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The NMR spectrum of a system of nuclear spins in thermal equilibrium is directly proportional to
p,HO/k T, where p.HO is the difference in Zeeman energy between adjacent nuclear magnetic states and
T is the temperature. The metastable system, solid ortho-hydrogen, is far from thermal equilibrium

because of the large rotational energy of the (J = 1) molecules. Thus the populations of the three
magnetic states of the (I = 1) total-nuclear-spin wave functions are affected not only by the magnetic
field and the temperature but also by the rate of ortho-para conversion from each of the three states.
In this paper we calculate the difference D between the ortho-para conversion rates from the m, = 0
and the m, = + 1 states for a crystal of ortho-hydrogen in the ordered state. It is found that D
depends on (3cos'P —1), where P is the angle between the magnetic field and the symmetry axis of
the molecular wave function. We then compute the st~~y-state populations of the nuclear-spin states as
a function of WHO/k T, D, and the nuclear spin-lattice relaxation time T,. These are used to calculate
the shape of the NMR spectrum of a powder sample for values of T, which are appropriate to the
ordered state. The result is that the usual Pake line shape is distorted by an enhancement which is
linear in frequency shift and proportional to T,D. An expression is also derived for the average
ortho-para conversion rate as a function of molar volume and the Debye energy which shows that the
conversion rate, which we have calculated for the two-phonon process, is negligible below 20 cm'/mole.

By contrast, experiments show that at this molar volume the rate increases sharply with 1/V. Our
conclusion is that the increasing rate is due to a one-phonon process which is only effective for V less

than about 22 cm'/mole.

I. INTRODUCTION

The theory of ortho-para conversion in solid hy-
drogen was first treated by Motizuki and Nagamiya'
in 1956. They found that the dominant mechanism
for conversion is the interaction of the magnetic
moments of the nuclei of an ortho-molecule with
the inhomogeneous magnetic field due to the rota-
tional and spin magnetic moments of its neighbors.
They also pointed out that since the energy re-
leased in ortho-para conversion (bE= 171 K for the
free molecule) is larger than the largest phonon
energy (en—= 120 K),~4 the interaction which
causes this transition must simultaneously create
at least two phonons in order to conserve energy.
Their numerical calculations, based on this theory
and using a Debye model to describe the phonons,
gave a conversion rate of 1.94%/h in excellent
agreement with the experimental value of Cremer
and Polanyi'8 of 1.75%/h. However, it is diffi-
cult to interpret the significance of this agreement,
since they took 6~ to be 91 K, which is consider-
ably smaller than the accepted value.

Later Motizuki7 performed a similar calculation
of the para-ortho conversion rate in solid Dz, which
differs from solid H~ in a number of significant re-
spects. First, in D~ the change of rotational ener-
gy in going from the J= 1 to the J= 0 state is half
of that in Hz, while the Debye energy 6~ =115 K4

is nearly the same. Thus the one-phonon process is
an allowed mechanism for conversion in solid D~.
Second, the deuterium nucleus has a nonzero quad-

rupole moment. The interaction of this quadrupole
moment with electric field gradients due to neigh-
boring molecules provides another mechanism for
conversion in addition to dipolar interactions. Al-
so, the final state of the J=O D~ molecule may be
any of the six nuclear states corresponding to I
=0 or 2. If the final nuclear state is I=2, then
this molecule will cause magnetic field gradients
at neighboring molecules, and thus it may still
contribute to the conversion process. This is in
contrast to the case of solid Hz where the para-
molecules have J=I= 0 and thus do not contribute
to further conversion. Motizuki's calculation of
the conversion rate in D~ included all of these ef-
fects and she again treated the phonons by means
of the Debye approximation, taking 6~ =105 K. Her
results agree quite well with experiment over a
range of para-concentrations. For 100% para-Q,
she predicts a conversion rate of about 0. 13%/h.

