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Low-energy-electron-diffraction (LEED) intensity profiles are calculated for the (100) and (111) faces

of nickel and compared with experimental measurements. An electron —ion-core potential of the

conventional muon-tin form is used in this work. The inner potential V0 is determined from

work-function measurements using the position of the d-wave resonance to locate the approximate

(within 1-2 eV) position of the Fermi level. This value of Vo gives a good placement of peak

positions for electron energies (240 eV for both faces. A constant mean-free-path parameter of X„=8
0

A is used to parametrize the imaginary part of the one-electron proper self-energy. Five partial-wave

components are used to describe the vibronically renormalized electron —ion-core elastic-scattering vertex.

The results adequately describe both the absolute intensities and the shapes of the experimental intensity pro-

files for the (100) face but only the shapes of the experimental intensity profiles for the (111)face. Analysis of
the data indicates that the upper layer spacing is the same as the bulk value (to within -0.1 A) for both faces.

I. INTRODUCTION

In this paper the finite-temperature version of
the inelastic collision model is used to analyze
experimental low-energy- electron-diff ractiep
(LEED) intensity profiles from the (100) and (Ill)
faces of nickel. The experimental data considered
here cover the energy range between 0 and 240 eV
for a reasonable range of angles of incidence. The
published data for the (110)face' are considerably
more limited and so the (110)face is not included
in the present study. Phase shifts from a conven-
tional muff in-tin "band-structure" potential are
used to describe the electron-ion-core interaction.
Thus, this work contrasts with a previous study
of nickel which analyzes a substantially smaller
amount of data using a potential with the exchange
component especially modified' for the relatively
high-energy range of LEED. The present work
shows that the band-structure potential satisfac-
torily describes the experimental data and, along
with other LEED calculations" '6 using band-struc-
ture potentials, argues against Pendry's assertion
that the exchange approximations used in construct-
ing potentials for energy-band calculations are not
suitable for the higher-energy range of LEED. The
inner potential Vo is determined from work-func-

17tion measurements using the d-wave resonance
to locate the approximate (within 1-2 eV) position
of the Fermi level. In materials such as transi-
tion metals, where the Fermi level lies within a
na~rou partially filled band, this approach pro-
vides a way of independently fixing Vo without re-
sorting to a full band-structure calculation. This
value of Vo agrees well with that obtained by com-
paring calculated intensity profiles with the nor-
mal-incidence measurements of Andersson and

Kasemo. ' It gives a good placement of peak posi-

tions for electron energies ~ 240 eV for both faces.
Previous work on LiF also showed that a value of
Vo consistent with the absolute location of the low-

lying electronic bands relative to the vacuum gave
a good description of the LEED data. '

Five partial-wave components are used to de-
scribe the electron-ion-core elastic scattering
vertex. The renormalization due to the lattice
vibrations is parametrized using the bulk Debye
temperature' of 440 'K. The imaginary part of
the electronic proper self-energy is parametrized
in terms of a constant inelastic mean free path as
was originally done by Duke and Tucker. ' The
calculations adequately describe both the absolute
intensities and the shapes of the experimental in-
tensity profiles ' for ¹(100)at T= 300 K. On

Ni(111) the only available absolute intensity mea-
surements '' are at T=423 'K, and although the
model calculations provide an adequate description
of the shapes of the experimental intensity profiles,
they are off by almost an order of magnitude with
respect to the absolute intensities. Taking ac-
count of a larger amplitude of the surface atoms
(relative to those in the bulk) does not completely
remedy this difficulty. The dependence of the cal-
culated intensity profiles on small changes in the
upper layer spacing is investigated for the specu-
lar beam at near normal incidence. Analysis of
the data indicates that the upper layer spacing is
the same as the bulk value (to within -0. 1 A) for
both faces. This contrasts with the conclusion of
MacRae and Germerm that the upper layer spacing
of Ni(111) was expanded by 5%%uz relative to its bulk
value. Their conclusion was based upon an argu-
ment regarding peak shifts relative to kinematical
Bragg positions. While a charge in the upper
layer spacing does produce such peak shifts,
multiple scattering effects from a strong potential
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can also shift peaks relative to their kinematical
Bragg positions.

The details of the model calculations differ slight-
ly from previous work '" and these differences are
set forth in Sec. II. In Sec. III we describe the
electron-ion-core potential used in the model cal-
culations and show that the value of the inner po-
tential obtained from work-function measurements
agrees with that obtained by fitting the calculated
intensity profiles to Andersson and Kasemo's ex-
perimental measurements. ' Model calculations
of LEED intensity profiles are compared with ex-
perimental measurements for Ni(100) in Sec. IV
and for Ni(111) in Sec. V. Finally, in Sec. VI we
summarize our results.

