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Heat Capacity of RbMnF, near the Antiferromagnetic Transition Temperature
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Precision measurements of the heat capacity C~ of the isotropic Heisenberg system RbMnF, near the
antiferromagnetic transition temperature T, = 83.08 K are reported. The measurements are for
76 & T & 88 K. The results are in every respect consistent with predictions based upon recent theories of
critical phenomena. They imply that C~ is finite and continuous at T,. Under certain assumptions about
the functional form of C~, the critical exponents a = a' = —0.14+ 0.01 and the amplitude ratio
A /3 ' = 1.40 + 0.04 are obtained. These parameters are believed to be characteristic of systems with
short-range interactions and three degrees of freedom in the order parameter. A comparison with
thermal-expansion measurements yields dP!dT, =1.69 X 10' bar K ' and d S/d T, = O.S1 J mole ' K '.

I. INTRODUCTION

There has been considerable theoretical prog-
ress recently towards the understanding of the
behavior of systems near critical points. ' ~ In
particular, new theoretical calculations of criti-
cal exponents' and of the equation of state by
means of an expansion in the dimensionality d of
the system have yielded results in agreement with
scaling, ' and with the concept of universality of
critical-point parameters within a given symmetry
class of the order parameter. In addition to the
validity of the various scaling laws, 6 it is expected
that critical exponents and certain other param-
eters will be universal in the sense that they are
identical for apparently vastly different systems,
provided the physical dimensionality d and the
number of degrees of freedom n of the order pa-
rameter are the same, and provided the interac-
tions have a sufficiently short range. In the three-
dimensional systems commonly accessible to
laboratory investigations one thus expects to en-
counter only three distinct sets of critical-point
parameters for systems with short-range interac-
tions, corresponding to three different values of

For systems where the order parameter is a
scalar, one has ~ = 1. Typical for this case are
Ising magnets with negligible dipolar interactions,
liquid-gas critical points, P-brass-type order-dis-
order transitions, and phase separations in liquid
mixtures. When the order parameter may have
more than one component, one expects different
parameters. Thus, for instance, magnetic sys-
tems with two "easy axes, " and the superfluid
transition in liquid heiium where the order param-
eter is complex and therefore has a magnitude
and a phase, correspond to n = 2. They are ex-
pected to have exponents which may differ, for
instance, from the liquid-gas exponents. Repre-
sentative of n = 3 are Heisenberg magnetic systems
with isotropic interactions, where the order pa-
rameter is a vector with dimensionality n equal

to the physical dimensionality d = 3 of the system.
However, for Heisenberg ferromagnets there may
be appreciable contributions to the interaction
from dipolar forces; and these systems therefore
do not necessarily show the critical behavior which
is expected for systems with short-range forces.
Dipolar forces are negligible, however, for anti-
ferromagnets; and isotropic antiferromagnets may
therefore be regarded as the prime example of the
case d = 3, n = 3 with short-range interactions.
Possibly the best example of this class is the anti-
ferromagnet RbMnFs. ' Although a variety of
experimental measurements have been reported
for this system near the antiferromagnetic ordering
temperature T„""there are as yet no measure-
ments for any system with n = 3 which are as accu-
rate as some of the results for critical-point pa-
rameters corresponding to n = 2' ' or n = 1. '
addition, the results which are available for the
specific heat C~' and for the thermal-expansion
coefficient 0.~' '" of RbMnF& have usually been
interpreted to imply a violation of the predictions
of scaling which require equal exponents for C~
and 0~ above and below T, . Many of these difficul-
ties are attributable to often very severe materi-
als problems which made it impossible to obtain
suff iciently homogeneous samples for measure-
ments very near T, . We wish to report in this
paper two sets of measurements of C~ which were
made on two very homogeneous samples of RbMnF3.
We find that our results agree with scaling in that
the exponents which are derived from the mea-
sured C~ above and belo~ T, are equal. The com-
mon viue of these exponents is negative, implying
that C~ is finite at T, . Our exponent is in agree-
ment with numerical calculations for the Heisen-
berg system, '9'~owith results obtained from an
expansion of the exponent in the dimensionality of
the system, and with the trend as a function of
n provided by measurements for n= 1 and n = 2 and
exact theoretical results for n =~.

Preliminary results of this work were reported
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The calorimetric apparatus is shown schemati-
cally in Fig. 1. It was designed for experiments
covering various temperature ranges from 0. 3
to 100 K.

The sample was glued with a minute amount of
GE-'7031 varnish to a sample holder, and the holder
was suspended by nylon threads inside an iso-
thermal shield. Thermal contact between the
shield and the sample holder could be made by
means of a mechanical heat switch. The shield
was thermally isolated from the main bath, except
for radiation heat exchange and for conduction
along certain stainless-steel tubes. These tubes
were used for the heat switch and for the pump-
line of an inner bath, and provided physical sup-
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FIG. 1. Schematic diagram of the ca1orimeter.

before, together with results for the Heisenberg
ferromagnet EuO. ' Since the transition region in
EuO exhibited appreciable "rounding" because of
sample inhomogeneities, additional measurements
will be made on other samples and the results will
be published in a separate paper.

The experimental details of the specific-heat
measurements will be described in Sec. II. In
Sec. III we report our results for RbMnF3. An
extensive analysis of these results will be reported
in Sec. IV. A comparison of our data with other
experiments will be presented in Sec. V. A com-
parison with theoretical predictions is given in
Sec. VI and a brief summary is provided by Sec.
VII.

