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The combined effects of surface relaxation and quasiparticle interactions on (i) the angular dependence of
the g value and linewidth and (ii) the temperature dependence of the linewidth are studied using a formula

given previously by the author. The theory predicts features qualitatively similar to the anomalous features
observed by Schultz and Dunifer near the critical angle. The explanation is suggestive, but not complete,
and further work is necessary.

Spin waves have been observed in sodium and
potassium by Schultz and Dunifer. ' The inter-
pretation of these experiments in terms of the Lan-
dau-Silin theory of Fermi liquids by Platzman and
Wolff and by Wilson and Fredkin is convincing,
but one would like to understand better the nature
of the anomalies which occur near the critical
angle 4, at which the spin-wave peaks coalesce.

Walker' has included the effect of surface relaxa-
tion, as well as Fermi-liquid interactions, in a
theory of transmission-electron-spin resonance
(TESR) through a thin slab (see Fig. 1). The pres-
ent paper discusses a formula given in Ref. 5, and
shows that the formula predicts anomalies similar
to those observed.

By way of introduction, we give an intuitive dis-
cussion of the effects of surface relaxation. Con-
sider a spatially nonuniform disturbance in the
resonant component of the magnetization density
M and let this disturbance be characterized by the
wavelength ~. Suppose that the spatial nonuniformi-
ty is smoothed out by particles diffusing a distance
—,'~ from regions of high M density to regions of
low M density. According to elementary diffusion
theory, this takes a time f-( &) /zD; the time f is
the effective relaxation time of the nonuniform wave
of spin density. A more accurate description of this
process is given by the dispersion relation for the
spin-dependent oscillations in an infinite medium,
which can be written

(o = (oo —i (1/7, + Dkz),

where coo is the bulk electron-spin-resonance fre-
quency and k=2m/&. The first term in the brackets
is the bulk spin-relaxation rate of the infinite-wave-
length mode (e. g. , due to spin-orbit coupling with
impurities) and the second term is the relaxation
rate associated with the process just described.

Now consider the normal modes of oscillation of
the magnetization density in a metallic slab of thick-
ness L. If there is no relaxation of the spins at
the surface the number of spin-up electrons leaving
the metallic surface equals the number of spin-up
electrons striking it (and similarly for spin down).

In this case there is no net current j of spin flow-
ing out of the surface, and hence we must have j
= -D(dM/dz) =0 at the surface. A spatially uniform
precession of spins satisfies this boundary condi-
tion and is thus a normal mode; in fact this is just
the mode excited in a typical conduction-electron-
spin-resonance (CESR) experiment performed on a
thin slab at low temperatures [so that (Dr,)» f.].
This mode is shown in Fig. 2(a).

Now assume that there is spin relaxation at the
surface. A spin-up electron striking the surface
and making a transition to a spin-down state causes
a loss of two Bohr magnetons at the surface; one
because a spin-up is lost, and the other because a
spin-down (which makes a negative contribution)
is created. This loss of spin at the surface is ac-
counted for in the macroscopic theory by making
the spin current j = —D(dM/dz) different from zero
at the surface. Hence, the normal mode of oscil-
lation of the magnetizationdensity must have a
somewhat bowed shape [see Fig. 2(b)] in order to
provide a gradient of M, and hence a spin current,
at the surface. Hence, surface relaxation causes
the normal mode to be spatially nonuniform, and
spatial nonuniformity gives rise to an additional
relaxation rate Dk .

To calculate the wave number k associated with
the inhomogeneous mode of Fig. 2(b), assume a
magnetization density of the form

M (z) =A coskz+B sinkz

and apply the boundary conditions describing sur-
face relaxation (e. g. , see Ref. 5):

FIG. 1. Experimental
geometry; the external field
makes an angle 6 with the
normal to the slab.
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FIG. 2. Normal modes
of oscillation of M with no
modes for the following
cases: (a) the absence of
surface relaxation, and (b)
the presence of surface
relaxation. In the presence
of surface relaxation, the
mode must have a bowed
shaped so that a current j
= -D(dM Jds) resulting
from a gradient in M can
flow out of the surface.

o v Tp(1 —i(de Tp)

(1 —ildpTp) +(47CTp)
(4)

&de /cop= (Bp Bg)/(1 + Bp)k

(v/v) = (1+Bo)(1+B,)
(5)

Bo and B, are Fermi-liquid-theory parameters,
v, = (1+B,) cd„and To is the orbital collision time
of the electrons.

