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A theory of ultrasonic spin echoes valid for arbitrary spin is presented. Semiclassical vector-model
equations are constructed for components of the dipole and quadrupole moment tensors which are
excited by ultrasonic pulses in ~»alogy with the well known Bloch equations. The echo amplitudes are
found to depend on the wave number of the pulse, the crystal length, spin density, sound velocity, the
density of the medium as well as the ma~tude of the appropriate macroscopic dipole or quadrupole
moment. Our numerical estimates for a number of physical systems indicate that ultrasonic-spin~ho
experiments are feasible for a variety of nuclear and electronic spin systems.

I. INTRODUCTION

Since the discovery of nuclear-magnetic-spin
echoes by Hahn~ in 1950, the spin-echo technique
has become a powerful tool for the study of relax-
ation phenomena in a large variety of physical and
biological systems. It has long been known that
spin-echo phenomena can also be induced by acous-
tic pulses, and recently interesting experiments '~

on spin echoes induced by acoustic pulses or a
mixture of acoustic and electromagnetic pulses
have been reported. The purpose of the present
paper is to present a theory of ultrasonic spin ech-
oes valid for arbitrary spin which makes possible
detailed physical interpretations of experimental
observations.

It is well known that acoustic pulses usually cou-
ple to the nuclear or electronic spins via their
quadrupole moments. Because of this, the usual
Bloch equations cannot be applied to the spin sys-
tems excited by acoustic pulses. In fact if one
writes down the Heisenberg equations of motion
for the spin operator or the magnetization vector,
one finds that it is coupled to the quadrupole mo-
ments. Proceeding in this way, one would obtain
a hierarchy of equations linking all the multipole
moments of the system. Such a complicated set
of equations would make the physical interpreta-
tion of acoustic-spin-echo experiments very diffi-
cult if not impossible. We have found, however,
that for spin-one systems at any temperature or
for higher-spin systems in the high-temperature
limit (kT» IQ, where fl is the Larmor frequency)
the hierarchy of equations decouple in the usual
resonant approximation. The decoupling is such
that semiclassical vector models can be used to
describe the effects of acoustic and/or electromag-
netic pulses on the spin system.

We derive five sets of Bloch-like equations to de-
scribe the precession of suitably defined Bloch
vectors which consist of components of the dipole
and/or quadrupole moment tensors. Three addi-
tional damping or relaxation functions besides the

usual ones corresponding to Tq and T2 can be de-
fined which describe the relaxation of the &m =+ 2,
+1, and 0 components of the quadrupole moment
tensor. These additional relaxation functions,
measurable in ultrasonic -spin-echo experiments,
give a more complete characterization of the spin
system under study. The Bloch-like equations
greatly facilitate the interpretation of experimental
observations and enhance the utility of the ultra-
sonic-spin-echo technique as a tool in solid-state
physics.

In this paper we also compute the ultrasonic
echo amplitudes for two-pulse sequences. They
are found to depend on the wave number of the ex-
citing pulses, the crystal length, spin density,
sound velocity in the medium, and the density of
the medium, as well as the magnitude of the appro-
priate components of the Bloch vectors. Numeri-
cal estimates of acoustic pulse widths and ampli-
tudes necessary for 90 pulses and of the acoustic
strain pulse height for echo pulses are given for
the Fe" electron-spin resonance in MgO: Fe", the
In nuclear-spin resonance in InAs, and the Mn
nuclear-spin resonance in antiferromagnetic
RbMnFs. Based on these estimates me believe that
ultrasonic-spin-echo experiments are feasible for
nuclear-spin as well as electronic-spin systems.

In Sec. II we give the essence of the derivation
of the Bloch-like equations for ultrasonic exciting
pulses where some of the lengthier calculations
are deferred to the Appendix. In Sec. III we give
the echo amplitudes for two-pulse sequences and
in Sec. IV we present some detailed numerical
examples.

