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The fluctuation-induced 4'~~~Cham in dirty layered superconductors is calculated for the case in

which the magnetic Seld is perpendicular to the layers. The tight-binding model of Lawrence and

Doniach and the microscopic theory of M~» and Takay~~ are employed. A calculation is also

performed for dirty tw~mensional thin 6&ms, and a parameter is identified that interpolates between

the two- and thrce4imensional behavior for hLyered superconductors.

I. INTRODUCTION

Experimental investigations by Gamble, Ge-
balle, DiSalvo, and Klemm" and by Geballe et
aE. ,

' have led to a class of layered superconduc-
tors suitable for both experimental and theoretical
study. These materials were first investigated
theoretically by Lawrence and Doniach, s and later
by Tsuzuki, who used the tight-binding model
within the framework of Schmid4 to calculate the
conductivity and susceptibility due to fluctuations
above T, in these quasi two-dimensional materials.
Their theory was a simple Ginzburg-Landau
type, and took no account of the time dependence
of the fluctuations. It predicted that the layered
superconductors should have a temperature de-
pendence in zero magnetic field which behaved

three dimensionally just above T„and two dimen-
sionally further from T, . Although the experimen-
tal results obtained to this point are not definitive,
reliable experimental results should soon be avail-
able. For comparison with the experiments, more
reliable theoretical calculations are desirable.

In this paper we report calculations based on
the microscopic framework of Maki and Takayama'
for these layered materials when the magnetic
field is directed perpendicular to the layers. Since
the materials of interest, transition-metal di-
chalcogenide intercalates, are formed by the inter-
calation of organic molecules between the layers
of the transition-metal dichalcogenides, the layers
exhibit various structural and chemical defects,
and therefore we expect the materials to be well
within the dirty limit. In fact, preliminary ex-
perimental investigations seem to indicate that
these materials are extremely dirty, '~ so much so
that we must be careful that the mean free paths
are not so short that the whole formalism breaks
down. Fortunately, the E~v deduced from the
measurements seems large enough for the theory
to be valid. For comparison, we will also perform
the calculation for two-dimensional thin films. We
further note that the calculation has recently been

carried out by Gerhardts and Doniach in the clean
limit, where nonlocal effects are important.

The so-called "zero-point" term will have to be
investigated both for the two-dimensional case and
for the layered superconductors, because it is not
obvious that the reasons for dropping the three-
dimensional analog also apply to these two cases.
Maki and Takayama~ (MT} dropped this term, and
found that the theory predicted a field dependence
of the magnetization in good agreement with exper-
iment, whereas the theories of Lee and Payne and

Kurkijarvi, Ambegaokar, and Eilenberger, ' which
were the same as MT in all respects except for the
inclusion of this term, were not quantitatively in

agreement with experiment. Maki" has demon-
strated that this term is weakly dependent upon
both field and temperature and therefore not de-
tected in the present experiments. We will show

that the zero-point terms are small in the two-
dimensional and layered cases as well.

To avoid unnecessary mathematical approxima-
tions, we will evaluate the magnetization using the
full dirty-limit propagator, instead of the Ginz-
burg-Landau approximation for it. We shall see
that the agreement of the correct expression for
the temperature dependence is good. We note
that, since the temperature dependence of the
magnetization depends upon the dimensionality of
the system, it would be helpful for understanding
layered superconductors to have a theory that pre-
dicts the temperature dependence reliably.

Since for the layered and two-dimensional cases
the magnetic field is directed perpendicularly to
the conducting plane(s), the formalism for the
dirty limit based upon the formation of Landau
orbits perpendicular to the magnetic field is still
valid. The Cooper pairs may complete any num-
ber of Landau orbits without having to leave the
plane in which they began. Motion in the direction
of the field is described by a function of the single
variable k„since the effective mass is assumed
to be diagonal in the basis of the states directed
parallel and perpendicular to the planes. The
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FIG. 1. Plot of static
three-dimensional (Prange),
two-dimensional, and lay-
ered magnetizations as a
function of & =a i. For the
two-dimensional case, d is
replaced by s for compari-
son. I,See Eqs. (24)-(26). ]
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thickness d of a two-dimensional thin film is much
less than the coherence length l(0). Thus, we may
use only the lowest k, value allowed. For the
layered superconductors, we use the tight-binding
form of Lawrence and Doniach, ~ based upon
Josephson coupling between the layers. For for-
mal purposes, we define a quantity e(k, ) such that

