\right)\left(C_{x} F_{y}^{R}-C_{y} F_{x}^{R}\right) \\
& +\left(\tilde{D}_{z}+\tilde{D}_{z}^{\prime \prime}-\tilde{D}_{z}^{\prime}-\tilde{D}_{z}^{\prime \prime \prime}\right)\left(F_{x} C_{y}^{R}-F_{y} C_{z}^{R}\right) \\
& +\left(\tilde{D}_{z}-\tilde{D}_{z}^{\prime \prime}+\tilde{D}_{z}^{\prime}-\tilde{D}_{z}^{\prime \prime \prime}\right)\left(G_{x} G_{y}^{R}-G_{y} G_{x}^{R}\right) \\
& +\left(\tilde{D}_{z}-\tilde{D}_{z}^{\prime \prime}-\tilde{D}_{z}^{\prime}+\tilde{D}_{z}^{\prime \prime \prime}\right)\left(A_{x} A_{y}^{R}-A_{y} A_{x}^{R}\right), \\
& \tilde{\mathcal{F}_{\mathrm{symm}}} / 2 N=\left(\tilde{a}_{x x}+\tilde{a}_{x x}^{\prime \prime}+\tilde{a}_{\mathrm{xx}}^{\prime}+\tilde{a}_{x x}^{\prime \prime \prime}\right) F_{x} F_{x}^{R} \\
& +\left(\tilde{a}_{x x}+\tilde{a}_{x x}^{\prime \prime}-\tilde{a}_{x x}^{\prime}-\tilde{a}_{x x}^{\prime \prime \prime}\right) C_{x} C_{x}^{R} \\
& +\left(\tilde{a}_{x x}-\tilde{a}_{x x}^{\prime \prime}+\tilde{a}_{x x}^{\prime}-\tilde{a}_{x x}^{\prime \prime \prime}\right) A_{x} G_{x}^{R} \\
& +\left(\tilde{a}_{x x}-\tilde{a}_{x x}^{\prime \prime}-\tilde{a}_{x x}^{\prime}+\tilde{a}_{x x}^{\prime \prime \prime}\right) G_{x} A_{x}^{R} \\
& + \text { (terms where } x=y \text {) } \\
& + \text { (terms where } x=z \text {) } \\
& +\left(\tilde{a}_{x y}+\tilde{a}_{x y}^{\prime \prime}+\tilde{a}_{x y}^{\prime}+\tilde{a}_{x y}^{\prime \prime \prime}\right)\left(C_{x} F_{y}^{R}+C_{y} F_{x}^{R}\right) \\
& +\left(\tilde{a}_{x y}+\tilde{a}_{x y}^{\prime \prime}-\tilde{a}_{x y}^{\prime \prime}-\tilde{a}_{x y}^{\prime \prime \prime}\right)\left(F_{x} C_{y}^{R}+F_{y} C_{x}^{R}\right) \\
& +\left(\tilde{a}_{x y}-\tilde{a}_{x y}^{\prime \prime}+\tilde{a}_{x y}^{\prime}-\tilde{a}_{x y}^{\prime \prime \prime}\right)\left(G_{x} G_{y}^{R}+G_{y} G_{x}^{R}\right) \\
& +\left(\tilde{a}_{x y}-\tilde{a}_{x y}^{\prime \prime}-\tilde{a}_{x y}^{\prime}+\tilde{a}_{x y}^{\prime \prime \prime}\right)\left(A_{x} A_{y}^{R}+A_{y} A_{x}^{R}\right) \\
& +\left(\tilde{a}_{y z}+\tilde{a}_{y z}^{\prime \prime}+\tilde{a}_{y z}^{\prime}+\tilde{a}_{y z}^{\prime \prime \prime}\right)\left(A_{y} F_{z}^{R}+A_{x} F_{y}^{R}\right) \\
& +\left(\tilde{a}_{x z}+\tilde{a}_{y z}^{\prime \prime}-\tilde{a}_{y z}^{\prime}-\tilde{a}_{y z}^{\prime \prime \prime}\right)\left(G_{y} C_{z}^{R}+G_{z} C_{y}^{R}\right) \\
& +\left(\tilde{a}_{y z}-\tilde{a}_{y z}^{\prime \prime}+\tilde{a}_{y z}^{\prime}-\tilde{a}_{y z}^{\prime \prime \prime}\right)\left(F_{y} G_{z}^{R}+F_{z} G_{y}^{R}\right) \\
& +\left(\tilde{a}_{y z}-\tilde{a}_{y z}^{\prime \prime}-\tilde{a}_{y z}^{\prime}+\tilde{a}_{y z}^{\prime \prime \prime}\right)\left(C_{y} A_{z}^{R}+C_{z} A_{y}^{R}\right) \\
& +\left(\tilde{a}_{x x}+\tilde{a}_{z x}^{\prime \prime}+\tilde{a}_{z x}^{\prime}+\tilde{a}_{x x}^{\prime \prime \prime}\right)\left(G_{z} F_{x}^{R}+G_{x} F_{z}^{R}\right) \\
& +\left(\tilde{a}_{x x}+\tilde{a}_{x x}^{\prime \prime}-\tilde{a}_{z x}^{\prime}-\tilde{a}_{k x}^{\prime \prime \prime}\right)\left(A_{z} C_{x}^{R}+A_{x} C_{z}^{R}\right) \\
& +\left(\tilde{a}_{x x}-\tilde{a}_{x x}^{\prime \prime}+\tilde{a}_{z x}^{\prime}-\tilde{a}_{z x}^{\prime \prime \prime}\right)\left(C_{z} G_{x}^{R}+C_{x} G_{z}^{R}\right) \\
& +\left(a_{z x}-a_{x x}^{\prime \prime}-a_{z x}^{\prime}+a_{z x}^{\prime \prime \prime}\right)\left(F_{z} A_{x}^{R}+F_{x} A_{z}^{R}\right), \tag{A3}
\end{align*}
$$