II. BLOCH-LIKE EQUATIONS

The well-known Bloch equations for the motion
of an effective magnetization 3R due to an effective
magnetic field X can be written in the form

83K

et
= y3R xx

where y is the effective gyromagnetic ratio. We
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A, x
- v [~ J(J+1)] J~,

Ao = [—,'J(J'+ 1)] J, ,

A, ,= [$J(J+1)(2J-1)(2J'+3)]

(2a)

(2b}

(2c)

A,~=vQ J(J+1)(2J—1)(2J+3}] (J„Jg, (2d)

Ao = [45J(J+1)(2J—1)(2J'+3)]

shall show that, under the appropriate conditions,
the equations of motion for spins driven by an
acoustic field can be cast into the form of Eq. (1)
with suitably defined magnetizations % and effec-
tive fields X. The appropriate conditions are that
either the spin J of the magnetic system is equal
to 1, or that the high-temperature limit is ob-
tained. The high-temperature limit, for our pur-
poses, is that 10«kT, where A is the Larmor
frequency of the spins and T is the temperature.

While an electromagnetic field couples to spin
tensors of the first rank (commonly called the di-
pole moments or components of the magnetization},
acoustic fields usually couple to spin tensors of
the second rank (commonly called quadrupole mo-
ments). We define these multipole operators in
the folloming way:

quency, satisfies the relation

(~ e) =(-1) ~„e
The usual spin-phonon coupling can be cast into
this form and in Sec. IV the x mill be expressed in
terms of more familiar constants.

There is also a class of spin-phonon couplings
where the acoustic wave couples to the dipole mo-
ments of the magnetization, A, and not to the
quadrupole moments A . The magnetoelastic in-
teraction with nuclear and electronic spins in mag-
netically ordered materials and the Alpher-Rubin
interaction are examples of such couplings. These
cases are described by Eq. (3) if Ifj is proportion-
al to the strain and cos &ut is replaced by
cos[ur(t —x/v)]. The main body of the paper is not
concerned with these couplings, but they will be
analyzed in Sec. IV.

Since the derivation of the Bloch-like equations
of motion is somewhat lengthy and complicated,
the details of their derivation are given in the Ap-
pendix. We find that five sets of semiclassical
Bloch vectors can be defined and that each set con-
sists of the expectation values of the coxnponents
of multipole operators A„". These sets of Bloch
vectors satisfy the Bloch-like equations of motion,
Eq. (1), which are more conveniently written

x [Jr —SJ(J+ 1}], (2e} alt,.= (dy%& —(de}f+ sill((c)t —
Ijh ) &

where Hj is an rf magnetic field. The spin-phonon
coupling via quadrupolar or single-ion magneto-
striction is described by the Hamiltonian

H.,=-K Z ~„e A'cos[(u(t —x/v)], (4)

for an acoustic pulse of velocity v traveling in the
g direction. In this equation g is the appropriate
elastic strain and g, which has the units of fre-

where J& is the usual angular momentum operator
with magnitude J, J', =J» + iJ„, and the curly brack-
ets in Eq. (2d) denote the anticommutator. Equa-
tions (2) define a set of irreducible tensor opera-
tors all of which are normalized so that the trace
of IAl is 2J+1. These properties make them
very easy to work with for our purposes. The op-
erators are, of course, proportional to the usual
dipole and quadrupole operators.

We shall consider an ensemble of nuclear or
electronic spins with magnitude J and gyromag-
netic ratio y in a static external magnetic Ho along
the z axis. These spins will be perturbed -with

either an electromagnetic or acoustic pulse whose
width is small compared to the spin-relaxation
times. For a standing-wave electromagnetic pulse
the appropriate Hamiltonian is

(5)

where P is zero for standing-wave pulses and &uz'/v

for pulses traveling along the x axis with a velocity
The five sets of Bloch vectors are conveniently

summarized in Table I where the angular brackets
( ) denote the thermal average of the quantity en-
closed.