&g,,) = (m/M) u', anisotropic three-

dimensional superconductors

=0 two-dimensional thin films,

= V[1 —cos(k,s)] layered superconductors
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FIG. 2. Zero-field sus-
ceptibility for three-dimen-
sional alloys from Eq. (20)
plotted along with the Schmid
theory, the Ginzburg-
Landau approximation to
Eq. (20), and the extrapo-
lated experimental curve
for Pb-5-at. fp Tl alloys
(Ref. 13).
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FIG. 3. Comparison of

the full propagator theory
with the experiment of
GBT (Ref. 13) for Pb-5-
at. /o Tl and the approxi-
mate calculation of Maki
and Takayama (Ref. 5) for
the magnetic field depen-
dence of three-dimensional
superconductors at T&.
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where U is defined such that as k, -0, e(k, ) for
the layered materials approaches (m/M) km„U
=—2m/(Ms ). We note that for three dimensions,
k varies from —~ to + ~; for two dimensions, it
is between s v/d; and for the layered materials, it
varies between + w/s. M and m are the effective
masses parallel and perpendicular to the magnetic
field, respectively; d is the thickness of the thin
film; and s is the spatial period of a layered
material. In our calculations, we shall use the
natural units of c =S=k~ = 1, restoring these quan-
tities in the final equations.

H. THEORY

The free energy due to fluctuations in the pres-
ence of magnetic field K is obtained by a coupling-
constant integration of the approximate potential
energy
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Here S (n, k„ru), the fluctuation propagator in the
dirty limit, is equivalent to the sum of ladder dia-
grams

H/Hg =0.5

0

GATI

M I I I I I I I 7 1 I I

0 2 4 6 8 10 12
T-Tco

T Tco

FlG. 4. Temperature dependence of three-dimension-
al superconductors. Plotted are the full propagator cal-
culations, the approximate calculation of Maki and Ta-
kayama (Ref. 5), and the experimental data of GBT {Ref.
13) for Pb-5-at. Tl.
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FIG. 5. Field depen-
dence of two-dimensional
thin films. Plotted are the
static value and the full
propagator theory at T.
Note that the static value
is independent of the mag-
netic field.
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(n, k„~„)=Ig! N(0)

D[4etl(n —,') e(k, )]
)2

(3)

use the Poisson sum formula, differentiate with
respect to H to obtain the magnetization, integrate
by parts three times with respect to the dummy
variable x (following Prange'z and MTI), obtaining

where N(0) is the electron-state density for a sin-
gle spin direction, D= —, 1e is the two-dimensional
diffusion constant perpendicular to the magnetic
field, g is the coupling constant, g(z) is the di-
gamma function, and zo is determined by

—ln(T/T~}= g(z sp/4&T)- g(-,'),
where T~ is the zero-field transition temperature
and co„ is the Matsubara frequency defined by

(dp = 2wvg .
Equation (3) can be derived from the microscopic
theory when the electron scatters many times in a
given layer before tunneling to an adjacent layer.

By analytic continuation, we may transform the
above sum over the Matsubara frequency ~„ into
an integral over co:
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x lm [inu '(n, k„i(o)],
where p= 1/T is the inverse temperature. We de-
&ine a function f such that

f(x) = ln(lgl N(0)[t) (—,'+x)- g(—,
' —so/4sT)g (7)

and f '"'(x} is the nth derivative of f(x). We then
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FIG. 6. Temperature dependence of two-dimensional
thin films for H=0. 28Hc2(0) and H=2. 8Hc2~0~ ~ Plotted
also is the static function ("two-dimensional Prange ").
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FIG. 7. Comparison of
the field dependence for
layered superconductors at,

T~ with the two- and three-
dimensional field depen-
dences at T~o. Plotted is
the layered magnetization
for r=1, 0.1, and 0.01,
the Prange value, the three-
dimensional curve from
Fig. 3, and the high-field
parts of the two-dimension-
al field dependences (from
Fig. 5) multiplied by ($s)~~t
for comparison.

9R = +
' d(d

Z dx( s —m) d, yf h
De(k, ) l~

2 „j -c]a dy 4m' 4mT
(8)

where y = x+n is taken after differentiation, and h is defined by
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k=(T /T)H/2y H„(0),
where we have used the relation for H~(0) in the
dirty limit,

H~(0}= vT+2y'eD, (10)

and y'=1. V8.
It can be shown that the term involving the sum

over n gives a total contribution of order 5% or
less of the magnetization. Therefore, for compu-
tational purposes, we may use the Ginzburg- Landau
approximation for the terms in the infinite sum,
whereas we shall use the full dirty limit propagator
form for the other two terms. We shall hereafter
refer to the magnetization obtained by dropping the
infinite sum in Eq. (8) as sg~„,. We note that
at H=O, only the first term contributes to the sus-
ceptibility (}t=M/H). It can also be shown that the
Ginzburg-Landau limit for the entire expression in

Eq. (8) gives the result of MT, if we drop the
zero-point term (the 2 in the frequency integral).
As the Ginzburg-Landau limit is just the lowest
term in the Taylor series expansion of thedigamma
functions for small e(k, ), small eo, small w, and

low fields, we note that the correct value for the
magnetization will always be less in magnitude
than the approximate value. Since the results
of MT gave a temperature dependence always
greater than experiment, ' we shall be careful to
do the calculations without making this additional
approximation on the two largest terms.

