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A new magnetic symmetry of the rare-earth orthochromites and orthoferrites (RMO3) below the second

Neel temperature due to the reordering of the rare-earth spins is proposed. It is shown that the magnetic

symmetry group is lowered to the subgroup of index two, thereby keeping the unit cell invariant. The

proposed symmetry is shown to be consistent with the previously observed spin configuration of RMO3
such as GdCrO„DyFeO„and DyCr03, and would also be consistent with those of other RMO3. Although

symmetry arguments and the calculation of the free energy show that two spin configurations are stable, in

GdCrO„a future measurement of the magnetoelectric tensor would determine which configuration GdCrO,
has. It is further predicted that the magnetoelectric effect should be observed in any RMO3 below the
second Neel temperature.

I. INTRODU~AN

One of the fundamental problems in the rare-
earth orthochromites and orthoferrites (RMO~, R
is a rare earth and M is Cr or Fe) is concerned
with the magnetic symmetry below the second Noel
temperature T» due to the reordering of R ' spins,
where according to existing theory' the magnetic
symmetries of the observed M ' and R ' spin con-
figurations are not compatible with each other.

RMOs are weak ferromagnets resulting from a
small canting of the antiferromagnetic M ' spins. '
Just below the first Noel temperature T» (where
the Ms' spine order}, the M" sublattice moments
and the net moment are observed to lie either along
the a axis and the c axis, respectively, in most of
RMO3, or along the c axis and the a axis in some
RCrO, (R=Nd, Tb, Dy, Ho, Yb). ~ The net mo-
ment of the R ' spins is polarized parallel or anti-
parallel to the net M" moment by the M"-R' mag-
netic interactions. Although the R" spins of this
state are sometimes said to be polarized quasi-
paramagnetically, they should be considered to
have a magnetic ordering given in Table I. As the
temperature is lowered, the R' moment increases
and the spin reorientation occurs at Tm and T, (or at
T„) in most of RMO~. ~ Finally, below T„z 1-4 K, —-

a different configuration of R" spins is caused by
the R3'-R ' interaction.

The R ' spin configuration below T» can not be
explained by the existing theory, ' which assumes
that the magnetic symmetry group is the same for
both above and below T». Bertaut et al. have
investigated the R ' spin configurations in some
RMO3 under the assumption that the magnetic unit
cell is different from the paramagnetic one. For
instance, the spin configuration of Tb' spin in
TbCr03 is assumed to belong to a two-dimension-

al irreducible representation associated with the
wave vector k= (0, 2, 0), that is, the magnetic unit
cell is twice the paramagnetic one in the direction
of the b axis. Following the procedure of Bertaut
et al. , we have to assume that the magnetic unit
cell is different from material to material. '

Experiments on some RMO3 near T» have shown
that the transition at T» is of second order. '

Here, it should be noted that a phase transition is
of second order if the symmetry of a crystal
changes in such a way that the number of symmetry
operations after the transition is reduced to half
that before transition. Lowering symmetry can
be realized either by (i) a doubling of the unit cell
for a given crystal class, or by (ii) a halving of the
number of rotations and reflections for a given unit
cell. Bertaut et al. have investigated just the first
case to explain the magnetic symmetry below T».
In this paper, we shall show that case (ii) is more
plausible than case (i) to describe the magnetic
symmetry below T» in RMO3.

II. MAGNETIC SYMMETRY

A. Spin Structure

Table I gives all the spin configurations of RMO3
derived with the assumption that the magnetic and
the paramagnetic unit cells are the same. ' In
RMO3 containing magnetic R ' ions, the observed
spin configuration just above T» belongs either to
I',(F„,C„G,:F„,C,")or to I',(A„, G„C,:C,) (Ref.
2} and is compatible with this table. Below Tzz,
owing to the R"-R" magnetic interaction, a new
R' spin configuration appears, as will be shown
below.

Now, we point out some experimental results re-
quiring a new explanation of the magnetic symmetry
below T„2. (a) In GdCr03, where the single-ion
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TABLE I. Compatible spin configurations in RMO3 for
T —T~. (After Bertaut; see Ref. 1).

I'i
j. 2

r3
I'4

r,
r,
I'7
I"

8

A~, G, Cg

F~, C„, Gg

C„, F, Ag

Gx A Fg

CR
FR CR

FR

6" AR
gs y

gB
GR

~R GR
X &

TABLE II. Symmetry operations for various spin con-
figurations. The screw axis C2~ (o.'=g, y, z) is parallel
to the n axis indicated in Fig. 1 of Ref. 2. The center
of inversion i is at each M site, and R is the time-re-
versal operation. (+) means that the spin configuration
is invariant to the corresponding operations.