Despite the uncertainty which results from their
use of an incorrect value of 6~ for H~, the agree-
ment between theory and experiment for both solid
H& and Dz provides strong evidence for the correct-
ness of the theoretical approach of Motizuki and
Nagamiya. The situation is not entirely satisfac-
tory, however, since it would be interesting to see
if their theory gave the correct answer for Hz when

a reasonable value of 6~ was used. Also, one
would like to be able to test their theory in more
detail by varying some of the physical parameters
to see if the correct functional behavior is pre-
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dieted. One step in this direction was taken by
Ahlers, who measured the conversion rate in H2

as a function of molar volume. His results indi-
cated a V 3 dependence of the conversion rate on
the volume, but he was not able to interpret this
result theoretically since the volume dependence
of the Motizuki-Nagamiya theory is not transpar-
ent. In this paper we have derived an analytic ex-
pression for the average two-phonon ortho-para
conversion rate, using the same approximation as
did Motizuki and Nagamiya. Our result does not
agree with that of Motizuki and Nagamiya when
evaluated using their value of 6&. However, it is
in good agreement with zero-pressure data when
a realistic value of 6~, namely, 6~=120 K, is
used. In addition we have used the measurement
of Ahlers' of 6~ as a function of molar volume to
estimate the dependence of the two-phonon conver-
sion rate upon the volume.

The possibility of a more stringent test of the
theory has arisen as the result of recent nuclear-
magnetic-resonance (NMR) experiments in samples
of high-purity ortho-H2 and para-D2, in their ori-
entationally ordered phases. These experiments
seem to provide much more detailed information
about the conversion process. In particular they
apparently enable us to determine the dependence
of the conversion rate upon the initial and final
nuclear-spin states of the molecule. The experi-
mental results appear in the preceding paper, "
which we will refer to as I. Also included in I is
a detailed description of the theory of the NMR
line shape in solid ortho-hydrogen and para-deute-
rium. Thus in this section we will restrict our-
selves to a brief review of the NMR theory and
refer the reader to I for further details. Also, in
this paper we will confine our attention to the study
of ortho-para conversion in solid H2. A similar,
but unfortunately more complicated, calculation
for solid Dz will appear in a later publication.

Pure ortho-H2 undergoes an orientational order-
disorder transition at about 2. 8 K. Below this
temperature the J=1 molecules are in m~ =0 orbit-
als oriented along certain local symmetry direc-
tions with the over-all space-group symmetry be-
ing Pa 3. Detailed descriptions of this ordered
state are given in a number of references. 2' The
total nuclear spin of the ortho-molecules is I= 1,
and in the presence of a magnetic field Ho, the
Zeeman energies of the three nuclear-spin states
are given by E(mz}=-2p~H~mz, where p~ is the
magnetic moment of the proton. In addition, the
two protons interact via their magnetic dipole mo-
ments. When this interaction is included, the en-
ergies of the nuclear spins are (in a high-field ap-
proximation)

E(mr) = —2g~Homz+ hd (1-~1~)(3 cos~ p- 1), (1. la)

where h is Planck's constant,

d =f pq (r )/h= 57. 88 kHz, (1. lb)

x is the separation between the protons, P is the
angle between the m~= 0 orbital and the external
field, and where we have ignored small corrections
due to zero-point and thermal motion of the molec-
ular wave function. In a magnetic-resonance ex-
periment, transitions are induced between levels
mz and mr + 1. From Eq. (l. la) we see that these
transitions will occur at frequencies v, given by

hv, = 2 p~HO + 2hd((3 cos~P - 1)}. (1.2)

The intensity of power absorbed in these transitions
is proportional to the difference in populations of
neighboring spin levels. In the usual case, when
the three levels are in thermal equilibrium, this
population difference is simply given by 2)J~HO/3kT
times the number of molecules (in the high-tem-
perature approximation). On the other hand, if
there were some process such as ortho-para con-
version, which selectively depleted, for example,
the mr = 0 state faster than thermal equilibrium
could be restored, then we would expect the ab-
sorption at v, to be enhanced and that at v to be
reduced. In fact if the depletion of the mr = 0 state
were sufficiently fast, then a population inversion
would occur with a resulting emission of power at
the frequency v .

In the calculation of Sec. II we show that the rate
of ortho-para conversion from the state mI =0 does
indeed differ from the conversion rate from the
states mI =+ 1, and that in fact the difference in the
rates depends upon the quantity (3 cos P-1) as does
the dipolar splitting. A byproduct of this calcula-
tion is an explicit expression for the average con-
version rate as a function of the volume and the
Debye energy. In Sec. III we calculate the effect
of the mr dependence of the conversion rate upon
the populations of the nuclear-spin levels. Finally,
in Sec. IV we compute the theoretical shape of the
Pake absorption line when it is distorted by ortho-
para conversion and compare it to the experimen-
tal data given in I.