Each of the five rows in this table gives a set of
three%, as well as the wq and &0 which are to be
used in Eqs. (5). We have labeled the sets by the
letters M and U to denote whether the driving field
is electromagnetic (M) or acoustic (U). The first
column in Table 1 gives the type of applied pulses
which couples to the appropriate Bloch vectors.
We note that a given type of pulse can couple to or
excite more than one Bloch vector. For example
a M pulse of a given frequency excites both the di-
pole Bloch vector and suitable components of the
quadrupole operators as indicated in rows 1 and 2
of Table I. Similarly for an U pulse as indicated
in rows 3 and 5 of Table I. Furthermore a given
component of a dipole or quadrupole operator can
couple to both types of pulses. As a consequence
of this, ecno signals may be obtained by applying
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TABLE I. The vector components of the effective magnetization and the values of the effective cup and co~ to be used
in the Bloch equation given by Eq. (5). The cases are labeled by M or U according to whether the driving field is elec-
tromagnetic or acoustic. Case M~ and M2 are valid for arbitrary spin. Cases U~ and U2 are valid for J=1 or in the high-
temperature limit. Case U3 is valid only for J=1.

Type

Mg

M2

Ug

U2

U3

5l4
Qi )
+2)
gi )
~i )
+2)

'yHg

&3',
I-Jg+1)) ) x~e& )

f-J(J+1)] ) K2e2 (

$ I zgeg I

Cdp

&Hp

&Hp

AH p

yHp

a large variety of pulse sequences which greatly
enhances the flexibility of the technique as a tool
in solid-state physics. The results of Table I to-
gether with the Bloch-like equations (5) enable us
to calculate the precession of the various compo-
nents of dipole or quadrupole operators driven by
the applied pulses in exactly the same way as is
usually done ~h the magnetization vector in an
rf magnetic fieA. The fact that the acoustic pulses
are traveling waves rather than standing waves can
be taken into account and gives rise to some inter-
esting new effects. Detailed calculations on echo
signals which arise from different applied pulse
sequences will be given in Sec. IQ.

We conclude this section by summarizing the
assumptions under which the results of Table I
were derived. The pulse duration is assumed
short in comparison with the spin-relaxation times
and nonresonant terms are neglected. Within these
assumptions the cases M& and M~ are exact for ar-
bitrary spin. The cases U&, U@ U3 are exact for
J= 1. The cases Uz and Uz are also true if one
makes the additional high-temperature approxi-
mation and neglects corrections of order (IA/kT)
compared to one. In this regard we wish to point
out that in the high-temperature limit the length
of the Bloch vectors in cases M~ and Us are pro-
portional to (hQ/kT} whereas those in the remain-
ing cases are proportional to KA/kT.

III. ECHO SIGNALS

In Sec. D we discussed the free precession of
the dipole and quadrupole tensors excited by mag-
netic M or acoustic U pulses. Since more than
one set of Bloch-like vectors can be excited by
either M or U pulses and a given component of the
dipole or quadrupole tensor operator may couple
to both M or U pulses, then it appears that echo
signals will arise by applying two-pulse sequences
inanypossiblecombination, namely, MM, UU, UM,
and MU. It will turn out that echo signals will arise
in the first three cases, but not the last. Inaddition

we find that there is a standing -wave echo for an
MM pulse sequence, a traveling wave echo parallel
to the applied acoustic pulses for a UU pulse se-
quence, and a traveling wave antiparallel to the
applied acoustic pulse for a UM pulse sequence.
No echo signal will arise if the two applied acous-
tic pulses travel in opposite directions. The trav-
eling-wave acoustic echo amplitude is also found
to depend on the wave number of the pulse, the crys-
tal length, spin density, sound velocity and the den-
sity of the medium, as well as the magnitude of the
appropriate macroscopic dipole or quadrupole mo-
ment as calculated from the Bloch-like equations (5).

Consider two interaction regions A and B in a
crystal separated by a distance E. For an applied
standing-wave pulse, the spins in both regions
will be excited at the same time. Qn the other
hand, for an applied traveling-wave pulse, there
will be a time delay of te = I/v (where v is the ve-
locity of the traveling wave) in the interaction time
for the spins in the two regions. Because of this,
the time separation between the two applied pulses
may be different in the two regions A and B. As
a result the time at which the spins in the two re-
gion rephase again will also be different. For a
standing-wave echo signal to arise the spins in the
two regions must rephase at the same time. For a
traveling-wave echo signal to arise, the time at
which rephasing is completed for the spins in the
two regions must differ by te In Table II w. e have
listed all the possible sequences of two applied
pulses with the interaction time and the rephasing
time for the spins in the two separate regions. If
a spin is pulsed first at time tq and at time tz, the
time of rephasing is te+(te —tq}.