r3 r, r, r,
~S AxG C

R3+

FxC'yG g

F"C"
x

CxF A GxAyFg

RFR FR
x g

G~A"
y x

GR A(G

anisotropy of the Qd3' ion can be neglected, the
magnetically observed results' show that the Gd '
spin configuration below 'T» = 2. 42 K is antiferro-
magnetic along the c axis and ferromagnetic along
the a axis, and that the Cr3' spin configuration is
(F, , G,) which belongs to the I'a configuration.
However, we see from Table I that although the
ferromagnetic Gd ' spin configuration I „" is com-
patible with the Cr" configuration (F„G,) men-
tioned above, the antiferromagnetic configuration
of the Gd' spina along the c axis is forbidden. (b)
In DyFe03, where the Dy ' anisotropy is large, the
Ising-like spin of Dy ' ion will be confined to the
direction of the anisotropy axis. The Dy3' spin in

DyA10, (nonmagnetic M' ion) has been analyzed to
be confined in the a-b plane, the angle between the
Dy

' spin and the b axis being 33'. ' '" The Dy'
spin configuration below T„r is 15(G„",A"„}. How-

ever, the configuration of Fe" spine is I', (A„, G„
C,), which is incompatible with that of Dy

' spins.
(c) The Cr' and Dy' sublattice spina of DyCrO,
favor the I'a(F„, C„G,) and I',(G,",A,") configura-
tions, respectively. ' '" These two configurations
are not compatible with each other. Furthermore,
the observed spontaneous magnetization along the
a axisv is too large for the weak ferromagnetic
moment E„of Cr ' ions, and is too small for the
Dy' ferromagnetic moment F„"of the I'r(F,",C", )
configuration which is compatible with the Cr '
configuration. Note that this I'r(F,",Cs) configura-
tion is the spin-flopped configuration of I',(G,",A,").

In order to explain the magnetic symmetry of
RMO3 below T», we assume that at T» Landau's
second-order phase transition takes place and the
magnetic symmetry group is lowered to the index-
two subgroup, the magnetic and the paramagnetic
unit cells remaining the same. Now the symmetry
operations for RMO, crystals above T» are given
in Table II, where the transformation properties of
the magnetic and electric fields are also given for
later use. The order of magnetic groups F, through
Fs is eight for all. At T» Landau's second-order
phase transition occurs and the number of symme-
try operations is reduced to half that above T».
Thus, the order of the magnetic group below T»
should be four. Table III gives the spin configura-
tions and the magnetic symmetries compatible with
our assumption.

(a) For instance, the two symmetry groups Da

(Ca)222 of the I'ae(F„, C„G,:F„",C"„A",) configura-

G,") configuration are both the index-two subgroup
of the group Dr~(Ca„)m'm'm of the I'a configuration.
The F,6 and F» configurations are invariant to op-
erations (E, C2„RCr„RCa,) and E, iCr„, iRC»,
RCa,}, respectively. If we apply these to GdCrO, ,
Table II shows that the Gd ' antiferromagnetic con-
figuration along the c axis is either A, for the F~~
or G," for the I'a, configuration. (b) On the other
hand, the symmetry group Dr(Da)222 of the I'„(A„
G„C,: G,",A,",C,") configuration is the index-two

field

E
2x

C2y

P2

2

iC2x
iC2y
icy

R
RC'2x
RC, 2y

RC2

Hx H Hx Es

Se
sy se . .s. ss

iR
iRD,„
iRC»
iR02,

FIG. 1. Spin configuration in RMO3 below TN2. (a)
The I'&5(A„, G~, C, : Gr, A", C~) configuration. (b) The
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TABLE III. Magnetic symmetry of various spin con-
figurations.

X XfIo +Xggt f +Xlymm 0 (2)

T TN2

TN"

Magnetic
symmetry

group Spin configuration

Ct t, (C2~)2m
C»(C, )2m'

D2~N2)m m m

D2t (C~pmmttt'

I'23, I'24,

I b

I'8, F7, I'8

D2t, (Dtgmmm I'g

Dg„(C2q)m'm'm r, , r, , r4

The expression of this Hamiltonian is a little dif-
ferent from that of Ref. 2, since the inversion is
no longer the symmetry operation of RMO3 below
T». The term X" consists of four parts, the iso-
tropic, the antisymmetric, and the anisotropic-
symmetric exchange interactions between R ' spins
and the anisotropy energy of R ' ions whose site
symmetry is C,:

D, (D,)222 I'»'
D2 (C ) 2 22 I 28,
C&„(C2$2mm I'f t I f t I'f

g

Cm„(C2)2m'm' I'25, ~ I'35, I 45

C2„(C )2m'm I'27, I'28, I'88, I'38, I'46, I'4y

Not C2„(C2)2m' I'58, I'57, I'58
realized C&z(C,) 2m

'The spin reorientation region. See Ref. 2.
RA103 (R=Gd, Tb, Dy) See Ref. 11.
DyFe03.
QdCros