II. DESCRIPTION OF MODEL

The basic equations that relate the partial-wave
components of the vibronically renormalized elec-
tron-ion-core elastic scattering vertices to the
ref lectivity of a given beam have been previously
set forth by Laramore and Duke. ' Here we only
detail the ways in which the present calculation
differs from previous work. ~'3'~

First, real analogs of the spherical harmonics
are used in the various partial-wave expansions
rather than the complex forms used before. The
particular basis set used is

(II)=(1/~2)[Yi, (II)+(-I) Yi, ],
where m &0 and

Yi, o(II) = Y~,o(a) .
The Y, , (fi) are the usual complex forms. With

these definitions, the basic form of the equations
given in Refs. 2 and 3 remain unchanged although
the numen"ical values of the coupling coefficients
occurring in the definition of the structural Green's
functions are altered. The advantage of the change
of basis is that the structural Green's functions
are symmetric in the angular momentum indices
[as are the scattering amplitudes v„(k(E)) and

T~ (k(E))] and this simplifies the generation and
storage of the various quantities.

The question of various possible boundary condi-
tions on the scattered beams has been raised by
Duke et al. ~~ In the absence of reflection at the
potential barrier between the solid and the vacuum
it is generally agreed that when the momentum
dependence of the electronic self-energy can be
neglected, the reflection amplitude associated
with the gth beam can be written ' '

R( E)
—miR (k, k, )
k'Ak, (g, E) (

where kf„=k„,+ g and

R~(k&, k, )=Q exp[ —i(k&, -k„)d„

—ig a)J T„(ky, k, ) . (4)

In Eq. (4) T„ is the sum of all scattering processes
where the final scattering event takes place in the
Xth subplane which has its origin at (a~ d, z) [see
Ref. 3 for a definition of the remaining quantities
in Eqs. (3) and (4)]. T„ is calculated in terms of
its partial-wave components

T„(ky, k()= Q T„(k(E))Y~(k~)Y~~(k, ), (5)
r.r.'

where Y~($) means that the spherical harmonics
are written as functions of the wave vector k [i.e. ,
k~ ko and k(E)]. There is some question about
the proper way of doing this since k~ and k(E) are
complex. ' Physically, the complex nature of the
wave vectors comes about because of inelastic
processes that cause the elastic beam to attenuate
as it passes through the solid. For this decay to
occur both as the electron beam propagates to
layer X and then from layer X back out to the sur-
face, then in Eq. (4) k«must lie inthe first quad-
rant and k» must lie in the third quadrant in the
complex plane. (Note that the solid has been as-
sumed to occupy the half-space z ~ 0 with k, de-
scribing propagation into the solid and kf describ-
ing propagation out of the solid. ) For consistency,
these k~'s are used in defining the spherical har-
monics used in Eq. (5). That is, the Yz, 's are
written in terms of a real wave vector 5 and then
the replacements

I
S

I

-k(E), S„-k„, S,-k, (6)

are made, with the conventions for k, ~ and kfJ
stated above. Exactly the same procedure was
used previously ' ' ' ' with the complex Yy, 8,
with the additional stipulation that the process of
complex conjugation was done before the real wave
vectors were replaced with their complex counter-
parts. The present procedure with the real F~'s
is numerically the same as the previous prescrip-
tion. This procedure is a natural outgrowth of the
definitions of the Y~'s that are used in a perturba-
tion calculation of T~ where one must take proper
account of k~ to ensure damping during the inter-
mediate propagation stages. '

The second way this calculation differs from
previous work is in the algorithm used to calculate
the renormalization of the electron-ion-core elas-
tic scattering vertex due to the lattice vibrations.
Assuming a spherically symmetric mode of vibra-
tion, we can write' the effective electron-ion-
core elastic scattering vertex for the nth ion core

b„(ko, k))=exp[- W(T, e~, M„)
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where
"(k~- ki) l tn(kai ki) i (7) I' 2mI'(E) =

& (E+ Vo) Img, I
(12)

3
W(T, en, Mn)= 2M k en

ff B D'

Ti'I &" x
X —+ —

n ~

II dx, (8)
4 eD) ex

and t„(kz, k, ) is the scattering amplitude for the
ion core when it is held rigid. In Eq. (8) T is the
temperature of the solid, + is the mass of the nth
ion core, and eD is the Debye temperature param-
metrizing the vibrational amplitude of the ion core.

Previously, Eq. (7) was evaluated by making a
partial-wave expansion of t„(k~, kq)(keeping a speci-
fied number of terms) and then directly calculating
the terms in the partial-wave expansion for
b„(ka, k, ). This procedure is described in detail
in Ref. 3. However, for a given number of terms
in the partial-wave expansion, the behavior of the
vibronic renormalization factor can be more ac-
curately modeled by writing it as

e ur"~' ~=e ~ Q A, (k, W)P, (cos8»), (9)
l=o

where W= W(T, en, M„), k= Ik~ I = Ik2 I, and 8»
is the angle between k, and k2. The A&'s are deter-
mined by equating the left- and right-hand sides of
Eq. (9) at m judiciously chosen values of 8». Here
we restrict ourselves to three terms in the ex-
pansion and fit the coefficients at 8»= 0, 2m, and g.
An example of the accuracy that can be obtained
via this procedure is shown in Fig. 1 of Ref. 25.
For the heavier mass and larger eD of nickel, the
fit is even more precise. Explicit expressions
for Ao, A~, and A2 are given in Ref. 25. The co-
efficients in the partial-wave expansion of b„(ka, k, )
are obtained by straightforwardly writing

2
2

b„(k@ k, )=e " g A,. (W, k)P, .(cos8»)
rs=O

2l" + 1x Z
4 t,ii(k)P;. (cos8»)

o

b, (k) P,(cos 8,2), (10)
2l+ 1

o 7T

and solving for the b, (k} using the orthogonality re-
lationship of the Legendre polynomials. In the
current work five partial-wave components are
used taking T=l =4. The t, 's are defined in terms
of partial-wave phase shifts from the electron-ion-
core potential as given in Ref. 3.