Bringing the two terms in Eq. (1) to a common
denominator, and making the approximation I-,'kL

I

«1, one finds

dM &'v dM

Beo 2 s~o e I
& v

where e =e(1+Bp)/(1-o), & being the probability
of a spin flip at the surface, and Bo a Landau-Fer-
mi-liquid-theory parameter; v is the Fermi veloci-
ty. Thus, one finds that the wavelength of the nor-
mal modes are determined by the equation

ktankL = (e'v/D)+(e v/2D) k 'tankL.

For the normal mode with no nodes, assuming IkL I

«1, one finds

k =(e'v/DL)+(e'v/2D) .
Substituting this into the dispersion relation given
above, one finds

I I2 2

q '2v2
Hz fx co —coo+a —+ +

4D (6)

which is in agreement with the results arrived at
intuitively above. We estimate the maximum value
of I &kL I, which is of interest in calculations per-
formed below, to be I &kLI -0.2, and therefore
Eq. (6) will be used for further discussion.

The term proportional to a in Eq. (6) was ne-
glected in the discussion following Eq. (5. 13) of
Ref. 5, and our interest in its consequences was
stimulated by the work of Janossy and Monod.

Separating the term (e v /4D) into its real and
imaginary parts, one finds that the resonance oc-
curs at a frequency

cp„= &po--', o (v/v)'&op [X/(XP+ Y')]

and has a width given by

(6)
which is the equivalent to the result of Eq. (6) be-
low. As mill be seen belom, at a certain critical
angle b,, (see Fig. 1 for a definition of ka), the dif-
fusion constant becomes very small, giving a large
contribution to the observed width. Furthermore,
since the diffusion constant is in fact a complex
number [see Eqs. (3) and (4)) surface relaxation
can also result in a change in the observed reso-
nance frequency.

A more complete mathematical discussion of sur-
face relaxation has been given by Walker. ' Equa-
tion (5. 13) of that paper states that the amplitude
of the transmitted micromave field is given by

The following definitions have been introduced:

X = coson, —(&3s /ee) sin~a,

Y = (cp e To)
' [cos'd

+ (cd e (ds /od s cd e ) sin 6]

ctt p = cp e [1+((d p Tp) ]k

Cop=Cop(&c+TO ~a)k

(10a)

k Cps[1+4(CdpTp) ]
1 —(2/Ckt p &Lt p Tp )

&P&cP& [1 —(2/&oe&opTo)]
(dg = I

2(dp+ 47g

(10b)

+t~ l +
1 1 1
C k tact ,kL) —C k cctt 'kL) ~'—C)'—(1)

where

k = (i/D)(Cp — +Cia/p) TCk=e'v/2D .
The diffusion constant D is given by

D = D„cos 6+D~sin b, ,
2 ~ 2

where
l~
3V Tg

DII ~

1 —sea v'o

(3)
Y = (ctte Tp)

' icos 6
+ [8 (1+B )/(1 —B ) ] sin 6), (12)

where B= (&p p/cd, ). The critical angle 6, is by def-

In the limit co~ so» 1, the equations for X and Y re-
duce to

X = cos a —[B /(1-B )] sin a
and
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FIG. 3. Ratio bB/H where ddt is the contribution of
terms quadratic in ~ ' to the linewidth, and H is the field
for resonance. b, is plotted in degrees.

inition the angle at which X(h) = 0. From experi-
mental observation, b, = VO' and Eq. (11) gives
8= COS= 3.