eDyCra

subgroup of that Dn, (D») m'm'm of the I'& configura-
tion. The I'» configuration is invariant to opera-
tions (E, Ct, Cz„C3,). This is applied to DyFeO,
and the (G„",A"„) configuration of Dy' spine is com-
patible with the G„configuration of Fe ' spine. (c)
Furthermore, DyCrO~ has the I'3&(F„,C„G,:&,",
C„";G„",A„") configuration, which means that the
I'z(F„C„G,:F„",C„") configuration is mixed with
the I',(G,",A"„) configuration. The magnetic group
of the I'» configuration is Cm,(CI)2m'm', which is the
index-two subgroup of that Dz„(C~)m'm'm of the I'~

configuration and consists of elements (E, Ct,
iRC&„, iRCI,) More .detailed discussion of DyCrO~
will be given in Sec. II(E). (d) Finally, any other
RMO, below T~ would have one of the I',t(i = 1-4
and j= 5-8) configurations given in Table III. The
I » and I » spin configurations are illustrated in
Figs. 1(a) and 1(b), respectively. The I'&~ configu-
ration is obtained by exchanging the spins S, and S8.

S. Hamiltonian

The Hamiltonian of our system is given as

X=X"+X""+K",
where the first term represents the Hamiltonian
for M' ions which is shown, from the symmetry
considerations, to be the same as those given in
Ref. 2. The second term represents the Hamilto-
nian for the interaction between I and R ' ions
and the third that for R ' ions. The term X~ " con-
sists of the isotropic, antisymmetric and aniso-
tropic symmetric exchange interactions:

J ""S"~ S"+ Q D'"" ~ (S"xS~t}
m, xr

Q Ss.«a hex. Sx
gk, gi

+Z(D,'"(S", )'+E'"[(S")'-(Sa )']

+pa"(&a.Sa, +So,&a*~l

+ (fourth-order terms)

+ (sixth-order terms) . (3)

Now, we introduce average sublattice spins de-
noted by S, , where

S, =N ~ZS) (4)

(5a)

(5b)~55 +8 ~58 ~C ~57 D 4~58 '

Similarly, the antisymmetric and the anisotropic-
symmetric exchange-interaction constants multi-
plied by the number of nearest-neighbor spins are
used below in this paper. Symmetry considera-
tions show that these constants are given as those
in Table IV(a)-IV(f). Then, the Hamiltonians (2)
and (3) are given in Appendix, where Bertaut's ir-
reducible bases F, 6, C, and A' are used.

C. Spin Configuration of GdCr03

Vfe first consider the spin configuration of
GdCr03 below TN2. The Gd ' anisotropy energy of
GdCr08 is small as compared with other interac-
tion energies such as the Cr '-Gd ' and Gd '-Gd '
exchange interactions. ' ' Thus, the Gd ' spin is
not confined to its own single-ion anisotropy axis
but to the direction of the effective field due to the
magnetic interactiov, s with Cr ' and Gd ' spins.

The Hamiltonian (1) is also written asm

X=Xp+Xg ~

where

t(cT~ Je +Jc tTtt'}G

(6)

and N is the number of unit cells in the crystal.
Further, we use new isotropic exchange-interaction
constants multiplied by the number of nearest-
neighbor spins as follows~:

~15 y ~18 & 2~i7 i ~ 2~18 y
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TABLE V. Orders of magnitudes of various exchange
constants and of the single-ion anisotropy constants for
GdCrOS. Compare vrith Table II of Ref. 2.

D

E2 ES

MS+ RS+

R+ RS+ a

is the unperturbed isotropic Hamiltonian given in
Ref. 2 and X, is the anisotropic part of the Hamil-
tonian. The free energy (X& of the system is giv-
en, to the first-order perturbation of X„by

(X& = —%Tin Tre ~'+ (R,&,

where the angular brackets denote the thermal av-
erage taken with respect to the density matrix po
= e D"0/Tre ~0 He.re, we approximate the mean
value of the product of spin operators by the prod-
uct of the mean values of spin operators: (5&5, &

To simplify the calculation, it is convenient to
know the order of magnitudes of parameters. For
GdCr03 they are given in Table V, where e repre-
sents ID I/J'-10, the order of magnitudes of the
overt and hidden canting angles of CrS' spins.
We assume that the antisymmetric and the aniso-
tropic-symmetric exchange-interaction energies,
respectively, between the orbitally nondegenerate
ions such as Gd ' and Cr ' ions in GdCrOs are one
and two orders of magnitudes smaller than the
corresponding isotropic exchange interaction en-
ergy. Furthermore, we assume the anisotropy
term E =(D,E,P') of Gd~' ion+ to be of the order
off.