24~ 1/2 4p2

II. THEORY OF ORTHO-PARA CONVERSION

As has already been discussed, ortho-para con-
version in solid H2 is caused by the interaction of
the magnetic dipole moment of the nuclei of a mole-
cule with the magnetic fields of its neighbors. This
interaction has two parts, which we call H„and
H„, which describe interactions with neighboring
spins and rotational magnetic moments, respec-
tively. They are given by
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x QC(112;m, n)i, „j~[F&"(05„,~)]*,
(2. Ia)

ST 2
Sai

x+C(112;m, n)j i"[FP"(& )]".
(2. Ib)

[F "(fl,„,,)l* [F "(Il,,)l*
(2. 2)

to first order in r~ and to second order in displace-
ments of r~. In the expansion of Eq. (2. la) we will
make the approximation that tr, I ~0 so that H„
does not depend on the orientation of molecule 6
but only on its nuclear spin. Also, we write

r~=R6+U6, (2.3}

where g is the equilibrium position of molecule 5
and 0, is a small displacement which may be
written in terms of phonon operators.

The term in the expansion of Eqs. (2. 1) which
is first order in r~ and second order in 0, depends
upon

&I (fl ~) i[(g v)2 (- v)][Ff(fl)]*
i wi' ' (2. 4)

where the derivatives are evaluated at

ln Eq. (2. 1a) p, is the proton magnetic moment, 5

labels a neighboring molecule, and 8 = 1, 2 labels
its two protons. The two protons of the central
molecule, which is to undergo the transition, are
labeled by P=1, 2. We take our origin at the cen-
ter of mass of the central molecule. Then r~ are
the positions of the two protons of the central mole-
cule, and r, + r, is the position of proton s of neigh-
boring molecule 5; i6, is the mth spherical com-
ponent of the nuclear spin of proton s on molecule
6. In Eq. (2. lb) pz is the rotational magnetic mo-
ment of the Hz molecule. , , ~ and A, ~ denote
the directions of the vectors r, + r, —r~ and r, —r~,
respectively, and Jo is the mth spherical compo-
nent of the angular momentum of molecule 5. The
labeling of the various vectors and nuclear spins
is illustrated in Fig. 1. The coefficients
C(112;m, n) are Clebsch-Gordan coefficients and

F f (&}is a spherical harmonic using the phase con-
vention of Rose. '

Since ortho-para conversion involves a change
of the orientational coordinates of the central mol-
ecule, and to conserve energy it must also involve
the creation of at least two phonons, we must ex-
pand the functions

ps]

FIG. 1. Vectors that define the positions of the pro-
tons for two H2 molecules. In Sec. II we calculate the
probabilitJJ that the molecule on the left converts from
ortho to para. The molecule on the right at re is one of
its 12 nearest neighbors.

N4 St

x+C(j, i, j+ I;M, m) q', I V~~.

(2. 6)
The expression for Tg(AO) which results from the
use of Eq. (2. 6) in Eq. (2. 4) may be written in the
form

Z~(g ) 3 )tja
Z C(112;~,~')

0 SS t%

x C(213;m+ m, m ) C(325; an+ ~ +~,M )
[Fs+mtm'+m' (g )]e

xU V"'r"
0

(2. 7)

In deriving this expression, we have used an equa-
tion from Rose, 4 Eq. (6.4b), to recouple the vari-
ous medlar momenta so that the phonon coordi-
nates appear in a symmetrical form. (See also
Appendix B for the values of the required Racah
coefficients. )

%'e can write components of r~ as

p 4m'"
&m F sa(fl }P 2 3 1 P (2. 6)

where p= 0. 75 L is the internuclear separation.
We also note that

r&=- rz.

Q in Eqs. (2. 4) and (2. 5a) is the equilibrium near-
est-neighbor lattice spacing (Q = 3.755 A) and &,
represents the direction of 5, .

We may evaluate Tf(&, ) by repeated use of a
formula which is easily derived from Eqs. (6.42)
and (6.43) in Rose. ~c If 0 is an arbitrary vector,
then

A=06.