Consider the contribution of the term quadratic
in E' to the width of the resonance. Figure 3 shows
the ratio of the width of the resonance line, ddt
(in gauss), to the field for resonance, H, for two
typical values of ~070. The parameter a is
chosen so that (ddI/H) = 5x 10 ~ at the critical angle

The curve in Fig. 3 for the value &oooo= 10 is
similar to the experimental data' on linewidths as
a function of angle.

Having chosen the magnitude of E' to obtain the
correct magnitude of the linewidth, there are no
further adjustable parameters. The shift of the
resonance field due to surface relaxation can now

be calculated from Eq. (7) and is plotted as a func-
tion of b, in Fig. 4. The curve for KYOTO= 10 agrees
with experiment in that it has the correct shape,
and predicts the correct sign and magnitude of the
shift in the field for resonance.

The observed temperature dependence of the
linewidth is very unusual. At the critical angle,
the line narrows initially as the temperature is
raised, whereas at b, =0 and 6= 90' there is no
initial narrowing. As the temperature is raised
further to above 20 'K, the lines at all angles be-
gin to broaden and have approximately equal widths.
These features are accounted for at least qualita-
tively in our expression (8). Note that for n = 6, ,
X= 0 and therefore (hH/H) is proportional to Y '

which in turn is proportional to &uovo [see Eq. (12)].
As the temperature is raised, vo decreases and
therefore so does ddE/H, which explains the i'nitial
narrowing of the line at 4= b, . For 4=0' or d
=90', (Xi & IY( and therefore (SH/H) is propor-

ddsc Rv
H (dpL

(13)

This is about two orders of magnitude larger than the
experimentally observed angularly independent
contribution to the linewidth. Hence, there is very
definitely something wrong with our model.

Schultz has informed me that the experiments
were done under conditions such that strong sur-
face relaxation of the conduction electrons is much
more likely to take place where the sodium film
comes into contact with the metal of which the
microwave cavity is made than at the surfaces
z = + —,'L of the film indicated in Fig. 1. In such a
model, the appropriate value of L to be inserted
into the formula (nH/H) = (2e 'v/&@0 L) would be the
order of the size of the window in the microwave
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FIG. 4. AH is the shift in gauss in the field for reso-
nance due to surface relaxation. A negative value of 5H

means that surface relaxation lowers the field for reso-
nance. b, is plotted in degrees.

tional to Y which in turn is proportional to (QJOTp)

hence in these cases the line is expected to broaden
as the temperature is raised; if, as may be the
case at 6 =0', the main contribution to the line-
width is the bulk relaxation rate v, , the line is
also expected to broaden as the temperature is
ral sed.

Our theory also makes predictions about the
angular dependences of the linewidth and g value
as functions of temperature. For example, since
the width of the curve of (hH/H) vs 6 is propor-
tional to (&oe vo), this width should increase as the

temperature is raised. A rough check of this is
the experimental result that at high temperatures
the linewidth is independent of angle. '

The contribution of the term linear in &' to the
linewidth can also be calculated. Using the value
e = 8. 8x 10-~ deduced above in fitting the angularly
dependent part of the linewidth, and also using L
=10 cm, ' we find
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cavity and the estimate (13) would be reduced by
about two orders of magnitude. Thus it seems
likely that the failure of our model is due at least
in part to the fact that it does not correspond suf-
ficiently closely to the actual experimental geom-
etry. The most obvious modification of Eq. (6)
which is necessary for the new geometry is the
redefinition of L to be the size of the window in the
microwave cavity.

We shall use the name "edge relaxation" to de-
scribe the process in which electrons relax by
coming into contact with the brass cavity walls at
the edges of the sodium film. It appears that edge
relaxation can account for the anomalous behavior ob-
served near the critical angle by Schultz and Dunifer.

In concluding we note that our investigation of
surface relaxation has led us to an expression for
the linewidth proportional to the real part of D '
and an expression for the shift in the resonance
field proportional to the imaginary part of D '.
The excellent agreement of these expressions with
the experimental data means that we have at least
established an empirical correlation between the
real and imaginary parts of D ' and the linewidth
and g-value, respectively.
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Mme. Lewiner for sending him a copy of her thesis.
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