Since the real spin configuration of GdCrOs can.-
not be identified definitely by the magnetic data7

alone, we assume in this subsection that GdCrOs
has the I'z~(F„, C„,G, :F,",C"„,G", } configuration
below T„D. From the Hamiltonians (9a)-(9d) of
Ref. 2 and (Al)-(A7) of this paper, the normalized
free-energy of the I'~7 spin configuration is found
to be

F= «&/(S. ,&'~

2 (J~ + JD + Jc+JD)F,'+ a (J~+Js —Jc —JD) Cy

+ 2 (J„-JD+Jc —JD)Gg

+ (D„+B~)FgGg —(B,—C~)C„Gg+DGg

+s[(J +J"+J'+J'")F„F,"
+ (J +J"—J'- J'")C„C„"

+(D„+D„" +D„' +D„"')G/, ]

+s [~(J„'+JD+Jc+JD)(F „")

+ g(J„+JD —Jc —JD}(C"„)

+ 2(Jg —JD+Jc —J'D)(G", ) ],
where terms smaller than the order of & are
omitted. s is the ratio of the mean values of the
Gd ' and Cr ' spins, (So~)/(Sc, ), which is the
only parameter depending on the temperature.

In the classical-spin approximation, equilibri-
um directions of the sublattice spine are defined
in terms of g, P, 4, and 4, where P and 4 are
the overt and hidden canting angles of CrS' spina,
respectively, 24 is the angle between two sub-
lattices of Gd ' spins 5, and Sa or 88 and S~, 24'
is the angle between S, and 5~ or 5~ and Ss which
gives the G, configuration [see Fig. 1(b)]. This
angle @' can be taken as an order parameter of
the second-order phase transition at T„~. Then,
the normalized basis vectors are expressed in
terms of g, Q, 4, and 4 as follows:

F,= isPn-g,
C, =cosg sing- 4,
G, = —cosgcosP- —1,
F„=cos4,

C,"= sin@ cos4

6,"=sin4 sin4 ' .

(loa)
(lob)

(1Oc)

(lod)

(1Oe}

(lof)

4 = —[(B;C,}+ s(J+J"—J' —J"') sin4

x cos4 ']/2( JD —Jc), (12)

(JD —Jc)(J+J"+J'+ J"")3(so+s cos4)s ~ sine'

+ (JD +JD)(J+J"—J' —J'")'(so —s ~ sin4 cos4')

x s ~ cos@ cos@'

—4(JD+ JD)(JD —Jc}s sin4 cos4[(JD+ JD}

—(JD —Jc)cos~4') = 0,

The minus sign in Eq. (10c) shows that the up-
spins of the 6, configuration of Cr ' ions are S2
and S4 and the down-spine are 5, and Si, which is
the configuration below the spin-reorientation
temperature of the I'&- 1 & type. Inserting Eq.
(10) into Eq. (9) and minimizing Eq. (9) with re-
spectto(t, $, 4and4, weobtaintheexpressionforthe
free-energy as a function of the temperature T.
Minimization of the free-energy with respect to
these angles gives the following four equations:

p = [(D„+B„)—s(J+J"+J'+ J'")cos4]/2(J'D+ JD),
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sin4sin4' ([(J+J"-J'- J"') —4(js -Jc)

x(js- jc)]s ~ sin@ cos4' —(Z+ J" j-' where

JII l)2 s () {14}

2(Dy+D„+D~+D )(Jn+ Js) (J+J '+ J + J )(Dy+B„)
(J+j '+ J'+J"' )

2(Di+ D" —Di —Di"}(js —Jc) —(J+J"—j' —J"') (B,—C„)

(j+jll P Jill )2
(16)

82+
s = 2(Js —jc) ~0

a@'

are always satisfied. For a stable configuration
the following equations should be positive:

(18)

92y
= [(J+j"+ j'+ j'")~/2(j +J )]
x (so+ s ~ cos@')s ~ cos@

—[(j+j"—j'- j"')'/2(js —Jdl
x (so —s ~ sin 4' cos4') s ~ sin@ cos@'

—2s cos24 ~ [(Jn + Js) —(Js —J'c) cos 4'], (19)

, = s ~ sin@(-[(J+J"—O' —J'")~/2(j —J )]

x (so —s ~ sin@ cos@')cos@'

+2(js- jc)s ~ sin@ oca@2'). (20)

Equations (13) and (14) give an unstable solution

(I), and two sets of stable solutions (II) and (III).
C((se I. sin4 =0. In this case, Eq. (20) shows

that the spin configuration is stationary and not
stable. Following Eqs. (10d)-(10f), the configura-
tion of Gd ' spins is completely E~ which means
that the Gd~' spina are polarized parallel or anti-
parallel to the net moment F, of Cr~ spins.

Case II. sin@'= 0. The angle @ is determined
by Eq. (13):

(Js —Jc)(j+J"+J'+ J"')~(so+ s ~ cos4 )s ~ sin4

+(Jn+ Js)(j'+J"—J' —J"')~(sz —s ~ sin@}s ~ cost
—4(j~+Js)(js —Jc)(js +Jc)s~ sinC' cos@= 0.