$$
\begin{align*}
& +\left(B_{x}^{\prime}-D_{x}^{\prime}\right)\left(A_{y}^{R} C_{z}^{R}-A_{z}^{R} C_{y}^{R}\right) \\
& +\left(B_{y}^{\prime}+C_{y}^{\prime}\right)\left(A_{z}^{R} F_{x}^{R}-A_{x}^{R} F_{z}^{R}\right) \\
& +\left(B_{y}^{\prime}-C_{y}^{\prime}\right)\left(G_{z}^{R} C_{x}^{R}-G_{x}^{R} C_{z}^{R}\right) \\
& +\left(D_{z}^{\prime}+C_{z}^{\prime}\right)\left(C_{x}^{R} F_{y}^{R}-C_{y}^{R} F_{x}^{R}\right) \\
& +\left(D_{z}^{\prime}-C_{z}^{\prime}\right)\left(G_{x}^{R} A_{y}^{R}-G_{y}^{R} A_{x}^{R}\right), \tag{A5}\\
H_{x y m \mathrm{~m}}^{\prime} / N= & \left(a_{x x}^{\prime}+b_{x x}^{\prime}+c_{x x}^{\prime}+d_{x x}^{\prime}\right)\left(F_{x}^{R}\right)^{2} \\
& +\left(a_{x x}^{\prime}-b_{x x}^{\prime}+C_{x x}^{\prime}-d_{x x}^{\prime}\right)\left(G_{x}^{R}\right)^{2} \\
& +\left(a_{x x}^{\prime}+b_{x x}^{\prime}-c_{x x}^{\prime}-d_{x x}^{\prime}\right)\left(C_{x}^{R}\right)^{2} \\
& +\left(a_{x x}^{\prime}+b_{x x}^{\prime}-c_{x x}^{\prime}+d_{x x}^{\prime}\right)\left(A_{x}^{R}\right)^{2} \\
& +(\text { terms where } x \rightleftharpoons y) \\
& +(\text { terms where } x \rightleftharpoons z) \\
& +2\left(a_{x y}^{\prime}+b_{x y}^{\prime}\right)\left(F_{x}^{R} C_{y}^{R}+F_{y}^{R} C_{x}^{R}\right) \\
& +2\left(a_{x y}^{\prime}-b_{x y}^{\prime}\right)\left(G_{x}^{R} A_{y}^{R}+G_{y}^{R} A_{x}^{R}\right) \\
& +2\left(a_{y z}^{\prime}+c_{y z}^{\prime}\right)\left(F_{y}^{R} G_{z}^{R}+F_{z}^{R} G_{y}^{R}\right) \\
& +2\left(a_{y z}^{\prime}-c_{y z}^{\prime}\right)\left(C_{y}^{R} A_{z}^{R}+C_{z}^{R} A_{y}^{R}\right) \\
& +2\left(a_{x x}^{\prime}+d_{x x}^{\prime}\right)\left(F_{z}^{R} A_{x}^{R}+F_{x}^{R} A_{z}^{R}\right) \\
& +2\left(a_{z x}^{\prime}-d_{z x}^{\prime}\right)\left(C_{z}^{R} G_{x}^{R}+C_{x}^{R} G_{z}^{R}\right), \tag{A6}\\
= & D^{\prime}\left[\left(F_{z}^{R}\right)^{2}+\left(G_{z}^{R}\right)^{2}+\left(C_{z}^{R}\right)^{2}+\left(A_{z}^{R}\right)^{2}\right] \\
& +E^{\prime}\left[\left(F_{x}^{R}\right)^{2}+\left(G_{x}^{R}\right)^{2}+\left(C_{x}^{R}\right)^{2}+\left(A_{x}^{R}\right)^{2}\right] \\
& \left.-\left(F_{y}^{R}\right)^{2}-\left(G_{y}^{R}\right)^{2}-\left(C_{y}^{R}\right)^{2}-\left(A_{y}^{R}\right)^{2}\right] \\
+ & 2 p^{\prime}\left(F_{x}^{R} C_{y}^{R}+F_{y}^{R} C_{x}^{R}+G_{x}^{R} A_{y}^{R}+G_{y}^{R} A_{x}^{R}\right) \\
+ & (\text { fourth-order terms }) \\
+ & (\text { sixth-order terms }), \tag{A7}\\
+ & =
\end{align*}
$$