The same simple model for the electronic self-
energy used in previous works' '"' ' ' is used
here, i. e. ,

Z(k, E)= Z(E)= —Vo-iI'(E), (11)

where

The electron-ion-core potential used in. this
work was obtained using conventional band-struc-
ture techniques. Atomic charge densities were ob-
tained following the relativistic Hartree-Fock-
Slater calculation of Liberman. et al. These
atomic charge densities were overlapped and a
muffin-tin potential constructed following Loucks.
The Slater ' local-exchange approximation

V„~(&) = —6o' [n &p(&)1 (13)

was used with the Kohn-Sham value of 0. =
& in

both the free-atom calculations and the muffin-tin
construction. A three-dimensional perfect crys-
tal configuration was assumed in the potential con-
struction with a lattice constant of 3. 52 A and a
muffin-tin radius of 1.24 A being used. This ap-
proach can be modified for surface atoms by appro-
priately changing the atomic coordination num-

and Vo is taken to be the distance from the muffin-
tin zero to the vacuum. This is determined from
work-function measurements as described in Sec.
III. However, unlike previous works, the renor-
malization effects of the electronic self-energy are
assumed to start one-half of an atomic layer spac-
ing outside the position of the outermost plane of
ion cores. This corresponds to taking do= 2d in
Eq. (4), where d is the bulk layer spacing
[d = l. 76 A for the (100}surface and 2. 032 A for the
(111)surface at 300 K]. Such an extension of the
self-energy renormalization effects has been used
by others ' ' with the idea that it helps to take
account of the extension of the conduction electrons
beyond the position of the outermost plane of ion
cores. It also may help to account phenomenologi-
cally for energy losses due to coupling to the sur-
face plasmons while the electron is still "outside"
the solid. ' ' A value of X„=SA seems to provide
a reasonable description of the experimental data.
Five atomic layers are considered in the calcula-
tions shown in this paper.

Finally, in this work we define the nonspecular
beams for both the (100) and (ill) faces in terms
of the primitive bvo-dimensional surface cell as
indicated in Fig. 1. The azimuthal angle P is de-
fined relative to the (10) direction as indicated in
the figure. The angles and beams of the various
experimental works will be translated into this
notation. This seems preferable to defining the
beams for the (100) face of an fcc material in
terms of the nonprimitive cubic axes lying in the
plane and the beams for the (110) and (111)sur-
faces of the same systems in terms of the primi-
tive two-dimensional cell of the surface.

III. ELECTRON-ION-CORE MODEL POTENTIAL
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bers. ' ' The resulting potentials for the surface
atoms have been successfully used to describe the
shift of the core levels of the surface atoms rela-
tive to their bulk counterparts, which indicates
that this procedure is valid. However, the use of
the resulting surface potentials appears to have
little effect (for clean metal surfaces) on the cal-
culated LEED intensity profiles.

The l = 0-4 phase shifts obtained from this po-
tential are shown in Fig. 2. The value of V0, the
distance of the muffin-tin zero from the vacuum,
was calculated as 18.4 eV. However, the energy
bands calculated using this value of Vo would not
give a Fermi level consistent with work-function
measurements. Notice in Fig. 2 that the sharp
d-wave resonance occurs at -9eVabove the muffin-
tin zero. The position of this resonance locates
the approximate position of the center of gravity of
the d band. ' Since the d bands of transition met-
als are fairly narrow and since the Fermi level of
Ni lies within the d band, we know it is located
within 1-2 eV of the d-wave resonance. Using
V0= 18.4 eV would place the Fermi level - 9. 4 eV
below the vacuum resulting in a calculated work

~ ll
Ol

FIG. 1. Schematic illustration of the beam indexing
for the (100) and (111) surfaces of an fcc material. The
indexing is defined using the two-dimensional primitive
cell of the surface. The azimuthal angle p is defined rel-
ative to the (10) direction for a normally incident beam.
The particular primitive cell used for the (111) face is
in accord with Jona (Ref. 28).

7Pt2

V - 18.4eV
0

1.0-

-1.0-

7T/2

50 l00 150 200

ENERGY (eV)

FIG. 2. Nickel phase shifts from the muffin-tin poten-
tial described in the text. The energy scale is measured
relative to the constant value of the potential between the
muffin tins. This zero level was calculated to be 3.8.4
eV below the vacuum.