(21a)
This equation is similar to Eq. (3Va) of Ref. 2 ex-
cept for the last term which results from the Gds'
—Gd~ exchange interaction. Using the angle 4 de-
termined by Eq. (21a), the equilibrium values of

The angles @ and @"which are assumed to be gen-
erally of the order of 1 are determined by Eqs.
(13) and (14). The stability conditions with respect
to g and P

QSg
=2(jn+ Js) &0,

other angles are obtained as

@,I

g =[(D„+B„)—s(j+J"+J'+J"') cos@] /2(JD+ Js),
(21c)

(21b)

@ = —[(B„—C,) + s(J+J"—J' —J"')

x sin@]/2( Js —Jc) . (21(i)

This corresponds to the I'I(F„C„,G, :F,",C"„}con-
figuration above T„z. The stability conditions of
Eqs. (19) and (20) should be satisfied.

Case II. In this case we have

s sin@' cos@'=B,
where

sl(j jlt jf jill)8
B=

(J+J"-j'-J"')3-4(j' -j )(J' -j')

(22)

(23)

xB~)s ~ cos4 —(Js —Jc)(j+J"+J'+J"') sos = 0.
(24a)

By using the angle 4 determined by Eq. (24a), Eqs.
(22), (11), and (12) give the other stable angles to
be

4'= cos '[B/(s ~ sin@)], (24b)

=[(D„+B„)—s(j+J"+J'+ J'")cos4]/2( j~+Js),
(24c)

Q = —[(B —C )+B(j+J"—J' —J"')]/2(j's —jc) .
(24(i)

This corresponds to the I'z~(F, C„,G:Ff, C„",G,")
configuration below 2». Also in this case the
stability conditions of Eqs. (19) and (20) should be
satisfied.

The angle @ is determined by the following equa-
tion:

(Js -Jc}[(j+J"+J'+J"') -4(j~+Js)(js+ Js}]
x s~ cosset+ (js Jc}(j+j"+—P+ J'"')Isosa cos~C

—((Js —jc}[(J+j"+J'+ J"')~ —4(js+ Js}(js+Js)]s

+ (jn+ Js)(j+J"—J' J"')~sf—t

—(Js+ js)[(j+j" J' j"')' -4(js—- Jc-)(js jc)l-
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Up to the order of e, the free-energies E(rs),
E(rs"), and E(1 27') of three cases I, II, and III,
respectively, are given as

F(r,'&=F" [(J+J"+J'+ J"')'/2(J, + J,)]
s(s+so)+ ~(J„+Js+ Jc+Jn)s',

E(I' ) = E —[(J+J"+ J'+ J"') /2( J +J )]
x (so+ s ~ cos4) s ~ cos4+ [(J+J"—J' —J"'}2/

2(Js- Jc)] (so-s sin@)s sin4

(25a)

+ —,
' [(J'„+Js+Jc+Js) cos 4

+(J„'+Js —Jc —Jn)sin 4]s,
F(r„"'}'=Fc [(J+J"+J'+J'")'/2(J, +J,)]

(25b)

x(so+s cos4)s cos4

+ [(J+J" J' —J"')2/2(Js —Jc)](so —B)B

+ (J Jc)B + s [(Jg+Js +J'c+ Jy) cos 4

+ (J„' —Js + Jc' —Jgsin24]s (25c)

where E ' is the free-energy of Crs' spin sys-
tem.

F '=Eo+D -[4(Jn+ Js) —(J„+Js+ Jc+JD)]

x (D„+B„)'/8(JD+ Js)' [4('Js JJ
—(Jg+ Js —Jc —Jn)](B —C }/8(Js —Jc) . (25d)

Although the configuration of case I has been shown
to be unstable, the free-energy E(rs) is also given
for comparison.

In the high-temperature phase, s is relatively
small and the free energy E(rs') is the lowest.
Then, the I'2(F, C„,G:E„C"„)configuration is
realized. As the temperature is lowered, s in-
creases and then the free energy of this configura-
tion crosses that of the r,~(F„C„,G, :Es, C"„,Gs )
configuration at a critical point s, , where the cor-
responding temperature is defined as T». Then,
@' takes a nonzero value and a new antiferromag-
netic configuration G" of Gd ' spins appears. The
free energy E(rs", ) is the lowest for s larger than

s, and the I'» configuration is realized in the
lower-temperature phase. Here, although we have
no available values of parameters in Eq. (25), it
seems that F(rs) is higher than E(rP) or E(rP, ')
for all values of s. The case I, therefore, is nev-
er realized.

Now, we can obtain the expressions of the deriv-
atives of the angle @' with respect to the tempera-
ture T by differentiating Eqs. (21a) and (24a) for
the high- and low-temperature phases, respective-
ly. The resulting expression is lengthy and is not
given here; its derivation is quite straightforward.
84/BT has a finite discontinuity at Tss. The deriv-
ative of the angle 4' is obtained from Eq. (22) as
follows:

We next investigate the spin configuration DyFe03
below T», where the Dy ' anisotropy is large
enough as compared with the Fe"-Dy ' and Dy '-
Dy3' magnetic interactions. Then, we can regard
the Dy ' spin as the Ising-like spin directed along
its own anisotropy axis.