II. APPARATUS AND METHODS

A. Calorimeter

1. General

port for the shield. The inner bath was thermally
an integral part of the isothermal shield. It could
be used as a He stage with liquid He4 in the outer
bath in order to attain temperatures near 0. 3 K.
In the present case, however, it was partially
filled with nitrogen, and liquid nitrogen at the nor-
mal boiling point was used in the outer bath. The
ref luxing nitrogen in the inner bath pumpline pro-
vided an efficient cooling mechanism for the iso-
thermal shield. After the shield was cold, the
nitrogen was removed from the inner bath. Slow
cooling of the isothermal shield by radiation heat
exchange was then still possible if desired. The
system was enclosed in a vacuum can, and im-
mersed in the main bath. The vacuum can con-
tained near its bottom some Linde type 13X molec-
ular-sieve pellets. The vacuum which had initially
been established at room temperature was there-
fore improved considerably upon transfer of
liquid nitrogen to the main bath. Although for the
present work the main bath was maintained at the
normal boiling point, the measurements on EuO
mentioned previously and to be reported in detail
elsewhere required lower temperatures, and were
made with the main bath under reduced pressure
and regulated near 64 K. The electrical leads
were brought down through the vacuum line and
were thermally attached to the bath and then to
the isothermal shield. They consisted of 1.3
& 10 -cm-diam manganin wire with quadruple
Formvar insulation.

Z. Isothermal Shield

The isothermal shield consisted of an upper
platform with the inner bath, and of a heavy-walled
can which completely surrounded the sample
space. It was made primarily of copper, and the
can was thermally attached to the platform by
bolts which compressed an indium gasket. At-
tached to the inside of the shield were three cop-
per rods from which the sample could be con-
veniently suspended by nylon strings. The strings
were held under tension by springs at the shield
end. The jaws of the heat switch (Fig. 1) were
indium coated, and were thermally attached to the
shield with copper braid. The shield temperature
Tz could be raised and maintained above the main
bath temperature by either of two heaters wound
one each around the inner bath and along the en-
tire length of the shield can. By means of either
platinum ~ or germanium'3 thermometers located
at the shield platform, T~ could be measured. At
the temperature of the present experiment the 2

kg of copper in the shield provided a large ther-
mal mass, and the heat losses to the main bath
(mostly radiation) were sufficiently small to re-
sult in shield-bath relaxation times of about 10
h. Internal relaxation times within the shield were
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at most a few seconds. Under these circum-
stances a good isothermal environment over the
duration of a heat-capacity measurement (= 10
min) could be provided by adjusting a steady-state
heat input to an appropriate level after the desired
shield temperature was established.

3. Sample Holder

The sample holder was made of a copper disk
which was 18 mm in diameter and 0. 2 mm thick.
A 0. 075-cm-diam copper wire was soldered to the
disk, and its free end was placed between the heat-
switch jaws so that thermal contact could be made
between the sample holder and the isothermal
shield. A flat heater was varnished to the bottom
of the sample holder, using GE-7031 varnish. Its
resistance was nominally 5770 0 and it was made
of 0. 0038-cm-diam Karma 4 wire. The heater
was provided with two current and two potential
leads. The current leadh between the sample
holder and the top of the isothermal shield had a
total resistance of approximately 10 Q, half of
which was included in the heater resistance for
calculating the heater power. A thermistor '
which was also varnished to the bottom of the same
holder was used as the temperature sensor. The
total weight of this system was about 0. 8 g, and
at 83 K it had a heat capacity of 0. 15 J/K. Ther-
mal relaxation times with a typical RbMnF3 sample
glued in place were at most a few seconds.

B. Thermometry

The temperature scales used in this experiment
were maintained on three platinum thermometers
which were mounted on the isothermal shield (Sec.
II A 2). All platinum thermometer resistances
were measured by a four-lead direct-current po-
tentiometric technique. The temperature scale
used for the first sample (HbMnF~-I, see Sec. IIC)
was based on a calibration supplied by the ther-
mometer manufacturer, ' whereas the work on the
second sample employed a calibration by Cryocal,
Inc. '6 The two temperature scales differed from
each other by no more than 0.03 K for T near 83
K. We estimate that the difference between these
two temperature scales may cause differences of
perhaps 1% in the derived specific heat; but this
difference should be nearly constant over the nar-
row range of T involved in this work, and should
not affect the singular temperature dependence of
C~ and the crucial critical-point parameters de-
rived from the data.

The temperature increments used in the specific-
heat measurements were determined with the
thermistor ' which was mounted on the sample
holder (Sec. IIA 3). The thermistor resistance
was measured using an ac-bridge technique de-
scribed elsewhere. It was calibrated against the

platinum thermometers by closing the heat switch
and by adjusting the sample temperature until it
was constant in time. The precision of this pro-
cedure was much greater than the accuracy of the
original platinum- thermometer calibrations and
calibration points could readily be obtained with a
scatter of + 10 K. The simple polynominal

T =A+B lnR+ C (lnR)

was fitted to the calibration data by a least-squares
procedure, and represented them within the ran-
dom scatter of about + 10 K over the temperature
interval of the measurements. We preferred Eq.
(1) for our purposes over certain others" because
of its simplicity and its linearity in the parameters.
Within the resolution of our comparison of the
working thermometer with the platinum thermom-
eters, the thermistor maintained its calibration
for weeks as long as it was not thermally cycled.
Thermal cycling to room temperature could result
in calibration changes of 0. 1 K.