250

function of Q-9. 4 eV. However, the measured
work function" (polycrystalline Ni) is 5 eV and the
variation of it from face to face is only about
-0. 5 eV. Thus, to be consistent with the work-
function measurement, we should use V0= 14 eV.
This approach of treating V0 as an adjustable param-
eter is common in band-structure calculations since
changing it merely gives a rigid shift of the bands.

Jepsen and co-workers" '4obtain V0directly from
the LEEDmeasurements. In Fig. 3 we show that this
approach also indicates that the calculated value of
V0 is about 4-6 eV too large. In Fig. 3 calculated
intensity profiles using Vo= 18.4 eV for Ni(100) at
normal incidence are compared with the experi-
mental measurements of Andersson and Kasemo. 5

The shaded areas indicate the offset in energy be-
tween corresponding peaks in the intensity profiles.
Since the comparison is for normal incidence [for
the (100) beam the experimental curve is actually
for e- 1', /= 45 ], the offsets give a good mea-
sure of the necessary correction to V0. In general,
these numbers agree quite well with the change of
4. 4 eV obtained from the work-function data. Both
the theoretical and experimental curves are for
the absolute ref lectivity. Note the good agreement
between theory and experiment both in the shapes
of the peaks and their absolute intensities. The
threshold behavior of the (10) beam is not satis-
factorily described by the calculation, but in Sec.
IV we shall see that this is remedied when the cal-
culation is redone using V0= 14 eV.

Treating V0 as an adjustable parameter is not
completely satisfactory from a theoretical view-
point. However, it appears that this adjustment
can be made via a band-structure calculation to
locate either the Fermi level in metals or the top
of the valence band in insulators and then appeal-
ing to either work-function measurements or photo-
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emission data. As can be seen in Fig. 3, this val-
ue of Vo appears relatively constant over a rather
large energy range. This fact, observed several
times before, 3 "' is in marked contrast with the
large energy variation found in current electron-
gas calculations of the real part of the one-elec-
tron self-energy. As we have seen here, this
determination of Vo can sometimes be made with-
out recourse to a full band-structure calculation
if a key level can be determined (approximately)
from the position of a partial-wave resonance. The
value Vo= 14 eV will be used in the remainder of
the calculations presented in this paper. This is
5 eV smaller than the value of Vo= l9 eV quoted

0 20 40 60 80 100 120 140 160 180 200 220

ENERGY (eV}

FIG. 3. Comparison bet@seen the predictions of the
model calculations using V0—-18.4 eV and the experimen-
tal measurements of Andersson and Kasemo (Hef. 5) for
(a) the specular beam, (b) the (10) beam, and {c) the
(11) beam. Both the theoretical and the experimental
curves are for the absolute reflectivities. The experi-
mental zero levels have been shifted to the 2% mark for
the (00) beam and to the 0.6% mark for the (10) and (11)
beams. The shaded areas indicate the offset between
corresponding peaks in the theoretical and experimental
curves. The parameters used in the calculation are
given in the figure. The experimental nonspecular beams
are at 8 =0, but the experimental specular beam is for
0-1 (t) =45

by Andersson and Pendry as giving the best fit
to the same experimental data using a potential
constructed according to Pendry's prescription. '
The phase shifts used in the present work differ
appreciably from those obtained via Pendry's
prescription and this presumably is the origin of
the different "best-fit" values of Vo.

In this section we compare calculated intensity
profiles for Ni(100) with experimental measure-
ments. Since once the T„have been obtained for
a given angle of incidence, it costs little additional
computer time to calculate the intensities of several
"extra" beams as well [see Egs. (4) and (5)], we
will also show some calculated intensityprofiles for
some beams that have not been measured as yet.
It is hoped that this will motivate additional experi-
mental work and provide a more accurate test of
the theoretical model. Unless otherwise stated,
the calculations in this section treat the surface as
though it were simply a truncation of an idealized
perfectly periodic bulk solid. The 300 'K lattice
constant (3.52 A) is used.

In Fig. 4 we show a comparison between the cal-
culated intensity profiles for a normally incident
beam and the experimental measurements of Ander-
sson and Kasemo. ' There is reasonable agreement
between theory and experiment with respect to both
the shapes and positioning of the various peaks and
their absolute intensities. The calculations and
the experimental measurements are at room tem-
perature (7- 300 'K). Note the improved descrip-
tion of the threshold behavior of the (10) beam com-
pared with that shown in Fig. 3. Threshold be-
havior can. be fairly sensitive to the value of Vo
used in the calculation.