As mentioned previously, we assume that the
spin configuration of DyFe03 below Tss is I'„(A,
G„, C:G,",A„"). Here, the C~ configuration of
Dy ' spins is omitted, since the Dy" Ising-like spin
is confined to its anisotropy axis in the a-5 plane.
The Hamiltonian of this F,z configuration is easily
obtained from Eqs. (9a)-(Qd) of Ref. 2 and from
Eqs. (Al)-(A7) of this paper. Then, in this con-
figuration the isotropic and the antisymmetric ex-
change interactions between Fe ' and Dy ' spins are
absent and the anisotropic-symmetric exchange in-
teraction is given as

X~ /2Ã (a -a'+a' -a ')A, Gs

(27)

Now, for the temperature above T», symmetry
arguments show that a~=a ~ and a"~ =a'~. Ex-
pecting that the same relations nearly hold for the
temperature below T», the anisotropic-symmetric
exchange interaction is small enough to be neglected.
Thus, since the Fe'-Dy~' interaction is nearly ab-
sent for this I"

&& configuration, we can treat two
spin systems of Fe ' and Dy ' ions to be indepen-
dent of each other. Therefore, the spin configura-
tions of Fe ' and Dy ' ions in DyFe03 are the same
as those of Fe ' ions in YFeO~ and of Dy ' ions in
DyA10, , respectively. The Fe' spin configuration
is (A„G„C,). The hidden canting angles P and @'
which give the A„and C, configurations, respective-
ly, are given as follows':

@=(D.-C,)/2(J -J ), (28a)

0'= —(B.-C.)/2(Js -Jc) . (28b)

The Dy
' spin configuration is (G,",A"„); each spin

[(Bs/BT)sm4+(84/BT)s. cos4]cos4'ac'/ey =
(s ~ sinC sinC")

(26)

using the derivative 8@/BT to be determined. At

T„2, 4' is zero and Eq. (26) shows that 84''/BT has
an infinite discontinuity. This is characteristic of
Landau's second-order phase transition. Similar
discussions are applicable to the case where
GdCr03 has the F&6 configuration.

D. Spin Configuration of DyFe03
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is confined in the a-b plane and canted from the 5
axis by 33'."

E. Spin Configuration of DyCr03

The Cr' spine of DyCrO, have the I'2(F„C„,G,)
configuration. Then, following Bertaut, ' the com-
patible configuration of Dye' spine should be I',(F,",
C,
"). However, the Dy

' spine favor the I',(G,",A„")
configuration as mentioned previously. Vfe assume
that the Dy

' spins are confined to its own anisot-
ropy axis. The free energy of the I'2(F", C", ) con-
figuration is not so much higher than that of the F~
(6",A„") configuration. The difference of free en-
ergies between two configurations is of the order
of the Dy'-Dy' interaction J' which is calculated
to be nearly 0.2 cm ' by using the experimental
data. ' Here, the 12 configuration is the spin-
flopped configuration of I,. In fact, Holmes et al. "
found in DyA103 that with the magnetic field applied
along the a axis, the metamagnetic transition which
involves a simultaneous reversal of two spins takes
place at a critical field H, = 11 kOe at the tempera-
ture T= l. 45 K (T~z=3. 52 K). Now, in DyCrO„
the weak ferromagnetic moment of Cr ' spins along
the a axis induces the effective field acting on Dy '
spine along the a axis owing to the Crs'-Dy ' inter-
actions. The comparison with the observed data'
shows that the magnitude of this effective field is
7 kOe which is smaller than H, . Then, the Dy3'

spin configuration would be mainly I', (G,",A„").
However, this effective field induces the ferromag-
netic moment F," of Dy' spins, resulting in the I'2

(F„",C" ) configuration in addition to I'~(G,",A"„).
Thus, there is a possibility that the two spin con-
figurations coexist stably.

This is also justified from symmetry arguments.
Table II shows that the effective field and the in-
duced Dy ' spins above T» both belong to the I ~

(H„:F"„,C",) configuration whose magnetic symme-
try group is Da„(Cz„)m'm'm. This magnetic group is
invariant to operators (E, Cz, i, fCa„RC3, , RC3„
fRCz„ iRCz,}. At T„z the reordering of Dy' spins
takes place. Below T» the Dy' spins favor the I',
(G,",A") configuration in addition to I'2(F,",C"„)due

to the effective field from the Cr + spins, resulting
in the I'35 (F„", C„"; G„, A„") spin configuration,
whose magnetic group is Cz,(Cz)2m'm'. The sym-
metry operations in this group are (B, C~„, iRCz„,
iRC2, ) Thus. a. t T~z Landau's second-order phase
transition occurs and the number of symmetry
operators is reduced to half that above T». The
spin configurations below and above T„z, F&5, and
I'3, respectively, are illustrated in Figs. 2(a) and

1B

Now, we calculate the free-energy of the 1'»
(F„,C„G,: F„",C„"; G„", A„") configuration. In
DyCrO& containing orbitally degenerate Dy~' ion,
the orders of magnitudes of interaction parameters