III. NEGLECT OF "ZERO-POINT" TERMS

To examine the "zero-point" terms for the two-
dimensional and layered superconductors, we pro-
ceed analogously with the treatment of Maki" for
the three-dimensional case. Since the v integral
for the zero-point part of Eq. (8) is divergent as
it stands, we make use of the fact that at large (d,
the diffusion constant becomes frequency depen-
dent, in such a way as to cut the integral off at
~ = v ', where 7. is the lifetime of the pair states.
The term involving f"' is then seen to be much
larger than the other terms, as none of them are
divergent without the cutoff. Keeping only this
term, we may perform the co integral, and obtain

1 D(2eH+ e(k })
2+ 4vT 2 4vT l I

'

where 9R„is the zero-point contribution to the
magnetization.

Since 7'T «1, the two-dimensional zero-point
magnetization is given by

gg~D = — ].nln

a' t—ln y —+ —
~

-y
2 2) 2 4mT]

(12)
which we note is small for H«H~(0}, but varies
weakly with temperature otherwise. This tem-
perature dependence can be shown to be much
weaker than the weakest temperature dependence
from the other terms in the co integral; if we look
at the zero-field expression for the susceptibility,
for example, the "zero-point" term diverges
logarithmically as T- T~, whereas the analogous
term from the (e~ —1) ' integral diverges as
(T- T~) ' Furthermore, . for H& H~(0)„ the tem-
perature dependence of the zero-point term be-
comes very weak, although the magnitude of the
term is large. Since it is the temperature depen-
dence of the magnetization that is measured, the
zero-point term can also be neglected in two di-

mensions.
For the layered superconductors, we cannot

perform the k, integral exactly, but we note that
for large s, the zero-point expression reduces to
the two-dimensional form we have just calculated;
and for small s, it reduces to the three-dimen-
sional form, which was approximated by Maki" to
show that it was weakly temperature dependent.
The three-dimensional form does not diverge as
H-0 and T- T, and away from T, it can be
shown to be as weak relative to the other (non-
zero-point} terms just as the two-dimensional
zero-point term was weak relative to the non- zero-
point two-dimensional terms. An approximate
calculation reveals that the zero-point term for
layered superconductors can also be neglected for
intermediate values of s.

IV. CALCULATION OF THE MAGNETIZATION

We now refer to Eq. (8) and examine the small
contribution from the sum over n. Since the entire
sum gives a contribution that can be shown to be of
the order of 5% or less relative to the other two
terms (e.g. , in the Ginzburg-Landau approxima-
tion}, and since the temperature dependence of
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these terms is stronger than for the other two
terms, they will be even much less than 5% for
high temperatures. %'e are therefore justified in
approximating the terms in this sum by an approx-
imation that will make the integrals simple: the
Ginzburg- Landau approximation. %e refer to the
contribution to the magnetization f rom the term
with the infinite sum as 5R „„.%e list the con-
tributions to the magnetization from the following
terms:

~ia0r @ ~ 4&p

odd

X
(m —3)(2m —5)!!(2y+iz/2zh+ 3n/m)

2 (2m —4)!!(n+ y+iz/4vh)
(13)

pD 48g 4 dz
OK

4wt![fl'c [3v o e'- 1

x Im
( —2)( / 2 4*/4zh))'

2 (n+ y+iz/4vh)

(14)

4eP 2 dz
4mPskc 3n e'- 1

x1m P Z
n= 1 tw= 3 n

odd

(
2n(m+1)P„,„(z„)

~(m+ 2)t„j
(15)

where P is the mth Legendre polynomial and t„
and z„are given by

t„=2 [(n+ y+ tz/4'+ oP - 2 ]'/I,

z„=2(n+ y+iz/4zh+ o)/t„,

g = m/Ms 2eH,

y = &o//4 eHD, (19)

and where &o is given by E[l. (4). Note that we
have not made the Ginzburg-Landau approximation
for go, although we did make it for the H, k„and
~ dependence of the digamrna functions. Thus,
this approximation is quite reasonable.