A comparison between the calculated intensity
profile for the (100) beam at e= 5', Q = 45' and the
experimental data of Andersson and Kasemo and
of Demuth et u/. ' is shown in Fig. 5. Calculated
curves for the (OT) and gX) beams are also shown
in the figure. Note that above 30 eV there is ex-
cellent agreement with regard to peak positions
among the three sets of curves shown in Fig. 5(a).
At - 30 eV both experimental curves show a very
small peak that is not seen in the theoretical cal-
culation. The differences in the two experimental
curves for E «20 eV could be due to beam normal-
ization problems. There is almost a factor of 2
difference between the two sets of measured abso-
lute intensities at the peak maxima between 30-60
eV. The calculated absolute intensities in this
region lie closer to the measurements of Demuth
et ul. '

Allowing the surface atoms to have a larger am-
plitude of vibration would decrease the peak intensi-
ties of the calculated curve somewhat. On the other
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larly for 8= 7' there is excellent agreement between
the calculated intensity profile and the experimen-
tal measurement with respect to both peak position
and shape and also with respect to absolute intensi-
ties. At 8= 10' and 15 the agreement between
theory and experiment, although somewhat less
spectacular, is still quite respectable. The evolu-
tion of the profiles with increasing 8 is adequately
described by the model calculations. It is inter-
esting to note that although there appears to be no

noticeable energy dependence of the inner poten-
tial, there does appear to be a slight shift between
the calculated and the experimental peaks that de-
pends on 8. Qualitatively, the theoretical curve
is about 2 eV higher than the experimental curve
for 8= 7, it coincides with the experimental curve
for 8= 10', and it is about 2 eV lower for 8=15'.

0.0

Icl

1.0—

Ill) SEAM

exp

exp

4.0-

N I CKEL (100)

-S3I, V -140V, 8 ~ 440'K, T-300'K, e-S', 0) -e'
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FIG. 4. Comparison between the predictions of the
model calculations using V0 = 14 eV and the experimental
measurements of Andersson and Kasemo (Ref. 5). Ex-
cept for the value of V0, the details of the calculation
and also of the experimental data are as detailed in Fig.
3.

3.0-

2.0-

I

K

1.0-

exp

exp

hand, using a larger value of X -perhaps via an
energy-dependent Im~-would increase the calcu-
lated peak intensities. In view of the differences
in the measured absolute intensities between the two
curves, it does not seem worthwhile to place too
much emphasis on precisely matching the absolute
intensities. In general, the agreement between the
calculated and the measured intensity profiles is
quite good. It is somewhat surprising that the
model calculation describes the shape of the struc-
ture above 160 eV as well as it does using only five
partial-wave components. At an electron energy
of 160 eV (174 eV relative to the muffin-tin zero)
the l = 5 phase shift has a value of about 0. 18, which
means that its effects should begin to appear. This
may in part account for the lack of agreement with
respect to the high-energy side of this structure.

A comparison between calculated intensity pro-
files and the experimental measurements of De-
muth et al. for Q = 0' and various angles of inci-
dence is shown in. Fig. 6. This azimuthal direc-
tion differs by 45 from that of Fig. 5. Particu-

0.0
(b)

(01) BEAM

1.0-

1.0-

(c)

p p I ~ I

0 20 40 60 80 100 120 140 160 1B0 200 220

ENERGY (eV)

FIG. 5. Comparison between the predictions of the
model calculations for the specular beam and the experi-
mental measurements of Andersson and Kasemo (Ref. 5)
and Demuth et al. (Ref. 6). Both the theoretical cal-
culations and the experimental measurements are for
the absolute reflectivity. The zero level has been shifted
to the 1% mark for Demuth ef al. and to the 2% mark
for Andersson and Kasemo. Calculated intensity profiles
for the (01) beam and the (11) beam are shown in (b)
and (c), respectively. The parameters used in the cal-
culation are indicated in the figure.
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calculations and the experimental measurements
shown in Figs. 4-6 is satisfactory. However, one
possible way that a clean metal surface may dif-
fer from the idealized model used in the calcula-
tions is in the layer spacing between the top two
layers. To investigate the dependence of the cal-
culated intensity profiles on this parameter, we
write the upper layer spacing as

0.0
(b)

g 20-

1.0 .

0.0
(c)

2.0-

I

I
1

I

exp

exp

d' = (1+y)d, (14)

where d is the bulk layer spacing of 1.76 A and

y denotes the deviation from the bulk value. Be-
cause of the generally good agreement between the
experimental data and the calculated curves for
y= 0, we expect that for Ni(100) y is quite smalL
Nevertheless it is important to try to place limits
on it. In Fig. 8 we show calculated curves for
y= —0.05, 0, and 0. 05 and compare them with
the experimental data. These curves are for the
specular beam at fairly small angles of incidence
(where past experience indicates that the model
calculations are most accurate) for both of the ex-

1.0-

0.0
0 20 40 60 80 )00 120 140 160 180 200 220

ENERGY (eV)

FIG. 6. Comparison between the predictions of the
' model calculations for the specular beam and the experi-

mental measurements of Demuth eg gl. (Ref. 6) for
p =0 and various angles of incidence. (a) shows the
curves for 8=7', (b) shows the curves for 8=10', and
(c) shows the curves for 8 =15 . Both the theoretical cal-
culations and the experimental measurements are for
the absolute intensities. The zeros of the experimental
curves have been shifted to the 1% mark. The param-
eters used in the calculation are indicated in the figure.
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The origin of this drift is not clear at present.
These same experimental curves are compared
in Ref. 6 with model calculations based on Pen-
dry's potential formulation. The agreement be-
tween theory and experiment obtained in Ref. 6 is
somewhat poorer than shown here. However, it
must be pointed out that the calculations in Ref. 6
are based upon a perturbative approach and also
use a different model for the electronic self-ener-
gy. A comparison of the perturbative approach
with the method used in this paper is currently
underway. 4'

Calculations of the intensity profiles for the (01)
and (H) beams for P = 0' and 8= 7, 10, and 15
are shown in Fig. V. It is hoped that these cal-
culations wiQ motivate further experimental work
that would provide additional tests of the model.