From Table II and using the criterion for echo
signals to arise, one arrives at Table III which
gives the direction and type of echo signals which
can arise in a two-pulse sequence. We note that
the conditions that we have imposed are analogous
to the phase-xnatching conditions in optical photon-
echo experiments. In arriving at Table III we have
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Case Pulses

S-S S
S
S

Interaction and

rephasing time
at region A

0
7

27'

Interaction time
and rephasing time

at region B

0
7'

2T

R-R

S-R

R
R
R

R
S
L

S
R

None

0

21

0
T

2T

0
7'

2T

tp
T'+ tp

2m+to

to
T

2v -to
0

7'+ tp

27+2to

TABLE II. The type of echo pulse obtained from vari-
ous exciting pulse sequences where S denotes a standing-
wave pulse and R and L denote traveling-wave pulses to
the right and left, respectively. In each case the first
row gives the time that the first pulse reaches spins in
regions A and B. The second row gives the time that
the second pulse reaches spins in regions A and B. The
third row gives the times at which the spins in these re-
gions rephase.

estimated. From the Bloch-like equations (5) and
the u&q from Table I, the values of 9R, snd 5g„after
a two-pulse sequence can be obtained. Further,
the amplitude of the voltage from a magnetic echo
pulse is known. By turning the Hamiltonian given
by Eq. (4) into an energy density, the amplitude
of the acoustic echo pulse can easily be calculated.

The contribution to the free-energy density from
the spin-phonon Hamiltonian given by Eq. (4) is

F= IZ -~ s,Q'(x, t))e (x, t), (6)

where n, is the density of spine and (A„) is the
thermal average of the appropriate multipole oper-
ator. Only the m = a 2 components or the m =+ 1
components are excited in a given experiment and
the other components can be neglected. Assuming
that the effective magnetization gg„where

K, = (5g, + i%,)/g2,

describes a traveling square pulse of heightI'
and any width, one obtains that the maximum in-
duced strain e ~ is

e „=Sn,) ~ stt ~qt/2pv'.

R
L

None

0
T

2T

tp

T-tp
2T —3tp

In this equation q is the wave number of the acous-
tic wave, / is the length of the sample, p is the
mass density of the sample, and v is the acoustic
velocity.

IV. DISCUSSION

also assumed that macroscopic components of (A,'q)

will generate M pulses and those of (A,g primari-
ly generate acoustic pulses.

In general, an applied electromagnetic pulse will
include both Mz and M components, and an acous-
tic pulse at frequency zoo= yHO will contain both Uz

and U~ components while an acoustic pulse at fre-
quency ~o = 2yHO will contain only the Uz component
and is decoupled from the Uq and U3 components.
However since the effective magnetization SR for
Mz and Uz have no components in common with the
effective magnetization R for M and U~, respec-
tively, there is no interference between Mq and Mz
components or between Uz and U~ components.
They may therefore be treated independently. In
addition, because of our assumption that macro-
scopic components of dipole moment generate M
pulses and those of quadrupole moment generate
U pulses, the M~ component of the applied elec-
tromagnetic pulse wiI.l generate ultrasonic-echo
signal while the M, component will generate electro-
magnetic echo signal and can therefore be easily
distinguished experimentally. This also has the
consequence that the U3 component of an applied
acoustic pulse will not generate echo signals of
either electromagnetic or acoustic type in any two-
pulse sequence.

Finally, the magnitude of the echo pulse should be

H, q-—~+gZ)e. ..[S, ——,'S(S+1)]

+G Z&e, , (S,S„,},

TABLE DI. Some two-pulse sequences and the type of
echo pulse induced. M and U stand for electromagnetic
and acoustic pulses, respectively, while S, R, and I
stand for standing wave, traveling wave to the right, and
traveling wave to the left, respectively.