The temperature resolution of the thermistor
measurements were about 2x10 ' K near 83 K.
This enabled us to measure C~ to + 1% when It I-=1 1 —T/T, I 23&&10 ', and to +0. 1% when [f I &3
x10 '.

C. Samples

The samples used were two single crystals, to
be referred to as I and II, of RbMnF3. RbMnF3-
II was the same sample that was used by Golding' '"
for thermal. -expansion measurements. RbMnF3-
I was cut from the same main sample that yielded
RbMnF~-II. RbMnF~-I weighed 3. 331 g, and
RbMnF3-II weighed 2. 510 g. Both samples were
approximately cubic in shape. The results for
RbMnF3-I are those reported briefly previously.

D. Procedure

After liquid nitrogen was transferred to the outer
bath, nitrogen gas was admitted to the inner bath
until cooling of the isothermal shield by ref luxing
of nitrogen in the pumpline started. The heat
switch was left open so that the sample was cooled
slowly by thermal radiation. This was done in
order to minimize the stresses to which the sam-
ple would be exposed because of a different rate of
contraction for the sample holder. After 18 h

the temperature was near 100 K. The heat switch
was closed and the nitrogen in the inner bath was
pumped out. The thermistor was then calibrated
against the platinum thermometer (Sec. IIB).

The heat-capacity measurements were made by
a conventional technique. The isothermal shield
was kept at a constant temperature T~ near the

sample temperature T. Power was dissipated in
the heater for a measured length of time, and
foredrifts and afterdrifts of the sample tempera-



5166 AVINOAM KORNBLIT AND GUENTER AHLERS

III. RESULTS

The results for RbMnF, -II are shown in Figs.
2 and 3. Those for RbMnF3-I were published in
graphical form previously, and are very similar
to the data in Fig. 3. The slight difference be-
tween the two sets of measurements is attributable
to differences in the temperature scales (Sec. IIB).

Over our temperature range from 76 to 88 K, the
results could be represented well by the equation

C,=(a/n)(~t
~

- I)+B+Et, (2)

where
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FIG. 2. Specific heat of RbMnF3-II as a function of T.

ture could be extrapolated linearly to the middle
of the heating time interval to determine the tem-
perature step L1T. Initial relaxations after the
heater was turned off lasted no longer than a few
seconds, and were ignored. The heat capacity was
first measured with 4T =- 0. 2 K. These results
yielded an approximate transition temperature; and
then data points with smaller AT were taken in the
transition region. The smallest AT which we used
as approximately 4 mK.

The experimental measurements yield the ratio
&Q/&T; but after applying a curvature correction
and subtracting the sample-holder heat capacity
we get C~ of RbMnF~. The pressure is of course
equal to zero. In most cases the curvature correc-
tion did not exceed 0. 1% of the total heat capacity.
The data were converted to a molar basis, using
a molecular weight of 197.40 g.

E. Heat Capacity of Sample Holder

The heat capacity of the sample holder was mea-
sured separately with random errors of less than
0. 1%. It never exceeded 10% of the total heat ca-
pacity. A linear function of T was adequate to
represent the sample-holder heat capacity in the
pertinent temperature range.
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FIG. 3. Specific heat of RbMnF3-II as a function of
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TABLE I. Parameters for Eq. (2).

Parameter

G=0
A[Jmole ~K ]
Q'f Jmole K
BfJmole ~K ]
B'[Jmole ~K ~]

E=E'[Jmole ~K ]
T,= T,'[K]

RbMnF3-I

—0.1406
6.154
4.493

54. 811
68.174
89.833
83.048

RbMnF3-II

—0.1416
6.305
4.496

53.248
67.123
76.638
83.082

t —= (T —T,)/T,

and where T, is the transition temperature. Since
some of the parameters in Eq. (2) will generally
be different above and below T„ the ones that per-
tain to T & T, are identified by a prime. In fitting
our data to Eq. (2), A and B were permitted to be
different above and below T„. but o, E, and T,
could be forced to be identical on the two sides of
the transition without any significant sacrifice in
the quality of the fit. The parameters for the two
samples are given in Table I. We believe that all
differences in parameters between the two samples
can reasonably be attributed to the different tem-
perature scales. It is particularly gratifying that
of all the parameters the result for e= o' is least
sensitive to the temperature scales. In absolute
terms, we believe that the results for RbMnF~-
II yield a C~ somewhat closer to the true C~ than
those for RbMnF, -I.

The deviations of our data in percent from Eq.
(2) and Table I are shown in Fig. 4 for RbMnFB-II.
It is evident that the function is a good represen-
tation of the results. However, for the smallest
It ( departures from Eq. (2), although they remain
less than 1%, are probably significant and may be
attributable to sample inhomogeneities. The
range of t over which these inhomogeneities are
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noticeable is similar to that deduced by Golding"
from thermal-expansion measurements on the
same sample, and is an order of magnitude. smaller
than the range of t over which sample inhomogene-
ities were noticeable in previous C~ measure-
ments. "

A deviation plot of the results for RbMnFg-I
does not differ significantly from Fig. 4, and will
not be shown.