The "nzajor" terms are given by

4e MH & ~ dz h' "dk,

!!"'[(h+ 1)/2+iz/47[+k ', ]
zh 4[(h ~ 1)/2 iz/44 h, l —2(—,

' —zz/4 T)) (20)

gg ~j„———V ~, — Im l- h—

[{)
")[(h+ 1)/2+ iz/4v]

ll[(h ~ 1)/2 ~ (4/4 4]- 4(-,' - 44/4 4T ))

(44/hz)V (2)/-4* ( 2) 44.

[!)")[(h+ 1)/2 4. iz/4m+(r/4z)(1- cosk,)]
sh )i)[(h+ 1)/2+iz/4z+(r/4z)(1 cow[* '~--[[)(-,' —eo/4zT)

(22)

here r=2mD/Ms T. The magnetizations used in
the numerical work were just the "major" plus the
"minor" magnetizations.

V. RESULTS AND DISCUSSION

To get a crude idea of how the tight-binding
model for layered superconductors compares with
two- and three-dimensional systems, we shall
perform the calculations for two dimensions and

layered «stems within the spirit of Prange. '
That is, we shall take the Ginzburg-Landau limit,
and replace (eo" —1) ~ by (Po)) ' and take the residue
from the (d =0 pole only (static limit). The ex-
pression~ for these approximations are given be-
low, and we note that the three-dimensional ex-
pression is formally identical with the result of
Prange, multiplied by the anisotropy factor
(M/m)'".
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1 y+4
fsn(r, (r)=f,(r)= 24 (y 1)$/sy+ p

( —3((tm-5)(((2y 3 / ()
2 (2m —4)l! (n+y)

(24)

2 p p (m-3)(n/m+y) I

s a t m 5 [2(n+ r)]

f&~.~(r, (r) = t's (~z)'" [(r+ (r+ s}'—(r'] '"
(23)

+ z(y+(r+ s)[(y+ (r+ z) —o ]

~ 4 Z Z,...' (t„(z.(
n= 1 nt n3 n

odd

2n(m+ 1)
(m 2)f ttlo 1 It t

where

S(t = (4e/Hc-)' s(MH/m}'~ (V/4rrp}f(y, (r}

and

f„=2 [(y+(r+n }'—(rs]'rs,

e„=2(y+(r+n)/f„.

(26)

(2V)

((aa)

(29)

The results of numerical work at T~ are given in
Fig. 1. Note that fs(0) =0.09133 and fan(0, (r)
= 0.34589 (—,'(r)'~z. Note that for small magnetic
fields, the tight-binding model for layered super-
conductors approaches the Prange result, and at
large magnetic fields, it approaches the "two-di-
mentional Prange" result, and passes smoothly
from one extreme to the other. The transition
region is for o = 5 '-0. 1.

The expressions for the magnetizations in the
limit H 0 can be computed exactly by keeping
only the first terms of Eqs. (20)-(22), omitting
the terms involving the derivative with respect
to h, since those terms are negligible as h-0.
Gollub, Beasley, and Tinkham's (GBT), who first
performed experiments on dirty lead-thallium
alloys, have performed an extrapolation of their
data to zero magnetic field, and the temperature
dependence of their extrapolated data is compared
with the theory [numerical integration of the first
term of q. (20)) in Fig. 2. Also plotted in Fig.
2 is the zero-field temperature dependence in the
Ginzburg- Landau approximation, and the simple
Schmid theory. The deviations of the theory from
experiment are seen to be large away from T~.
We attribute this to the same effects that give the
rather poor agreement with the low-field magnetiz-
ation at T~ in Fig. 3, although it must be admitted
that the theory described here is also least reliable
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FIG. 9. Plot of HJH~t(0) and Hs/H~t(0), the fields at
which the layered magnetization reaches $ the static val-
ue (see Fig. 1) and where the behavior crosses over
from three- to two-dimensional behavior. Hz is defined
to be the field where the two-dimensional magnetization
equals the three-dimensional magnetization.

at very large (T —T,)/T, .
In Fig. 3, we have plotted the field dependence

for dirty three-dimensional superconductors, and
have compared our calculation with the calcula-
tions of MT and Prange, and the experiment of
GBT. We note that the low-field agreement is
rather poor, and the high-field agreement is only
fair, but significantly better than the approximate
calculation of MT. In Fig. 4, we have plotted the
temperature dependence of the three-dimensional
materials, and have again compared our calcula-
tions with those of MT and the experiments of
GBT. The H/H, =0.3 agreement is seen to be ex-
cellent; the H/H, = 5 agreement is far less quan-
titative, but it is better than that of the MT calcu-
lation. The quantity H, is the field at which the
magnetization is ~ the static value. In Figs. 5 and

6, we have plotted the field and temperature de-
pendences of two-dimensional thin films, for which

H, is found to be very nearly H,s(0). However, at
this time there are no experimental data with which
to compare our calculations.