+2(a +a,'„'+a' +a"')] (3O}

-(S )(2[(D,+D„+D,+D„)+2(a + a + a +sI )]

x (J~+Js) —(J+J +j +J )(D + B„)I/2(Jq+ Js)

—(S~)(J+J"+J'+ J"')~/2(Jn+ Js), (30')

which is expected to amount to 7 kOe at T = 1.5 K
to fit the observed data. 7

III. MAGNETOELECTRIC EFFECT

In a material which exhibits the linear magneto-
electric (ME) effect, '~ ~' an applied electric field
E induces a magnetization M which is proportional
to E, and an applied magnetic field H induces an
electric polarization P which is proportional to H.
Since the qualitative nature of the ME tensors is
determined by symmetry, measurement of these

C,

S --S~
Se

Ss Sl

Sv, Ss SS,S6

S3
T «Te

Sy

0
(o)

s, s.~~ s. s.
'

H(n

u

(b)

FIG. 2. Spin configuration in DyCr03. (a) The &25

(F», C„,G»:F», C» G„,A ) configuration below T~2. (b)
The F2(F», C, G, :F»,C„) configuration above T~&.

are given in Table II of Ref. 2. In a procedure
similar to that in Sec. II C, we obtain the equilib-
rium values of the angles g and P which define the
overt canting F„and the hidden canting C„respec-
tively, of Crs' spins:

g= —[(D„+B„)+s(J+J +J +J )sin40]/2(Jn+ Js),
(29a)

P = —[(B,—C,)+ s(J+J —J —J )sin@,]/2(Js —Jc),
(29b)

where s is the ratio of the induced Dys' sublattice
spin to the Cr ' sublattice spin and 40 is the angle
between the Dy

' anisotropy axis and the b axis.
(40 is taken to be 33'. ) Finally, from Eqs. (Al)-
(A3), we obtain the effective field acting on the
Dy~ spine along the a axis as follows:

H,«=(S~) [(J+J"+g'+ J'")g+(D„+D„"+D„'+D„'")
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ME tensor

0
0
0

Spin configuration

0 r , I'2, 1 8, I'4
0 a
0

r, I' 8, I', I'23, I'24, I'
4

I' b

r„, r„, r„, r„c

TABLE VI. Magnetoelectric susceptibility tensors for
various spin configurations.

netization, respectively, parallel to the c axis (or
the b axis). For the I'z~ configuration a„and a,„
elements are nonzero. Therefore, future experi-
ments on the ME effect of GdCr03 will clarify
whether it has the I'I, or I'~~ configuration. (v)
All of the magnetic symmetry in RM)3 below T»
are to be determined by the ME effect measure-
ment by using Table VI.

IV. CONCLUDING REMARKS

0 0
0 0 0~ r,

rie r28. 'r88. r480 egq 0
T —TN2

afxe

0 0 0 r„, r„,'r„, r„
-Ot gx

0 e~ 0

n~ 0 0
0 0 0 ri8 ~ r28 r38 r48

The spin reorientation region.
BA108 {R=Gd, Tb, Dy); see Ref. 11.
DyFe03.

+DyCrO&.
'GdCr03.

tensors provides a powerful tool for justifying our
arguments developed in Sec. II.

We can write the free energy of a ME material,
the electric polarization, and the magnetization as

I' = ——m t(&& E& E& —~ 0(
&& E& H& ——m g&J H, H&2j,f 2j,j

(31a)
(31b)Pt = —(8P/8Ei)» r =Z&&~ E~ +Z a(~ H~

M( = —(8E/8Hg)s r =Z}tu Hi+Ra(i E~
f

(31c)

where ~„and g,~ are the usual electric and mag-
netic susceptibility tensors, respectively, and 0.,&

is the ME susceptibility tensor.
By using symmetry considerations together with

Tables II and III, the ME susceptibility tensors
for various spin configurations are given in Table
VI. (i) Above T„2, the tensors vanish for all F,
(f= 1-4) and I', i(l, j=1-4) configurations, since
the corresponding groups involve the inversion
symmetry. (ii) However, below T„,, all RM3,
crystals are expected to exhibit the ME effect due
to the lack of the inversion symmetry. (iii) The
nonvanishing ME tensor elements of the F«and
I"» type such as DyFe03 and DyCr03, respectively,
are a„„, 0,» and 0.„. Thus, the magnetic and
electric fields along any crystal axis induce polari-
zation and magnetization, respectively, along the
applied field. (iv) Since a and u„are nonzero
tensor elements for the I"~8 configuration, the ap-
plied magnetic and electric fields along the b axis
(or the c axis) induce an ME polarization and mag-

The authors wish to thank Professor S. Sugano
for helpful discussions and revising the manu-
script. They are also indebted to Mr. S. Washi-
miya, and Professor H. Kamimura, and Professor
T. Moriya for useful suggestions.