Pulse 1

U& (R)
0', (R)

M, I)
U, (R)

Pulse 2

Mg (S)
U (R)
0, (R)

M, (S)
M, (S)

Echo Pulse 3

M (S)
U (R)
U (R)
U (S)
UL)

In Secs. II and III of this paper we have shown
how pulsed acoustic experiments can be analyzed
in a manner analogous to pulsed electromagnetic
experiments. This section is devoted to some nu-
merical estimates of echo pulse amplitudes for
particular systems.

The Hamiltonian describing the interaction of an
electronic spin with acoustic phonons in a cubic lat-
tice is usually written
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where G11 and G44 are spin-phonon coupling con-
stants and e,~ is the elastic strain. The Latin sub-
scripts denote Cartesian components along cubic
directions in the crystal and the spin operators are
denoted by S instead of Z. Using Eqs. (2}this is
easily put into the form of Eq. (4), yielding

tain

x~g= (eQ)[+(I+1)(2I + 3)/I(2I —1)]"'

x [g (Span Sf/)(e„—e») —4zS«e~], (1»)

s,qeq = (eQ)[f (I+ 1)(2I+3/I(2I —1)]"
~pe~ = [g$ $(S+1)(2S—1)(2S+3)] ~~

X[KG„(e -e„„}--,'f&«e ],

xqeq = - [+$($+1)(2$ —l)(2S+3)] ~

(Qa)

x «$«(e„g —fe») )

xoeo = (eQ)[~(I+ 1)(2I+ 3)/(21 —1)]"2

x 4 (Sgg $„)—(eg, ,'e—„—-,'e„,—).

(lib}

(11c)
3G«(ex@ &eye) s

@~0= [$$($+1)(2$ —1)(2$+3)]'

3 1 1x —,Ggg(e„- —,e„,——,e„„).

(Qb)

(Qc)

These questions are appropriate only if the exter-
nal magnetic field is along a cubic axis. If this is
not the case a further rotation must be made.

As an example of such a system consider the
impurity ion Fe in MgO which has the largest
spin-phonon coupling Constant known. Consider
probing the d,m = 2 transition by applying Uz pulses
of longitudinal waves down the cube x axis with the
external magnetic field along the z axis. Using a
value of G11=800 cm with this S=I system, one
obtains from Table I that

(d1=1.1x10 e,„sec

where e~ is the strain amplitude in the pulse. With
a strain amplitude of 10, a time of I.4&10 sec
is necessary for a 90' pulse. Further, using
p = 3.6 g/cm3, v = 106 cm/sec, and a spin density of
n, = 10 8 cm~, the maximum strain amplitude of the
echo pulse by Eq. (7) is

e ~=0. 96x10 M,(qi).

II, = [eQ/2I(2I —1)]((s„-sfm)Zotel ~ g

At a frequency of 1 GHz the value of (ql) for a crys-
tal 1 cm long is 6. 3x10 . Further, if the spine are
wholly inverted, att, can be as large as (Ao}/$2
which is 3.3x10~ for the Am = 2 resonance at a
frequency of 1 GHE and a temperature of 4. 2 K.
Thus an echo strain greater than 10 obtains.

The Hamiltonian describing the quadrupolar in-
teraction of nuclear spins with acoustic phonon in
a cubic lattice is usually written

These equations, like Eqs. (9}, are appropriate
only if the external magnetic field points along a
cube edge.

As an example of such a nuclear-spin system
115consider the In nuclear spin in InAs and again

consider probing the hm = 2 transition by applying
Uz pulses of longitudinal waves down the cube x
axis with the external field along the z axis. Using
a value' of Q(Sn -$&3) =23. Qx10 statcoulombs
cm with this I= f system yields

~1=3.3x10 e,„sec

With a strain amplitude of 10, a time of 4. 7x10
sec is necessary for a 90 pulse. Using p = 5.67 g/
cm, g=3. 83x10 cm/sec, and n, =1.72X10 cm~,
the maximum strain amplitude of the echo pulse is

e = 7.32x 10 Oll, (q/) .