(2. 5a)

(2. 5b)

Then the parts of H„and H„corresponding to or-
tho-para conversion plus two-phonon creation may
be written as
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H„=2Ay„— C 112;p, , v C 112;m, m C 213;m+m, m C 325;m+m +m, p+v
6

m, m', m"

UmUm
x 6 6 ym" (fl) (ig ig)iv [yg+mmm'+m" (g )] y2 1 Zi Z2 6 5

0
6

where

A = 1260m—

y,, = gp/Ito

(2. 11a)

(2. 11b)

(2. 11c)

and 0 is the orientation of the central molecule.
Similarly H„ is given by

H„=gy„—Q g C(112;p, v)C(112;m, m )C(213;m+m, m )C(325;m+m +m, P+~)
0 6 g&v

m, m'vm"

Um UmU5 y~ (Q) ( g 'g
) Jp[y Il+ptm+m'+e" (g )]4

0
I

where

yrs = p p p „/It 0 ~

Motizuki and Nagamiya have shown that, in the
rotationally disordered phase, the ortho-para con-
version rate for the disordered system (T &3 K)
may be written as

where the second term corresponds to processes
involving H». Since

20p 2

these processes account for about 2. 5% of the total
rate. Strictly speaking, this ratio of spin-rotation
to spin-spin conversion rates will be different in
the ordered phase because of coherent effects in-
volving the propagation of librons. However, the
change will probably be a small fraction of the
spin-rotation conversion rate, which is itself
small. Consequently we will perform a detailed
calculation only for conversion due to spin-spin in-
teractions and include the effect of spin-rotation
interactions perturbatively by means of Eq. (2. 14).

The ortho-para conversion rate for a hydrogen
molecule with initial nuclear state M is

&m6 II".Ime) =V2 C(111'm6 m5
(2. 18)

The operator Fp (0) causes the central molecule
to convert from J=2 to J=o. Since we are treat-
ing the crystal in its ordered state, this molecule
will be in an m~ =0 state with respect to its local
equilibrium axis. Thus it is convenient to write
YP"(0) as

(2. 19)

where ~ measures the orientation of the molecule
with respect to its local equilibrium axis and p is
the set of Euler angles (e, P, y) relating the equi-
librium axis to the lab frame. Using Eq. (2. 19)
we find that

(2. 2o)

To write the sum over final phonon states of the
displacement operators it is necessary to expand
them in terms of phonon operators:

Um ( g2 i/2
5 Q (1 elf R )6(

8„=—Z Pi l&flH„le} l 5(E( —Eg),
&sf

(2. 16)

where the prime on g restricts the sum over initial
states i to states in which the molecule has I, = M,
and P; is the probability that the system is initially
in the state i.

The matrix element for the nuclear spin of the
central molecule is

The operator I," has matrix elements

where k is a wave vector; ~ labels the polarization;
~p, is a phonon energy; a„-, is a phonon creation
operator; and g, (R) is the mth spherical compo-
nent of the unit polarization vector.

If we make the reasonable assumptions that the
energies of the nuclear-spin states can be ne-
glected when compared to the phonon and ortho-
para conversion energies and that the nuclear spins
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are uncorrelated, then the transition rate depends
upon the part of the two-phonon spectral density
which is diagonal in the site indices:

G, (m, m';n, n';E„)-=R Z(0~[U,"]*[U,"']*I2)
I2&

x (2
~

U6 U~~
~
0)6(E(0 —Ea), (2. 22)

where l 2) is summed over all two-phonon states,
E2 is the energy of the two phonons, and E&0 is the
energy released in ortho-para conversion.

Using Eq. (2. 21) in Eq. (2. 22) we find that

2 2 2

x (r), (k)r)& (k ) [r)",(k)]~ [q"„(k')]*+q, (k)g, . (k') [g~ (k')]~ [g", (k)]*), (2. 23)

where we have multiplied and divided by the square of the Debye energy ED.
We define the quantum numbers

I IN=m+m, N =n+n, (2. 24)

which represent the z component of the total angular momentum of the two phonons. Then, holding N and
N fixed, we define the spectral function

G~~a'(N, N; E&a) = Q C(112;m, N m) C-(112;n,N —n) G5(m, N- m;n, N —n; ~E)0. (2. 25)

Finally, we can write the tra.nsition rate, using Eqs. (2. 17}, (2. 18), (2. 20}, and (2. 25} in Eq. (2. 16).
The result is

4 2 2

mdiv mg

x C (111;m~,m6 —m6) C(213;N, mz) C(213;N, mz) C(325;N+ mz, mn —m, —M) C(325;N + mz, m, -m, -pf)

x [g (X)]gD't ~
) (X) G a)(N N .E )[y' mg+m6-m~-N(fi )]gF 'am&am& m& M(II )--

I

(2. 26)