where N is the number of unit cells in crystal, and

$$
\begin{array}{ll}
\tilde{a}_{z z}=-\left(\tilde{a}_{x x}+\tilde{a}_{y y}\right), & \tilde{a}_{k z}^{\prime}=-\left(\tilde{a}_{x x}^{\prime}+\tilde{a}_{y y}^{\prime}\right), \\
\tilde{a}_{z z}^{\prime \prime}=-\left(\tilde{a}_{x x}^{\prime \prime}+\tilde{a}_{y y}^{\prime \prime}\right), & \tilde{a}_{z z}^{\prime \prime \prime}=-\left(\tilde{a}_{x x}^{\prime \prime \prime}+\tilde{a}_{y y}^{\prime \prime \prime}\right), \\
a_{z z}^{\prime}=-\left(a_{x x}^{\prime}+a_{y y}^{\prime}\right), & b_{z z}^{\prime}=-\left(b_{x x}^{\prime}+b_{y y}^{\prime}\right), \\
c_{z z}^{\prime}=-\left(c_{x x}^{\prime}+c_{y y}^{\prime}\right), & d_{z z}^{\prime}=-\left(d_{x x}^{\prime}+d_{y y}^{\prime}\right) .
\end{array}
$$

For $T \geq T_{\mathrm{N} 2}$, the symmetry group contains the inversion operation. Then,

$$
\begin{aligned}
& \tilde{J}^{\prime \prime}=\tilde{J}, \quad \tilde{J}^{\prime \prime \prime}=\tilde{J^{\prime}}, \quad \tilde{\vec{D}}{ }^{\prime \prime}=\tilde{\overrightarrow{\mathrm{D}}}, \quad \overrightarrow{\mathrm{D}}^{\prime \prime \prime}=\tilde{\overrightarrow{\mathrm{D}}}{ }^{\prime}, \\
& \tilde{\overrightarrow{\mathbf{a}^{\prime \prime}}=\tilde{\vec{a}}, \quad \tilde{\mathbf{a}^{\prime \prime \prime}}=\tilde{\overrightarrow{\mathbf{a}^{\prime}}}}
\end{aligned}
$$

and

$$
B_{x}^{\prime}=B_{y}^{\prime}=C_{y}^{\prime}=D_{x}^{\prime}=a_{\mathrm{zx}}^{\prime}=a_{y z}^{\prime}=c_{y z}^{\prime}=d_{x x}^{\prime}=0
$$

Therefore, for $T \geq T_{N 2}$, Eqs. (A1)-(A3) coincide with Eqs. (9 e)-(9 g) of Ref. 2, respectively.
*Partly supported by the Broadcasting Science Research Laboratories of Nippon Hôsô Kyôkai
${ }^{1}$ E. F. Bertaut, in Magnetism III, edited by G. T. Rado and H.