The field dependence of layered superconductors
for three values of the parameter r is given in
Fig. 7. We note that the curves all approach the
Prange value as H-O, and they approach the re-
spective two-dimensional curves for large H. We
note further that for r & 1, that the layered super-
conductors- exhibit three-dimensional field be-
havior, whereas for r «1, the magnetization at
large fields is suppressed. We have plotted h~
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FIG. 10. Plot of the temperature dependence of lay-
ered superconductors for B/B, =0.3 and B/B, =5. (H,
is the field at which the magnetization is $ the Prange
value. ) Plotted are several curves for different r.

[defined to be that field where the layered super-
conductors approach —,

' the Prange value, divided
by 2y'H~(0)] as a function of r ' in Fig. 8. We
note that for r ~0.01, h~ is an order of magnitude
less than the three-dimensional value.

To separate out the suppression of the mag-
netization due to dynamics from that due to di-
mensionality, we have plotted the dynamical cutoff
field H, and the dimensional crossover field H~ as
a function of r in Fig. 9. %'e have defined H, to
be the field at which the magnetization equals &

the static value given by Eq. (26) and plotted in

Fig. 1, and H~ is the field at which the two- and
three-dimensional magnetisations are equal [e.g. ,
in Fig. 1 the static magnetizations are equal at
5- V. 1]. We therefore expect essentially two-di-
mensional behavior for H &H~, and essentially
three-dimensional behavior for H& Hij. Note that
for r ~ 1, the magnetization remains three-dimen-
sional until far beyond the dynamical cutoff, but for
r-0.01, there are large regions of two-dimensional
behavior. This can also be seen from Fig. V.

Finally, in Fig. 10 we compare the temperature
dependence of the magnetization for various values
of r, and for H/H = 0. 3 and 5. The quantity H, is
defined to be the field at which the magnetization

is ~ the three-dimensional static value, and is in
general a function of r [see Fig. 8, where H~
=2y h, H, s(0)]. We observe, however, that the H, /
8, =0.3 curve is very nearly independent of r, and
comparison with Figs. 4 and 6 shows that it is three
dimensional in nature. The H, /H~ = 5 curve, how-

ever, is r dependent, and we observe that for r
=10 (and greater), it agrees with the three-dimen-
sional theory in Fig. 4, whereas for r= 0. 1 and less,
it is two dimensional. For r=1, it is apparently
in the transition region. From Fig. 9, we note that
for r& 0. 3, we expect three-dimensional behavior
for H/H f = 0. 3 and two-dimensional behavior for
H/H~ = 5. For r=10, we expect three-dimensional
behavior for both curves. However, for r=1, the
H/H~= 5 curve should be near the dimensionality
crossover.

Preliminary experimental investigations by
Foner on TaSs (pyridine)tgs indicate that H~(0)
for applied fields perpendicular to the layers is of
the order of 4 ko, which, from the expression for
the dirty limit H, (s)0, gives us an Er r 20. T—his
is within the allowable limits for the theory to be
valid (although it is just barely within the allowable
limits). Thus, the layered superconductors that
have so far been made, appear to be extremely
dirty. Prober, Beasley, and Schwall'4 have ob-
served that the temperature dependence of one
sample of TaSs(Py)«s at low magnetic fields was
essentially identical with the temperature depen-
dence of the three-dimensional alloy Pb- 5 at. % Tl.-"
This is in agreement with the theory, "but it would
be good to have more experimental data on thin
films and layered superconductors. It is inter-
esting to point out that if r were made of order
0.01, by using materials that have a larger layer
spacing, or are more anisotropic, we would ob-
tain a material that exhibited primarily two-di-
mensional-field behavior. We note that TaSz in-
tercalated with octadecylamine has been shown to
have a layer spacing of -60 A. If the mass ratio
decreases exponentially with s, as expected in
materials without too many Shorts, these small
values of r should be easily attainable experimentally.

Note added in proof. It has been brought to our
attention by Gerhardts that the curve in Fig. 8
should have a bump in it, centered at r-1. Care-
ful reexamination of our computer calculations in-
dicates that this is indeed the case, although this
does not change the results qualitatively. For a
curve that is more precise in this region of r, see
Ref. 8.
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