In Eq. (2. 26} the factor —', corresponds to P, in Eq.
(2. 16). It is the inverse of the number of nuclear
magnetic states of the neighboring ortho-molecule.
Then the total ortho-para conversion rate will be
given by

R„=—„ZR„. (2. 27)

In deriving Eq. (2. 26) the only approximation that
we have made is that the nuclear-spin energies are
small compared to the phonon energies and the
temperature. However, in order to evaluate Eq.
(2. 26) explicitly, it will be necessary to make two

assumptions.
The first assumption we will make is that the

solid is ~.n the form of a powder of randomly ori-
ented crystallites. Such an ideal powder is pos-
sible, although difficult, to achieve experimental-
ly. The fact that we have assumed a powder does
not mean that we can average R"„over all orienta-
tions of the crystal, however, because the NMR

experiment, which we would like to interpret,
distinguishes between molecules on the basis of

Pa(cosP) = (3cos P- I)/2 of the molecule, where P

is the angle between the molecular symmetry axis
and the external magnetic field. Thus molecules
with different values of Pa(cosP) appear in differ-
ent places in the NMR spectrum. Consequently our
powder average will consist of an average over all
orientations of the molecule while holding the angle
between the molecular axis and the lab z axis fixed.
Also from now on we will take the lab z axis to be
the direction of the magnetic field.

The second approximation, which we are more
or less forced to make because of the complexity
of the problem, but which is most difficult to jus-
tify on physical grounds, is that the phonons may
be described by a Debye dispersion relation

e„;=&a[k/, (2. 28)

with a single velocity of sound v for both trans-
verse and longitudinal modes. This assumption
provides a great simplification of the calculation,
since it decouples the phonon portion of the calcu-
lation from the Clebsch-Gordan coefficient and
lattice sums.

In defense of our use of the Debye spectrum we

note that, although the Debye density of states
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DEBYE MOOEL ( E ~ l20 K )
O.OI5- D

FROM THEORY OF MERTENS AND BIEM

O.OIO-

0.005-

FIG. 2. Comparison of
the two-phonon density of
states p2(E) computed from
the Debye model with Ez/0
= eD=120 K (dashed curve)
to p2(E), computed using
the phonon density of states
from Ref. (15) (solid curve).

0 I

50 IOO
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l50 250

looks very different from the phonon density of
states of solid Hz as calculated, for example, by
Mertens and Biem, ~ the two-phonon densities of
states for the two theories are quite similar. This
is shown in Fig, 2, where the solid curve repre-
sents the function

p&(E)= f, «g(&)g(E &), —

and g(E) is Mertens and Biem's density of states
with the energy scale renormalized by a factor of
0. 794, to bring it into agreement with optical-
phonon data. ' The dashed curve is the function
p2(E) calculated using the Debye density of states

(2. 29)

g, (e) = Se'/E', (2. 30)

where En = kgn, and we have taken En/k=120 K.
The similarity of the two curves is quite suggestive.
On the other hand, this argument is not compelling
since the conversion rate depends not only on the
density of states but also upon wave-vector- and
polarization-dependent matrix elements whose ef-
fect is difficult to estimate. What one can safely
say is that the Debye approximation may be rea-
sonable for this calculation, whereas for the anal-
ogous one-phonon process it would almost certain-
ly give rise to spurious effects.

The explicit calculation of the two-phonon spec-
I

tral function is given in Appendix A. Here we
merely quote the result

G 6 '(» & i E~o) = 5N» z' '(Exo) (2. sl)

[y', (fl, ) ]*= ED'P. (X)[1'~(~6)]*, (2. 32)

where X is the same set of Euler angles as in Eq.
(2. 19). The powder average of the transition rate
thus involves the quantity

( [Du,',0(x)]*D"&,0(x)D'„5,'„(x)[D„"',~ (x)1*)., „,
(2. 3s)

where
I

g =N+ mz+ me —me —M,

I I
mJ +may

(2. S4a)

(2. 34b)

and the average is over the Euler angles e and y
holding P fixed. The result is

where g'(E&0) depends only on E,o, Q, and the
Debye energy E~ and not on N, N, or 6. We be-
gin our evaluation of Eq. (2. 26) by performing the
powder average, which was described above.
First, we write the Y, 's in terms of rotation ma-
trices and spherical harmonics referred to the
molecular symmetry axis. That is,