At a field of 10 G the bm = 2 resonance is at a fre-
quency of l. 87x 10' Hz and the value of (Ag is 3.06
~IO at a temperature of 4. 2 K. With a crystal I
cm long this yields a maximum stress of 4. 8xIO

As noted in Sec. 1, there are a number of sys-
tems where the effective spin-phonon coupling is to
the dipole moments of the spin operators. The ef-
fective II& (or &oz) in these cases depends on the
strain and they can be treated as Mq cases (see
Table 1) except that the pulses are traveling-wave
pulses and the appropriate rows of Table II must
be used with them. Since the values of H1 and the
components of the strains they involve depend on
the particular problem under consideration and the
external conditions, we shall not enumerate them
here. The amplitude of the ultrasonic-spin-echo
pulse can be calculated with trivial extensions of
Eqs. (6) and (7). If a frequency x, is defined in
terms of the effective H& such that

x [/& 'I(I+1)]+$—«—Z&e&, „&(I,,I„Q), (10} yH1Z» = )C 1'», (12}

where the spin operators are denoted by I instead
of Z. Again, by comparing with Eq. (2), we ob-

then Eq. (7) can be used with no alternation.
As an example of such a case consider the Mn"
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nuclear spin in antiferromagnetic RbMnF& which
has the strongest known nuclear-spin-phonon cou-
pling presents an almost ideal situation for pulsed
acoustic experiment. Our estimate of the ~& for
coupling to the nuclear ~„mode at T = 4. 2 K is

0 e,13

and the maximum echo strain amplitude is about
10~ for a crystal 1 cm in length. Unfortunately
also because of the strong coupling it is impossi-
ble to generate an acoustic signal strong enough
so that it can be transmitted through a 1-cm sam-
ple under the above condition since the nuclear
spins mould absorb all of the acoustic energy. To
overcome this we suggest the following: (i) Use a
thin sample, (ii}use a sequence of pulses U(R)-
M(S) so that the echo pulse is U(1.}, i. e. , case
R-S in Table II, or (iii) weaken the effective Hz by
means of reorienting the direction of the sublattice
mhgnetiz ation.
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APPENDIX

a, = —[&J(J+1}],az-—[$&J(J+1)]

pea (A7)

In this appendix we shall show that the Heisen-
berg equations of motion of the dipole and quadru-
pole operators under the Hamiltonian (3) and (4)
can be cast into the form of Bloch-like equations
(5). To do this we first evaluate the commutators
among the irreducible spin tensor operators de-
fined in Eqs. (2) for arbitrary spin J. First we
have

[Ao, A"]=[—',J(J+1)] I mA",

[A,q, A "]= v [—,'J'(J+ 1)]

(A1)

x [p, (g + 1) —m(m a 1}]I A~&, (A2)

which can be easily deduced from. the fact that A"
are irreducible tensor operators. Next we need
the commutators of A among themselves which,
in general, can be expressed as the sum of a third
rank tensor and a first rank tensor except in the
case of J=1 where the maximum rank of the spin
tensor cannot exceed two. Thus we may write

Using these commutators, it is straightforward
to derive the Heisenberg equations of motion for
each case we are considering. An example will
suffice. Consider the case Uq. The interaction
Hamiltonian reads

Hq= Kzqez(Af -A.z) cos[~(t x/u)-]. (A6)

The Heisenberg equations of motion for A,q, Ao in
the rotating wave approximation and using the
commutators from (Al) and (A3) show that the time
derivatives of the quantities (A,'~) and (Ao) can be
expressed in terms of these quantities themselves
in the high-temperature limit. By appropriately
scaling these quantities, one obtains the Bloch-like
equation (5). This is in contrast to the case U,
where the time derivatives of the quantities (Ao~),
(A„) usually involve these quantities themselves
together with (A~,). The presence of these extra
terms spoils the Bloch-like equations for this case
except for J=1 since d =0. Hence the case Us is
only true for J= 1. The case U& can be derived in
analogous fashion as Uq.
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