The constant B may contain a contribution as-
sociated with the phase transition, and therefore
need not have the same value above and below T, .
The major contribution to B in the case of RbMnFS
will, however, be from other degrees of freedom
of the system which make regular contributions to
C~. Foremost amongst these are of course the
lattice degrees of freedom. These regular con-
tributions will be a function of the temperature;
and in order to take this T dependence into account,
we have included the term Et in Eq. (4). In order
to assure that this term is indeed regular at T„
we shall always impose the constraint

IV. ANALYSIS

A. The Function

The theoretical predictions about critical phe-
nomena with which we would like to compare our
results pertain to the asymptotic behavior of C~ .
Since experimental results necessarily are ob-
tained at some nonzero value of T, —T, it is by no
means trivial to extract from them reliable esti-
mates of parameters which can be compared with
the predictions. This problem has been dealt with
in detail for the case of C~ near the superfluid
transition in liquid helium, and we refer the in-
terested reader to Sec. V of Ref. 30. We will pro-
ceed here by comparing the measured C~ with the
function

E=E' .
Since most of the contribution to B comes from
regular terms, one would expect E not to be much
larger than B. Indeed, it is already apparent from
Table I that B and E are of about the same size.

Our approach to dealing with the regular contri-
bution is somewhat different from that of some
previous workers. ' ' "' Often, a "lattice con-
tribution" to thermodynamic properties has been
estimated for instance by comparison with iso-
morphic materials which have no phase transitions.
This contribution is then subtracted, and only the
"magnetic" part is considered and analyzed with-
out inclusion of terms which are regular functions
of T. This latter approach may lead to difficulties
for two reasons. First, it is not clear that sub-
traction of a regular background based on isomor-
phic materials eliminates all regular contributions
to C~, because some of these contributions may be
associated with the phase transition. Second,
even if in principle a reliable estimate of the regu-
lar contributions were possible, then in practice
this estimate would be subject to some uncertainty,
equivalent to an uncertainty for E in Eq. (4). Since
the parameters in Eq. (4) are correlated, the

c,= (A/a)(I& I

—»(I+II If lg+B+«(4)
for T &T„and with the same function with primed
parameters for T «T, . ~' The term (A/a)) t l

o

represents the leading contribution to the singulari-
ty of C~. If e &0, C~ becomes infinite at T„but
for a &0, C~ remains finite and has the value B
-A/a or B'-A'/a' at T, . We will insist that
x &0; and then the term D )t )'will vanish at 7,
and will represent a singular contribution to C~
which is of higher order than the leading singulari-
ty. It is known both from experiment'@' ' and
theory' that such terms generally must be con-
sidered in the data analysis.

1.0—
T PTG ~0.5—

0
0

~ ~ 0 ~ ~ ~ O~~

o C)
0 0

0

0 ~ 0a IO ~ '~ a a ~ A
p I 0 ~ (7P ~Col V ~ V0

0 0 a~ nMrg~p
g g 0 oo-way

-0.5— T'Tc
0 T&TGc0

~0

-1.0—
l

-2.0
l

-30
l

-2.5
~og10 l~&Ic

I

-3.5
I

-+0
l

-1.5 -1.0

FIG. 4. Deviation of the data from the best fit. The arrows mark the ( T/T~-1 I corresponding to the t~N and ~
used in the fit (sample II).
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Various methods have been employed to fit
specific-heat measurements to functions like Eq.
(4). Most of them were devised because of the
computational diff iculties involved in nonlinear-
least-squares problems. These diff iculties are
now largely removed because of the availability of
satisfactory computer programs and adequate com-
putational facilities. We therefore used the Mar-
quardt maximum-neighborhood method to obtain
least-squares fits of Eq. (4) to the data with vari-
ous constraints on the parameters. Each fit yielded
the best parameters for Eq. (4), as well as their
standard errors. It is perhaps worth emphasizing
at this point that the computed errors take into
account the correlation between the parameters,
and that the errors therefore are strongly depen-
dent upon some of the constraints which are im-
posed. All the data used in the fits were assigned
a weight which was inversely proportional to our
best a Priori estimate of the square of the random
probable error. We used the smaller of

W&-- (2x10 SCQET) 2 (6a)

or

W( ——(10 C~) (6b)

for the ith data point. The number 2 x 10 ' in Eq.
(6a} is the estimated temperature resolution in K,
and 10 in Eq. (6b} corresponds to a minimum
random error in C~ of 0. 1% which is assumed pres-
ent when the temperature resolution does not limit
the precision of the data.

Because of sample inhomogeneities (see Sec.
III), it is difficult to interpret measurements ex-
tremely near T, ." Certainly, data affected by
inhomogeneities should not be fit to Eq. (4) without
some modification. We discarded such data en-
tirely, and used in the analysis only measurements
for which )t) ~t~„, where

(7)

For To, a constant temperature rather close to the
least-squares result for T, was chosen. We used

uncertainty in the regular terms may have a sizable
effect upon the uncertainty of the other parameters.
Simply setting E equal to zero after subtraction
of a lattice estimate is equivalent to assuming that
this estimate is exact, and may lead to unrealis-
tically small errors for the other parameters. Of
course, if the range of )t ) is extremely narrow
(I&1 ~ 10 ', for instance), then the correlation of
the other parameters in Eq. (4) with E is small,
and the regular terms must not be known very ac-
curately. On the other hand, if the range of )t ) is
too large we would expect to have to include terms
in our analysis which vary as t~.