([D' ',0(y)]*D'V 0(y)D„„'(X)[D„','„,()i)]*),„=( —1) &'" " 5„,„. Z C(ill;0, 0) C(ill; —mz, mz)
lyftk

&&C(55j;8, —'q ) C(55j; v, —v)C(jlk;0 —r), m~ —mz) C(jlk;0, 0)P~(cosp). (2. 35)

Before substituting from Eqs. (2. 35) and (2. 31) in-
to the equation for the conversion rate, Eq. (2. 26),
we should make two trivial simplifications. First,

we note that if we define the index

I=me-me (2. 36)
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Q C~(111;m 6, —L}= 1 . (2. 3V)

The second simplification is to define the coeffi-

which represents the change in the magnetic quan-
tum number of the nuclear spin at 5„ then the sum
over m, is easily done holding L fixed. This sum
involves only

cients

11C(55j;0,0) F,'. (~, )

[4v(2j+ 1)]us
(2. ssb)

Finally, we may write the conversion rate as

d (5)=Q C(55j; v, —v) F",(&o, ) FP(&u, ) (2. Ssa)

2 2
R"„=— "A —g+'(E(0) Q C(ill;0, 0) C(jfk;0, 0)

x Q (-1)~~~~'"~ "C'(112;L,M) C(213;N, m~) C(213;N, m~) C(325;N+m~, —L —M)
I, ,N, mg pm~

x C(325;N+ mz, —L —M) C(ill; —mz, mz) C(55j; N+ m~ —L —M, L+ M —N —mz) C(j lk; mz —mz, mz —mz)

xZ d'(5) P, (cosp) . (2. s9)

The expression in curly brackets is a sum over
four indices of a product of nine Clebsch-Gordan
coefficients. It may be performed by repeated ap-
plications of Eq. (6. 5b) in Hose'~ plus a single ap-
plication of his Eq. (11.31},which involves an X
coefficient (9-j symbol). The process is both

lengthy and uninteresting, so we will simply quote
the result:

j= ( —1)' [(21+1)(2j+1)(2k+1)]~I~

x W(3131;2, f) W(1212; 1,k)X(532; 532;j, f, k)

xC(lkl;M, 0). (2 40)
This expression was checked by performing the
Clebsch-Gordan sums numerically on a computer.
When Eq. (2. 40) is inserted in Eq. (2. 39) we find
that

1540 y2 pR„= ~ A " —g '(Eqo) 2 ( —1)'[(2l+ 1)(2j+1)(2k+1)]~~3
l yfyk

x C(ill; 0, 0) C(jlk; 0, 0) W(3131;2, f) W(1212; 1,k) X(532; 532;j, f, k) Z d (5) C(1kl; M, 0) P, (cosP) . (2. 41)

(A) k= j= l= 0,
(B} k=2, j=O, f=2,
(C) k=2, j=4, l=2,

(2. 42a)

(2. 42b)

(2. 42c)

Thus the coefficient of the Legendre polynomial
P, (cosP} is a Clebsch-Gordan coefficient times the
sum over j and l of a product of various factors,
most of which look rather complicated. Things
are not as bad as they look, however; and, in fact,
the number of nonvanishing terms in the triple sum
over l, j, and k is extremely small.

The coefficient C(ill;0, 0) vanishes except when
f=0 or 2. The coefficient C(lkl;M, O) vanishes for
k&2. The lattice sum over 6 vanishes when j is
odd and, for a close-packed lattice, when j= 2. The
coefficient C(jlk;0, 0) vanishes when j+ l+ k is odd
or when the three indices violate the triangle in-
equality. '4 The net result of all these restrictions
is that the triple sum contains only three nonvan-
ishing terms. These are

I

That is, we must evaluate the coefficients

S~ =-Z d'(5). (2. 43)

For j & 6 the only nonzero coefficients are

(2. 44a)

18 h

E 2MR ED 0 D
(2. 45)

where g is the sum of trigonometric functions given
in Eq. (A. 14). For E,0=159 K, which is the value
measured by neutron scattering" for the ordered
state, and for ED = 120 K we find that

'g = 0.7331 (2. 45)

(2. 44b)

Finally, we must also evaluate the spectral func-
tion gm'(Z, o). We see from Appendix A that this
has the value

and we will refer to the transition rates associated
with these terms as R"„(A), R,",(B), and R"„(C).

In order to complete our evaluation of the con-
version rates, we need the lattice sum in Eq. (2.41).