In general, the agreement between the theoretical
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FIG. 7. Calculated intensity profiles for (a) the (01)
beam and (b) the (11) beam for f = 0' and the indicated
angles of incidence. The calculations are for the absolute
intensity and use the parameters indicated in the figure.
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spacing is defined in terms of p through Eq. (14) of the text.

perimental azimuths. The experimental data of
Demuth et al. are also shown for ease of com-
parison. For the values 8=7'and @=0' shown
in Fig. 8(a), there is really not a great deal of dif-
ference bebveen the various calculated curves over
the energy range 10-150 eV covered by the ex-
perimental data. The experimental data do dis-
criminate somewhat against the 5% contraction of
the upper layer spacing. The most dramatic
change is in the behavior of the calculated curves
in the energy range &150 eV, for which there are
no published experimental data at this azimuth.
Tbe calculated curves for 8= 5' and / = 45' are
shown in Fig. 8(b). Again the results below 150
eV appear to discriminate against a slight con-
traction of the upper layer spacing. A 5% ex-
pansion of the upper layer spacing pulls out the
peak structure near 20 eV, resulting in a some-
what bettex' agreement with the experimental data
of Demuth et aE. However, in this energy range
their data differ appreciably from those of Ander-
ssonand Kasemo so the reliability of this diagnos-
tic is unclear. Again the most pronounced dif-
ference between the calculated curves occurs for
E &150 eV. This agreement between the experi-
mental curve and y= 0 is clearly the best in this
energy range.

A value of y= 0 seems to provide abetter descrip-
tion of the experimental data than. y= + 0. 05, which
provides limits on. the value of d'. %e thus con-
clude that the upper layer spacing for ¹(100)
coincides with its bulk value to within -0. 1 A. In
view of the interdependence be@veen the profile
changes fox' a given value of d' and the assumed
values of X„(E), it does not seem reasonable to
try to push the present model to a greater accura-
cy than this.

In this section we consider experimental data
consisting of absolute intensity measurements' ~ '

for the specular beam at T = 423 'K and relative
intensity measurements for the nonspecular beams
at T = 300 'K. Bulk thermal expansion ' was taken.
into account by using a lattice constant of 3. 526 A
fox' the T = 423 'K calculations. The same specular-
beam-intensity data for Ni(111) is shown both in
Refs. 8 and 9. However, in Ref. 8 the data ax e
plotted as a function of momentum transfer not of
electron beam energy as they are in Ref. 9. The
experimental absolute intensity data shown here
are taken from Ref. 9, but are plotted as a func-
tion of the polar angle measured from the surface
norxnal, not the angle of incidence measuxed fx'om
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FIG. 9. Comparison between the predictions of the
model calculations for the specular beam and the experi-
mental measurements of Ngoc et aL (Ref. 9). The
curves are labeled by the angle of incidence e. Both the
theoretical calculations and the experimental measure-
ments are for the absolute intensifies. The experimental
intensities have been multiplied by 8 to place them on
the same scale as the calculations and their zero levels
have been shifted to the 1% mark. The parameters used
in the calculation are indicated in the figure.

the surface plane was as done by Ngoc, Lagally,
and Webb. The data of Park and Farnsworth'
were originally plotted as a function of cot28,
where e is the angle that the emergingbeam makes
with the surface normal. This variable has been
converted back into beam energy in the present
work.

In Fig. 9 we compare calculated intensity pro-
files for the specular beam with the experimental
measurements of Ngoc et al. One fact immediate-
ly stands out: Although there is a reasonable agree-
ment between the model calculations and the ex-
perimental measurements with respect to peak
positions and shapes (particularly for 8 ~ 14'),
the absolute intensities differ by alrr. ost an order
of magnitude. Since these data were taken at a
higher temperature than that from Ni(100), one

quickly notes that the effect of a larger amplitude
of vibration for the surface atoms would be more
pronounced in reducing the calculated intensity. '

To gain some idea about the magnitude of this ef-
fect, the calculation for e= 6 was redone using a
value of e~= 300 K to characterize the vibrational
amplitude of the surface atoms- This gives the
surface atoms about twice the mean-square vibra-
tional amplitude of those in the bulk. The calcu-
lated curve, not shown in the figure, was quite
similar in general appearance to the one using
8&= 440'K. The intensities of the peaks were re-
duced but not nearly enough to bring theory and ex-
periment into correspondence, i.e. , the intensity
of the 23wV peak was 5. 6/p, the intensity of the
66wV peak was 0. 65%. the intensitv of the 131-eV
peak was 1%, and the intensity of the 219-eV
peak was 0. 175%. Another way of reducing the
calculated intensities would be to extend the onset
of the damping beyond 2d from the outermost plane
of surface atoms. However, we know of no physi-
cal reason to expect this distance to be substan-
tially different for the (100) and (111)faces. A

stepped surface can have the effect of scattering
intensity out of the region seen by the detector and
thus reduce the measured intensity. ' However,
the experimental data do not exhibit the shifts in
peak position and modulations of peak shape that
accompany the intensity reduction. ' We are
thus unable to resolve the disagreement between
the experimental and theoretical absolute inten-
sities for the (111)face.