B. Method

83.05 and 83. 08 K for samples I and II, respec-
tively. It was not possible to use T, itself as a
reference temperature for the elimination of data
because T, is least-squares adjusted, and the
number of data points used in the fit would vary
upon successive iterations. Since the range of t
over which inhomogeneities are important is not
known initially, the data were usually analyzed for
several t„» . We also sometimes eliminated data
from the fit if t &tMAX in order to test whether the
neglected higher-order regular terms (I, etc. )
are important. For the definition of t„~we also
used To; but of course, ITo- T, I/To«f„~ and
the definition of the reference temperature is not
as important.

C. Results for Parameters

Equation (4) without any constraints contains 14
adjustable parameters (7 for each side of the tran-
sition, including T, and T', ). With such a large
number of parameters it is very difficult to obtain
convergence of the iterative nonlinear least-squares
procedure; and if convergence is obtained, then
the errors for the parameters are so large that
no particularly useful information about the asymp-
totic behavior of C~ can be obtained. However, it
is not unreasonable to impose certain constraints
upon Eq. (4), and to inquire whether these con-
straints and the data yield parameters with errors
which are consistent with theoretical predictions.
Some of these constraints may indeed be predicted
by theory, and their imposition yields a test of the
over-all consistency of theory and experiment to-
gether.

As already mentioned, we have always imposed
the constraint Eq. (5). In addition, it was assumed
initiall. y that D = D' = 0; i. e. , that singular higher-
order corrections to the leading singularity are
negligible. The nine parameters A, A', B, B',

o', T„T,', and E=E' were allowed to vary
freely, and data over the range tMr„~ )t ) «6. 25
x 10 were used in the fit. For sample I, this re-
sulted in the values for o., 0.', T„and T', which
are shown in Fig. 5 for several values of t„».
It is apparent from these data that the rneasure-
ments readily permit T,= T', . The same conclu-
sion is obtained from an analysis of the results for
sample II. If the constraint D =D'= 0 had not been
imposed, all error bars in Fig. 5 would be larger;
but the error bars for T, and T', would still over-
lap. The results for 0. and 0,' indicate that these
exponents are both negative, and are consistent
with the scaling prediction 0. = e'.

Since the data permit the constraint T,= T'„and
since this constraint is reasonable on physical
grounds, the data were analyzed next by using
Eq. (4) and D=D'= 0, E=E', and T,= T,'. The re-
maining eight parameters were least-squares ad-
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FIG. 5. e, e', T~, and T~ obtained from a fit of the
data to Eq. (4) for different ranges of t with the con-
straints E=E', D=LY = 0 (sample I).

justed. The results for 0. and o' are shown as
open and solid circles in Fig. 6(a) for several
tMzs, and those for T,= T,' are given in Fig. 7(a)
as open circles. The values given in Figs. 5 and
6 were obtained from sample II; but the results
for sample I are very similar and in part have al-
ready been given in Fig. 2 of Ref. 21 as open and
solid ~ircles. Figure 6 shows that even with the
constraint T,= T', the results are consistent with
o = 0,", and the exponents are again negative.

Since 0, = at' is permitted by the data, and since
this relation is predicted by scaling, we next im-
posed this constraint on the data analysis. This
yields the best value of e and 0,' consistent with
the assumption that scaling is valid. In addition,
we retained D=D'=0, E=E', and T,=T', . The
remaining seven parameters were least-squares
adjusted, and the solid squares in Figs. 6(a) and

7(a) were obtained for a= a' and T,= T', for sam-
ple II with several tMJ„. Additional results for
sample I can be found in Fig. 2 of Ref. 21. Nu-

merical values for all parameters and both sam-
ples were given already in Table I for t~„=2X10
Both e= a' and T,= T', are found to be independent
of t~w within their rather small uncertainties.
The standard errors obtained for e= o' from the
least-squares fit is only about + 0. 002 if t„,„=2
&& 10 . On the basis of this analysis, we estimate
that a= a' and A/A' probably lie in the ranges
—0. 14+ 0. 01 and 1.40 a 0. 04, respectively, if the
amplitudes of singular corrections to the asymp-
totica, lly dominant behavior are small.

Since the regular contribution to C~ had been

Cl
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FIG. 6. Exponents e and e' obtained from a fit of the
data to Eq. (4) for different ranges of t. The constraints
are T,= T,', E=E', D=D'=0. Results are given with
and without the additional constraint e =e'.

approximated in the above analysis by a constant
and a term proportional to t, we next varied t~
at constant tM~ in order to see if the neglect of
terms of order t and higher had yielded systematic
errors. Figures 6(b) and 7(b) show the results
corresponding to the last two sets of constraints
(6 and 7 parameter fits). It is evident that the de-
rived parameters do not depend upon tl„x.