For convenience we also define the rate

y2 ~
2 I @2 2

ED &o 2~& o ED
(2. 47a)
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= 0. 585 x 10 %/h. (2. 47b)

Then, using the values of coefficients listed in Ap-
pendix B, we find that the three contributions to the
conversion rate are

R„(A)= 1 209 600 vr'g,

R~, (B)=—1 209600 vrg

C(121;M, 0) Pz(cosP},1
~10

R„(C)=—802400 wrv)

x~ C(121;M, 0}PI(cosP).1

(2. 48a)

(2. 48b)

(2. 48c)

o 3

R

Inserting numerical values for r and g we find that

and

R.".(A) = 1.68%/h (2. 49)

R"„(A)+R"„(B)+R"„(C)

=1.63 1 — C 121;M, 0 P& cosP Vo h.&10

I

IOO I20

Ep (K)

I40 I60

(2. 50)
The average ortho-para conversion rate, which

we call R, is simply equal to R"„(A) since the re-
maining terms, which are proportional to
C(121;M, 0)Pm(cosP), vanish when averaged over
M or over orientations of the crystal. This ex-
pression for the average rate is valid for either the
ordered or disordered phases since it is indepen-
dent of the molecular orientation. However, we
must also include in R a correction, owing to the
spin-rotation interaction. Using Eq. (2. 14}we find
that

R= 1.025 R" (A) = 1.67%/h. (2. 51)

This figure should be compared with the results of
Cremer and Polanyi, 5'~ who found R = 1.V6%/h, and
of Ahlers, who found R = 1.82%/h.

Inserting the values of the Clebsch-Gordan coef-
ficients, we find that the final expression for the
conversion rate from the state M is R", where

R, = 1.6V [1—8 Pz(cosP)]%/h, (2. 52a}

Ro, = 1. 6V [1+-,' P~(cosP)]%/h . (2. 52b)

Motizuki and Nagamiya' included an additional
contribution to the ortho-para conversion rate due

to three-phonon processes, which they found to be
about 0. 20%/h. We will not attempt to repeat their
calculation. Instead we simply note that the con-
tribution due to three-phonon processes for E~
= 120 K should be considerably smaller than that
for E~ = 91 K, which they considered. To illustrate
this point, we show in Fig. 3 the behavior of the
two-phonon conversion rate as a function of E~,
taking E&~= 159 K for the nearly pure ordered sys-
tem. The figure shows that the two-phonon conver-

I'IG. 3. Dependence of the average conversion rate
p upon the Debye energy for fixed molar volume (V
= 22. 55 cma) using Eq. (2.51) and taking the ortho-para
conversion energy E&p = 159 K.

sion rate is a sharply decreasing function of E~ for
E~ larger than 95 K. There are three reasons why

R decreases as it does. First, since the total num-

ber of phonon modes is fixed, the phonon density
of states scales inversely with E~. Second, as E~
increases the conversion process increasingly
samples the longer-wavelength phonons. Since the
number of these phonons scales like k~, there are
fewer phonon states available. Third, long-wave-
length phonons are less efficient in causing conver-
sion since they do not cause large magnetic field
gradients. This information is carried in the fac-
tors [1-jo(x)] in Eq. (AV). Exactly the same argu-
ments apply to the behavior of the three-phonon
conversion rate as a function of E~, and thus we
conclude that if the calculation of Motizuki and

Nagamiya for E1,=91 K did not contain any errors,
then for E~ =120 K the three-phonon conversion
rate is probably between 0. 01 and 0.06%/h.

Since we have an expression for the two-phonon
conversion rate as a function of the Debye energy
E~ and the nearest-neighbor separation Ro, it is a
simple matter to compute the volume dependence
of R using the measurements of Ahlers to relate
EI, to the molar volume V. These measurements
are plotted in Fig. 4(a), where we have also drawn
a smooth curve to interpolate between the three
data points. Following the suggestion of Jarvis et
gl. , we have shifted the lowest-pressure data
points from V= 22. 55 cc/mole to V= 22. 05 cc/mole,
which corresponds to a pressure of 55 bar at which
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III. EFFECT OF ORTHO-PARA CONVERSION UPON THE
NUCLEAR-SPIN POPULATIONS
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Having established the fact that ortho-para con-
version proceeds at different rates for the differ-
ent nuclear-magnetic states the next question of
interest is what effect this has upon the relative
populations of these states when they are split in

energy by an external magnetic field. To answer
this question we examine the time evolution of the
populations of the various states of the four-level
system which is shown schematically in Fig. 5.
The three magnetic sublevels of the I=1 state are
split by the energy & = 2p~HO. The I=0 level is at
an energy —2B, where 2B (= 171 K) is the rotation-
al kinetic energy of an H~ molecule in a J= 1 angu-
lar momentum state. The various constants
W ., R, and R' are the rates of transitions be-
tween the various states. In the absence of ortho-
para conversion, the W ~ bring about thermal
equilibrium within the I= 1 manifold. R and R
are the rates of ortho-para conversion which we
have calculated in the previous section [see Eqs.
(2. 52)].