Looking at Fig. 9(a), we see that for E &200 eV
the theoretical peak is substantially broader than
its experimental counterparts. Again we note that
at an energy this high, the l = 5 partial-wave com-
ponent probably needs to be taken into account for
a reliable description of peak shape. Unlike the
data from the (100) face, these data seem to show
a slight energy dependence of the effective inner
potential. This amounts to about 4 eV over a 200-
eV range, which still is much less than electron-
gas calculations predict. 34 The evolution of the
intensity profiles with increasing e is adequately
described only up to 6)= 14'. For 8= 18' and 22
there is considerable deterioration of the agree-
ment between theory and experiment. This de-
terioration of the agreement between theory and
experiment is a fairly common occurrence,
and may be attributed at least in part to the over-
simplified model of the electron-solid force law
used in the calculations and to the assumption of
an idealized planar surface. Experimental un-
certainties in the azimuthal and polar angles of
the incident beam may also be contributing to this
effect. '

Model calculations of the (10) and (OT) beam in-
tensities are presented in Fig. 10 for various
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gy peaks in the (10) and (20) beams, which is not
predicted theoretically. Using either a stronger
potential (i.e. , including the I = 5 partial-wave
component) or a smaller value of ImZ(E) in this
region might tend to produce such additional struc-
ture.

We regard the comparison between theory and
experiment shown in Figs. S and 11 as sufficient
to argue for the basic validity of the model of the
electron-solid force law used in the present work.
To obtain limits on the deviation of the upper layer
spacing of Ni(111) from its bulk value, calcula-
tions were again performed for different values
of the upper layer spacing. The results of some
of these are compared with experiment 9 in Fig.
12. The upper layer spacing is defined in terms of
y through Eg. (14), where d = 2. 0355 A for Ni(111)
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FIG. 10. Calculated intensity profiles for (a) the (10)
beam and {b) the (Og beam for the indicated angles of
incidence. The calculations are for the absolute intensi-
ties and use the parameters indicated in the figure.
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angles of incidence. Although Ngoc et ul. 9' do not
show any direct data for these beams, they do show
"averaged" data at T = 373 'K. The largest peaks
in these averaged data have intensities between
0. 1 and 0. 2%, which again is considerably smaller
than the intensities of the prominent peaks in cal-
culated curves.

Park and Farnsworth' give normalized relative
intensity measurements for several nonspecular
beams at normal incidence. These data are com-
pared rvith the results of model calculations in
Fig. 11, with the theoretical calculations and the
experimental data being normalized at the first
peak in the (10) beam. The theoretical calculations
give a good description of the intensity-profile
variation from beam to beam. The experimental
curves lie about 4 eV higher in energy than those
in the model calculations. This takes the form of
a constant offshift and does not indicate an energy
dependence of the inner potential. The worst dis-
agreement between theory and experiment occux s in
the region above 190eV for the (10)beam. Also ad-
ditional "fine structure" is observed on the high-ener-
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FIG. 11. Comparison between the predictions of the
model calculations for the (10), (TO), (20), and QO)
beams at normal incidence and the experimental mea-
surements of Park and Farnsworth (Ref. 7). The theo-
retical calculations are for the absolute intensities. The
experimental measurements are only for the relative in-
tensities. The two sets of curves have been normalized
with respect to the first peak in the {10)beam. The
experimental zero levels have been shifted to the 1%
mark for the (10) and (10) beams and to the 0.5% mark
for the (20) and (20) beams. The parameters used in
the calculations are indicated in the figure.
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at T = 423 'K. The calculated intensity profile for
y= 0 agrees considerably better with the experi-
mental measurement than the calculated curves
for an expanded or a contracted upper layer spac-
ing. We thus conclude that the upper layer spacing
for Ni(111) coincides with its bulk value to within
-0. 1 A. For the reasons given at the end of Sec.
IV, it does not seem sensible to try to push the
present model to a greater accuracy than this.

VI. SUMMARY AND CONCLUSIONS

In this paper we used a finite-temperature ver-
sion of the inelastic collision model to analyze
experimental low-energy- electron-diffraction in-
tensity profiles for Ni(100) and Ni(111). Some
minor modifications of the previous computational
technique that have proven useful were detailed
in Sec. II. Two of these modifications —(i) achange
to a "real" spherical-harmonic basis set and (ii)
a change in the algorithm to calculate the effec-

tive electron-ion-core elastic scattering vertex—
were simply for computational convenience. The
inclusion of electronic self-energy renormaliza-
tion effects beyond the position of the surface ion
cores contains some physics in that it accounts
phenomenologically for the extension of the elec-
tron cloud beyond the surface ion cores '"' '~
and also in part for energy losses to surface plas-
mons while the electron is still outside the solid. ' ' ~

The particular choice of surface boundary condi-
tions used and the rationale behind it were also
discussed.