With the seven-parameter fit and the widest
range of t, the errors of the parameters were suf-
ficiently small that some of the constraints imposed
so far could be relaxed. We therefore permitted
D and D' to be different from each other, imposed
x=x', and retained T,=T'„e= e', and E=E'.
This ten-parameter fit for t~„=2x10 yielded
a=a'= —0. 14~0.06, x=x'=0. 46+0. 37, D= 1. 1
+ 1.0, and D' = 0. 1+2. 1 for sample II. We con-
clude that with our resolution we cannot establish
the existence of singular correction terms to C~
of RbMnF&. Imposing in addition the theoretically
predicted value~ x= x =—0. 5, which is supported by
other experiments, '~ yielded D = —1.1+0.6 and D
= —Q. 1+0.4. These results also do not really rule
out the possibility that D = D = 0. The additional
constraint x= x = Q. 5 considerably reduces the un-
certainty in the leading exponent, and results in
e = 0. = —Q. 134 with a standard error of 0.005.
This nine-parameter fit left an appreciable uncer-
tainty in the amplitude ratio, however, because of
a large correlation between A and D, and between
A and D . It gave A/A —= l. 2+ 0. 2.

The negative exponent which is obtained for C~
implies that the heat capacity is finite at T, . When

C~ is finite, it is of interest to inquire whether it
is continuous at T„ for a discontinuity would cor-
respond to an exponent equal to zero and would
therefore in some sense be the leading singularity.
The finite value of Eq. (4) at T, is equal to B -A/+
or B'-A'/a'. With the constraints a=a', T, =T'„
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which are not in disagreement with the earlier
work and indicates a certain degree of consistency
between the experimental results. Our best es-
timate of T, is also shown in Fig. 8 and labeled B.

B. Thermal Expansion

l. Exponents

0
8~O60

b

0 2 4 6
210 tvAx

FIG. 7. T,=T' obtained from a fit of the data to Eq.
(4) for different ranges of t. The constraints are the
same as those of Fig. 6.

V. COMPARISON WfTH OTHER EXPERIMENTS

A. Specific Heat

It is difficult to compare our measurements
directly with previous results for C~" because in

the past only the magnetic heat capacity was re-
ported and the subtracted lattice contribution
was not given. However, Teaney et a/. ' inter-
preted their C~ in terms of a logarithmic diver-
gence for T &T„corresponding to o= 0. For T
& T„ their C~ appeared to approach a finite value,
implying a' &0. Although this seems contrary to
the results reported here, the difference may be
largely one of interpretation. In the earlier work,
T, was arbitrarily chosen to be very near the tem-
perature where C~ reaches a maximum. If we
arbitrarily impose the constraint a= 0 (i.e. , in-
sist on a logarithmic divergence for T & T,) in the

analysis of our data, then we also obtain a T, very
near the maximum of C~. Deviations from the
fit will of course not be random since our data do
not really allow e= 0. In Fig. 8 we present on
linear scales our results for sample II very near
T, . The temperature indicated by the vertical bar
labeled A is the T, corresponding to 0." n = 0.
For e' this analysis yields the value —0. 28. Al-
though this procedure does not yield a statistically
satisfactory fit to our results, and although it is
not justifiable for any a priori reason or on any
fundamental grounds, it does yield parameters

E = E ', and D = D' = 0 we obtained 8 —4/ n = O'I. V8

+0.43 Jmole 'K' and 8' A'/a'—= 88. 8'7+0.I
Jmole 'IC' for sample II. Although the probable
errors do not quite overlap, the difference is only
1.5 times the sum of the standard errors, and
should not be regarded as significant. For sample
I the values and errors were similar, and likewise
were consistent with a continuous C~. If singular
correction terms are allowed (i.e. , D and D' not

equal to zero), the errors are larger, and the val-
ues are still consistent with a continuous C~.
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FIG. 8. Specific heat near the transition. A: T, ob-
tained when 0. & 0.' with the constraints n = 0. B: T, ob-
tained by the least-squares fit with the constraints 0. =0.',
E=E', D=D'=0 (sample II).

The isobaric volume thermal-expansion co-
efficient u~ (not to be confused with the exponents
a and a') is an asymptotically linear function of
C~ (see Sec. VB 8). It follows that a~ should have
the same asymptotic dependence upon t as C~.
Therefore the exponents u and e' can also be ob-
tained from measurements of 0(& and an analysis
in terms of an equation equivalent to Eq. (4).

The linear thermal-expansion coefficient P~ of
RbMnF3 was measured by Golding' ' on the same
sample which yielded the C~ data labeled RbMnF&-
II. For a cubic crystal like RbMnF3, P~ differs
from a~ only by a multiplicative constant which is
independent of t; and therefore P~ should also re-
veal the same asymptotic behavior as C~. Golding
obtained' from his results the exponents a= 0. 007
+0.02 and 0."= —0. 10+0.03. These values and

their errors do not seem to permit e= o.", and
therefore suggest a violation of scaling. However,
the exponents were obtained on the basis of the
assumption that a pure power law [D =D'= 0, E =E'
= 0 in Eq. (4)] could be used in the analysis. In-

clusion of singular correction terms, and of terms
which are regular functions of T, would increase
the statistical errors considerably and would per-
mit equal exponents above and below T, for P~.
Golding subtracted from his data the "lattice ex-
pansivity, " and therefore felt that the constraint
E=E'= 0 was justified. However, his estimated
lattice expansivity corresponds to the true regular
contributions to P~ only within certain errors (see
also Sec. IV A); and in principle E = E' should be
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The total differential of the entropy

as=(") as, (,",) ar, (8)

the Maxwell relation (8S/SP)r = —(SV/ST)», , and
the definition C»-—T (8S/ST)», yield

C»-—Ti + FT
i

— a»
(es ( 8P
(BT, I, ST (9)