Suhl (Academic, New York, 1963), p. 149.
${ }^{2}$ T. Yamaguchi, J. Phys. Chem. Solids (to be published). As for the spin-order data of $R M \mathrm{O}_{3}$, see the references cited in this paper.
${ }^{3}$ E. F. Bertaut, Acta Crystallogr. A 24, 217 (1968).
${ }^{4}$ E. F. Bertaut, J. Mareschal, and G. De Vries, J. Phys. Chem. Solids 28, 2143 (1967).
${ }^{5}$ B. Van Laar and J.B.A.A. Elemans, J. Phys. (Paris) 32, 301 (1971).
${ }^{6}$ A. Berton and B. Sharon, J. Appl. Phys. 39, 1367 (1967).
${ }^{7}$ K. Tsushima and T. Tamaki, Proceedings of the International Conference on Magnetism, Moscow, 1973 (unpublished).
${ }^{8}$ L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, London, 1958), Chap. 14.
${ }^{9}$ In the spin-reorientation of the $\Gamma_{4} \rightarrow \Gamma_{2}$ type discussed in Ref. 2, the magnetic symmetry group of the spin-reorientation region ($T_{1} \leq T \leq T_{2}$) is the index-two subgroup of those in the highand low-temperature phases, where the magnetic unit cell is the same as the paramagnetic one. At the spin-reorientation temperatures T_{1} and T_{2}, the second-order phase transition takes place. See Ref. 2.
${ }^{10}$ H. Schuchert, S. Hüfner, and R. Faulhaber, Z. Phys. 222, 105 (1969).
${ }^{11}$ L. M. Holmes, L. G. Van Uitert, R. R. Hecker, and G. W. Hull, Phys. Rev. B 5, 138 (1972).
${ }^{12}$ K. W. Blazey and G. Burns, Proc. Phys. Soc. Lond. 91, 640 (1967).
${ }^{13}$ R. L. White, G. F. Herrmann, J. W. Carson, and M. Mandel,

Phys. Rev. 136, A231 (1964).
${ }^{14}$ G. F. Herrmann, Phys. Rev. 133, A1334 (1964).
${ }^{15}$ We assume that Dy^{3+} spins are confined to their own anisotropy axes in the $a-b$ plane. Then, the spin configuration of DyFeO_{3} above $T_{N 2}$ is $\Gamma_{1}\left(A_{x}, G_{y}, C_{z}\right)$, where C_{z}^{R} vanishes, that is, Dy^{3+} spins are really paramagnetic.
${ }^{16}$ Above $T_{N 2}$ the Dy^{3+} spins are polarized due to the magnetic interactions between Dy^{3+} and Cr^{3+} spins. The polarized Dy^{3+} spins might direct along the effective field induced by the Cr^{3+} moment. However, since the Dy^{3+} single-ion anisotropy is large enough, the polarized Dy^{3+} spins are confined to their easy axes and the net moment of Dy^{3+} spins is along the net effective field from the Cr^{3+} spins, that is, along the a axis. The resulting configuration of the Dy^{3+} spins is $\Gamma_{2}\left(F_{x}^{R}, C_{y}^{R}\right)$.
${ }^{17}$ S. Foner and M. Hanabusa, J. Appl. Phys. 34, 1246 (1963).
${ }^{18}$ G. T. Rado, Phys. Rev. Lett. 23, 644 (1969); Phys. Rev. Lett. 23, 946 (1969).
${ }^{19}$ M. Mercier and P. Bauer, Les Elements des Terres Rares
(Centre National de la Recherche Scientifique, Paris, 1970), Vol. II, P. 377.
${ }^{20}$ R. M. Hornreich, IEEE Trans. Magn. MAG-8, 584 (1972).
${ }^{21}$ L. M. Holmes and L. G. Van Uitert, Phys. Rev. B 5, 147 (1972).