APPENDIX' HAMILTONIANS FOR THE INTERACTION
BETWEEN N AND R IONS AND FOR R IONS

X, /N=(J+Z +J +Z )F ~ F"

+ (Z+O' —Z —J' ) 6 ~ 0.(z-z".z'-z"') X.0"
+(Z-Z —Z +Z )5 ~ X"

3C q, /N=(D„+D, +D, +D, )(A„Fg -A P")
(Al)

Assuming that in RMO& the magnetic and the
paramagnetic unit cells are the same both above
and below T„~, we have clarified that the magnetic
symmetry group is lowered to the index-two sub-
group of that above T». By calculating the free
energy, the spin configuration corresponding to
this magnetic group has been shown to be stable.
Then, we have shown that GdCr03 has either the

F,", C„G",) configuration, DyFeO~ the I',5(A„, G„,
C, :G,", As) configuration, and DyCrO~ the I'15

(&„C„G,:F,", C"„; G„A,") configuration.
Furthermore, we have predicted that the NE

effect may be observed in RM)8 below T», al-
though any RMO& has no ME effect above T„z. In
DyFeO, and DyCrO, which have the I'„and the
I'» configurations, respectively, a magnetic or
an electric field along any crystal axis induces a
polarization or a magnetization parallel to the ap-
plied field. In GdCrO, with the I'~6 configuration,
the ME polarization and magnetization are induced
along the 8 axis (or the c axis) with the applied
magnetic and electric field along the c axis (or the
b axis). If GdCrO, has the I'~~ configuration, the
role of the b axis in the F~s configuration is re-
placed by that of the a axis. Thus, measurements
of the ME tensor determine which configuration
GdCr08 has. It is hoped that all the magnetic
symmetry of other RMOS could be determined by
observing the ME effect.
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+(D, +D„' D-„-D, )(G„C", —G, C"„)

+(D, -D„D,-+8, )(C„A,"—C,A"„)

+ (D„+D„+D„+D„)(GgEg —G~g)
+ (D„+D„8„--8„)(A,C,"-A, C,")
+ (D —8„+D„-D„)(C,G, —C,G, }

+(D„-D„"-D„'+D„' }(F~—F+,")
+(D, +D, +D, +D, )(C,F,". —C„E„)

+(D, +D, D, -D, )(-F C"„—E„C,")
+(D, D,"+—D, -D, )(G„G"„—G„G,")
+ (D, —D,

"—D,'+ D, }(~R—AP"g)

X J2N=(a +a +a +a )F,E,"

+(a +a a g )CC
+ 4,.—4+~*-4')«."
+(a,„—a -a„,+a„, ) G„A"„

+ (terms where x= y)

+ (terms where x z)

(A2)

D )(ARCR ARCR)

+ (B„'+C„')(Ag F„"-A„Eg)

+ (Bt C l)(GRCR GRCR)

+ (D,'+ C,')(C",E„—C„"F"„)

+ (Dg —Cg)(G, A„—G„A,"),
Hw~N = (a' + b' +c' +d„'„)(E,"P

+(a' b,', +-c„'„-d„',)(G„")

+ (terms where x=y)
+ (terms where x=z)
+ 2(a,'„+b~)(F"„C„+E,C„)
+ 2(a,', —b~)(G„ARg + G"„AR)

+2(a„',+ c~)(FgG, +F,"G"„)

+2(a,', +d,',)(F,A, +F„A",)

+2(a' d' )(C, G +C G )

HQN = D' (IF," } +( G", )'+(C,"}+(A, }]

(A6)

+ (a,„+a„'„'+a„'„+a,'„")(C,E", + C„E, )

+ (a„,+ a„„—a —a„„)(F,C"„+E„C„")

+ (g,„—a" —a,'„+a„',")(~R+~R)

+ (a„,—a„—a„,+ g„, )(CP,"+ C,A„")

+ (a~+ a + a +a )(G,E„"+G,E, )

+ (a~ —a~ —a,g + ag„)(F~ +F+, )

H, QN= g(Jg+ JR+~c+~n)(F }

+ ~g(~g -~a+~c -~h)(d )'

+g&x+~R -~c -~n)«}'
+ g (J„' JR —Jc +JR) (A-),

H~~, /N= (B,'+D,')(G"„Fg —GgE„)

t

(AS)

(A4)

I ~ I
agg = —(agg+agg) ~

a,",= —(a,'„'+a,'„'), lll
gag = —(Clog +82lSl I t

agg = —(agg+agg) ~

Cgg (Cgg+Cgg) q

bgg = —(b,', + b„'„),

d,', = —(d„'„+d„'„).
For T» T», the symmetry group contains the in-
version operation. Then,

Jll J JIII Jl Dfl D Diff Dlt t t

a a a —a

and

Therefore, for T~ T„z, Eqs. (Al)-(AS) coincide
with Eqs. (Qe)-(Qg) of Ref. 2, respectively.

Hi[(FR)z (GR)z (CR)z (AR)R]

—(Fg } —(G'„} —(C'„} —(A"„}]

+ (fourth-order terms)
+ (sixth-order terms), (A7)

where N is the number of unit cells in crystal, and
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