Here the derivatives at constant t usually approach
a finite value at t=0, and for sufficiently small t
are very nearly equal to the derivatives along the
transition line. Relations like Eq. (9) are often
referred to as Pippard ~ relations. Equation (9)
implies that C~ is an asymptotically linear function
of 0,'~, and thus in the cubic case also of P~. A
plot of P& vs C~ should therefore yield a single
straight line for results both above and below T„
provided it I is small enough. If the data do not
at least approach a unique straight line as It I

vanishes, they must be regarded as thermodynam-
incally inconsistent with each other. This appar-
ently straightforward comparison is difficult in

practice, however, unless P~ and C~ are measured
simultaneously, at the same T, and on the same
temperature scales [see for instance Sec. IV 8
of Ref. 30, where simultaneous measurements
for C„and (SP/ST)„were compared]. In the pres-
ent case, the temperature scales are of course
different, and the results cannot be compared
directly. Therefore, we compared the pairs of
values P~ and T obtained by Golding with smoothed
values of C~. We obtained the smooth C~ by first
choosing a T, appropriate to Golding's P~ and on
his temperature scale. From this T, and his set
of T's we obtained values of t. For these t, C&

permitted to vary over the range determined by
these errors when the uncertainties of the other
parameters are determined. Since we are unable
to estimate the uncertainty in E =E' for Golding's
data, we have not pursued this problem further;
but one must keep in mind that the assumption
E =-E'=- 0 may lead to unrealistically small errors.
We reanalyzed the expansivity data over about the
same range of t that was used in the original work, "
and used the constraints a = 0.', E =E' = 0, T,= T'„
and x =x' = 0. 5. Permitting nonzero values for
D and D' was sufficient to allow the constraint a
= e', and we obtained a = a' = —0. 12+ 0. 23 from
the data when equal exponents were assumed. The
rather large uncertainty is attributable primarily
to the narro~ range of t spanned by the data. For
the amplitudes of the correction terms we have
D = 1.9+ 2. 3, and D' = 1 + 5. It appears on the basis
of this analysis that the thermal-expansion mea-
surements are consistent with the results for C~.

2. Pippard Rela jion

was evaluated, using Eq. (2) and the parameters
in Table I for RbMnF3-II. The experimental p~
was then plotted against this C~. The result for
the T,= 83. 0425 K quoted by Golding is shown in
Fig. 9(a). From this figure it seems that the
two sets of measurements are quite inconsistent
with each other. However, when T,= 83. 0530 K
is chosen, we obtain the results in Fig. 9(b).
Although the results in Fig. 9(b) are not repre
sented perfectly by the solid straight line, the fit
does seem fairly reasonable. A T, of 83.0530 K
is not consistent, however, with a pure power-
law fit to Golding's data, and is permitted by these
data only if singular or regular correction terms
are included in an analysis. E T, is fixed at
83. 0530 K, singular corrections to the asymptotic
behavior are allowed, and 0.'= 0," isassumed, then
the p~ yield 0.= e' = - 0. 15a 0. 16. Thus, when con-
sistency between C» and P» in terms of Eq. (9) is
obtained by adjusting the choice of T„ then the
two sets of data also yield the same exponents.
From the straight line in Fig. 9(b), one has dS/
dT, = 0. 51 J mole 'K ~ and dP/dT, = 1. 69&& 10» bar
K ' if a molar volume of 45. 52 cm is used. 37

It might be remarked that consistency of P~ with
C~ could have been obtained also by adjusting T,
for C~, and by adhering to Golding's choice of T,
for P~. This procedure would, of course, lead
to aWa'.

C. Neutron Scattering and Scaling

The properties of RbMnF, near T, have been
investigated ' by neutron scattering. These
measurements were interpreted to yield the ex-
ponents

P = 0. 316+ 0. 008,

v = 0. 724 + 0.008,

y= 1.397 a 0. 034,

g=0. 067~0. 01

(10a)

(10b)

(lod)

The interpretation 'i was made on the assumption
of pure-power-law behavior even for rather large
t. The exponent v, for instance, was derived
from data with 10 ~ t ~ 0. 2 without permitting
singular or regular correction terms. If these
assumptions are valid for BbMnF3, then the above
exponents may be compared with o and with the
predictions of scaling; but in case of any appar-
ent departures from scaling we must remember
that the error estimates quoted in Eqs. (10) are
very optimistic. We will compare the results
Eqs. (10) with the estimate a = a' = —0. 14+ 0. 01
which we believe to pertain if singular corrections
are small.

From scaling, we have the exponent relation
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Our C~ result yields &(2 —a) = 0. V13 a 0. 003, which
is in good agreement with the value of v given in
Eq. (10h). However, it is also predicted by
scaling that

28+y= 2 —o . (12)

For 2 —e, we obtain 2. 14+0.01. Contrary to
this value, the neutron scattering results, Eqs.
(10a) and (10c), give 2. 03+0.04 for 2P+y. We

note, however, that the values of P and y are also
inconsistent with the result Eq. (101) for v; for
Eq. (11) predicts that 2- a= 3v. Equation (101)
gives 2. 1?2+0.024 for Sv, which also differs
from 2P+ y. It appears likely that the errors of

P or y or both have been underestimated.