The electron-ion- core model potential used in
this work was constructed using conventional band-
structure techniques without modifying the ex-
change approximation for the high-energy range
of LEED. The inner potential was determined in-
dependently of the LEED data by fitting the position
of the d-wave resonance to work-function measure-
ments. ~7 The imaginary part of the one-electron
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self-energy was parametrized using a constant
mean free path and the effects of the lattice vibra-
tions parametrized using an effective Debye tem-
perature.

The model calculations adequately described
both the absolute intensities and the shapes of the
intensity profiles for Ni(100). This would seem to
indicate that the model contains the essential phys-
ics of the problem. However, previous work on
aluminum using the same basic model yielded cal-
culated intensities that were considerably higher
than those experimentally measured, 6 although
there was good correspondence with respect to
the shapes of the intensity profiles. This problem
also occurred here for Ni(111), where the model
gave an adequate description of the shapes of the
experiment intensity profiles but not their absolute
intensities. Assuming that the experimental mea-
surements really are for the current per unit area
reflected into a given beam divided by the incident
current per unit area as defined in Eq. (2. 22) of
Ref. 3, and that the faces in question are reason-
able approximations to chemically -clean idealized
surfaces, we find this degree of variation from face

to face of the same material especi@ly puzzling.
To obtain limits on the upper layer spacing, the
dependence of the calculated intensity profiles on
this parameter was investigated. We conclude
that to within -0. I A the upper layer spacing co-
incides with its bulk value for both faces.

Note added in Proof Recently Demuth (private
communication) has made absolute LEED intensity
measurementsfor Ni(111). Both the shapes of his in.

tensity profiles and their absolute magnitudes are i
good agreement with the calculations presented her
Hence it appears that the pxoblem in comparing the
absolute intensities between the (100) and (111)face
mentioned in this paper is due to different "absolutt
normalization procedure, ;".

" used by different ex-
perimenta3. groups. I would like to thank J. E. De-
muth for making his work available to me prior to
publication.
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This paper presents a generalization of Pippard's network-model approach for the calculation of
transport properties in metals in the presence of magnetic breakdown and partial phase coherence of
the wave function. The generalization consists of introducing an ensemble of equivalent networks

characterized by a well-defined fully coherent finite system of orbits. It allows for relatively easy
computation of the transport efFective path in the infinite-relaxation-time approximation. The idea is

applied to two specific examples: the linear chain and the hexagonal network; the latter can be
considered a good model for magnesium and can be compared with existing and future experiments.

I. INTRODUCHON

The aim of this paper is to present a model cal-
culation of phase-coherence effects on the trans-
port properties of systems in which magnetic
breakdown is present. It is now over a decade
since the existence of the phenomenon of mag-
netic breakdown (MB)—the interband tunneling of
electrons in the presence of a strong magnetic
field-has been recognized. ' In this decade the
experimental studies have not only decisively
confirmed the existence of the phenomenon, but
also the quality of the data has by far surpassed
the limits of the existing theoretical analyses. In
the presence of MB, oscillations in the magneto-
resistance have been observed which are caused
by quantum effects distinct from the density-of-
states oscillations that are observed in the de
Haas-van Alphen or Shubnikov-de Haas effects.
%e can gain a qualitative understanding of these
new effects if we consider the semiclassical pic-
ture of electrons moving along well-defined tra-
jectories. When MB is operative, the electron
may choose between different paths in moving from
a given initial position to a given final posltlon.
This multiplicity of paths indicates that in a quan-
tum treatment, observable interference effects
should be present, cs Long cs the electronic socse
function, maintains its coherence along the various
paths beheeen given initial and final points. As
Pippard has shown, the parameter that governs

the coherence length is the density of dislocations
in the crystal. In acrystalwith avery highdensity of
dislocations, the coherence length is negligible, no
interference effects are present, and the transport
properties, as calculated from the Boltzmann equa-
tion, reproduce the general features of the experimen-
tal result. As the density of dislocation is reduced,
the coherence length increases and the first oscil-
lations in the magnetoresietance, coming from
paths that encircle the smallest areas, begin to
appear. This regime has been successfuly treated
by Falicov et c/. If we try to improve on their
approach there are bvo mays to go: we can either
do quantum transport theory starting from a suit-
able approach, e. g. , Kubo's formula, or we can
adopt a more modest, but cd hoc scheme for cal-
culation of the conductivity based on semiclassical,
e. g. , Pippard's network, models. ' The advantages
and disadvantages of both methods are quite clear.
It we use the quantum transport approach, we have,
to begin with, a well-defined theory for which, in
principle, suitable approximation schemes could
be devised. So far, however, nobody has succeeded
in tackling the difficulties involved in such an ap-
proach. ' lf, on the other hand, we start from
the network model, we step into a vacuum, so to
speak. The problem is not completely well-de-
fined and me must depend to some degree on in-
tuition. Although the network model has been
amply discussed in the literature and ad hae justi-