D. Other Heisenberg Systems

On the basis of universality arguments and of
the expansion of exponents in the dimensionality

of the system' it is expected that all phase tran-
sitions characterized by an order parameter with
three degrees of freedom in materials with short-
range forces should have identical exponents. We

therefore expect all isotropic antiferromagnets to
yield the same o and 0.' as that found here for
RbMnF3; but unfortunately there are no other ex-
amples of this group for comparison.

Other phase transitions with three degrees of
freedom in the order parameter are those occur-
ring in some ferromagnets; but is has been pointed
out recently by Fisher and Aharony that for these
materials dipolar long-range interactions will
modify the behavior and will result in different
asymptotic exponents. However, for ferromagnets
with relatively high transition temperatures the
difference in behavior due to the different range
of interaction will be noticeable only extremely
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FIG. 9. Linear thermal-expansion coefficient (Ref. 15) as a function of C& for two choices of T~ (see text for detail).
The two sets of points are displaced vertically with respect to each other, and the two straight lines are identical and

are provided as references.
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near T, . Therefore, it is not unreasonable to ex-
pect the ferromagnet nickel with a transition tem-
perature of about 631 K to yield the same expo-
nents as those found for RbMnF&, provided the
measurements do not extend too near the transi-
tion. Indeed, results for C~ have been interpreted
to imply e= o'=-0. 10+0.03; although another
set of measurements has been used to assert that
o' & o =—0. 39 The result 0, = o' = —0. 10+ 0. 03 for
nickel is of course consistent with our result for
RbMnF3 and with our expectations; but this in-
terpretation also yielded a C~ which is discontinu-
ous at T, . A discontinuous C~ is not expected from
theory, and diff ers from our conclusion for RbMnF, .

The ferromagnet EuO has a transition tempera-
ture of only 69 K, and therefore should reveal the
behavior characteristic of long-range dipolar in-
teractions over a much wider range of It I. In-
deed, EuO appears to have e= e™—0.04, which

seems to be significantly different from the result
o»bMnFs. "

VI. COMPARISON WITH THEORY

We saw already in Sec. VC that the experimental
results for RbMnF& largely satisfy the predictions
of scaling. The relations o!= a' and v = 3(2- a) are
obeyed well within the experimental uncertainty;
and although the scaling law 2P+y= 2- o seems to
break down, the departures from it are probably
attributable to underestimates of uncertainties for
the asymptotic exponents.

In addition to comparing o and n' with other
experimentally determined exponents through the
scaling laws, one can also compare the value of
e= a' with theoretical estimates. For T &T„ the
properties of the Heisenberg systems have been
studied repeatedly' ' '~ 4 by numerical techniques.
Some of the most recent results are e= —0. 14
+0.06, '9 and 0.= —0.09+0.04. ~ Both of these are
in agreement with our experimental value of -0. 14
+0.01.

Recently, estimates of exponents have also be-
come available from the known exact result in four
dimensions and from an expansion in the dimen-
sionality d about d = 4. ~' In terms of the expansion
parameter a=-4-d, one has to second order in c~'

n —4 n + 32n + 116n+ 112 z

2(n+ 8) 4(n+ 8)~

(13)
Here n is the number of degrees of freedom of the
order parameter, or the so-called spin dimen-
sionality. For the present case of n = 3 and in
three dimensions (e= 1), one obtains n= a™-0. 10.
It is difficult to estimate the uncertainty which
arises from the neglect of higher-order terms in
Eq. (13); but the result obtained from the expan-
sion to second order is obviously in quite good

agreement with the experimental value.
Equation (13) suggests that n and a' should

be given by a smooth function of n. It is therefore
interesting to compare the best estimates of 0, for
systems with various values of n. Such a corn-
parison already was presented elsewhere, and
it was demonstrated that the values of 0. for n = 1,
2, 3, and ~ can be represented by a smooth func-
tion of 1/n which has the theoretically predicted
slope near 1/n = 0. In addition, the results for the
amplitude ratio A/A' were also shown to be con-
sistent with a smooth function of 1/n, and with the
scaling predictions' A/A' = 1 when u = a' = 0.

VII. SUMMARY

In this paper we described an isothermal calo-
rimeter which is suitable for specific-heat mea-
surements over the temperature range 0.3--100
K. We gave details of the procedure used to de-
termine C~ of RbMnF3 samples which weighed a
few grams over the temperature range V6-88 K.
During this work, special emphasis was given to
high-resolution measurements very near the anti-
ferromagnetic transition temperature T, = 83. 08 K.
Two sets of results obtained on two separate sam-
ples were found to be consistent with each other.
The data were analyzed in terms of power laws,
with appropriate consideration given to singular
higher-order and regular correction terms to the
asymptotically dominant singularity. They strongly
support the result 0.= at' —- 0. 14, with the ampli-
tude ratio A/A' =—l. 40. The negative exponents
imply that C~ is finite at T, . We also find that
within our resolution C~ is continuous at T, .

The parameters should be representative of
systems with three degrees of freedom for the
order parameter and with short-range interactions.
We compared our results with other C~ measure-
ments, with a determination of the thermal-ex-
pansion coefficient, and with neutron scattering
experiments and scaling. We generally find con-
sistency between the various experiments, although
the differences in interpretation have at times
yieMed sets of parameters which appear to dis-
agree with each other. We also compared our ex-
perimental parameters for C~with theoretical predic-
tions based upon numerical calculations, and upon
the Wilson expansion in the dimensionality of the
system. We found good agreement with the pre-
dictions.
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