Because the lattice is assumed to be in thermal
equilibrium, the six rate constants W ~ are not
all independent and, in fact, are related in the fol-
lowing way:

FIG. 4. Dependence of the Debye energy Ez and the
ortho-para conversion rate upon molar volume V. In
(a) the dots with error bars are experimental values of
Ez taken from Ref. 10. The solid curve has been used
to interpolate between the three points. In (b) the tri-
angles are experimental measurements of R from Ref. 9,
and the solid curve is the prediction of theory for two-
phonon conversion processes.

Wg O=WOI ——WI,

Wo $
—Wf 0 yW&

W, , =W, ,

W, , =y'W„

where

(3. 1a}

(3. lb)

(3. lc)

(3. ld}

the measurement was made. In Fig. 4(b) the tri-
angles correspond to Ahlers's measurements of
the conversion rate in solid Hz with the concentra-
tion of J=1 molecules x~O. 75. For this value of

x, neutron scattering measurements'~ show that

Eqo =166 K. Using this value of E&0 and the values
of En taken from the solid curve in Fig. 4(a), we
have computed the theoretical value of R vs molar
volume, and the result is shown by the solid curve
in Fig. 4(b). The immediate conclusion that one
draws from the figure is that the two-phonon pro-
cess does not account for the ortho-para conver-
sion rate except perhaps at zero pressure. The
agreement at zero pressure (V= 22. 55 cc/mole} is
fairly good, but at any significant pressure it would

appear that the one-phonon process becomes ener-
getically possible (possibly because anharmonicity
adds a long tail onto the phonon density of states);
and, as the pressure is increased, this process
takes over completely.

„mz o

J ~ I ~ 1, m o
PL ~ I

Wo

w, , Wo, W( ) Wj

28

FIG. 5. Nuclear energy levels of ortho- and para-
molecules in the solid. The three I=1 states are split
an amount b by the external field. Transitions from level
m to m' proceed at a rate Wm, ~i. Ortho-para conversion
from the state m occurs with a rate R~ ~, into the state
( J=I=0) which is at an energy E~o~ 2B below the ortho
states.
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&
-~/or (3.2)

The time-dependent populations of the four states
may be determined from the coupled differential
equations:

= m, and q is the population of the I= 0 state. In
addition we require certain boundary conditions,
namely, the initial values of the p and q, and for
convenience we normalize the total population to
unity. That is

dP-x =- (R + Wq + Wo) P ~ + yW&Po+ y WiA, (3.3a)2 q+Zp =1. (s. 4)

dPO p= WgP g
—(R + Wg+yWg)Po+yW~g, (s. sb)

dg
=WoPi+WiPo (R +yWg+y Wo)pi,

f 2 (3.Sc)

(3. Sd)R P-i+R Pp+R

where P is the population of the state I= 1, mi

Equations (3. 3a,)-(3.3c) do not involve q and may
be solved separately from Eq. (3.Sd). To do this
we make the ansatz that

S

P (f) =Z U„'a;e "i ' .
j=1

(s. 6)

Inserting this into Eqs. (3.Sa)-(3.3c) we obtain the
algebraic equations

R + Wg+W2

—Wg

—W2

—yW(

Ro+ Wq(1+y)

-yW,2

-yW,

R + y(W& + yWo)

Uf

Up

Uf

U'g

Up

Ug

y=1 —26,

where

(s. 7)

(s. 6)

Next we make a high-temperature approximation
by writing y as

M'=
1+y —1 -y

—1 7

-y —1 1+y

0 25

(S. ISa)

and we also define the dimensionless variables m= 0 d-2& (3.13b)

y = Wo/Wq,

c=R /Wg,

d=(Ro —R )/Wi,

n( = (&)/Wg)- c.

(3. ea,)

(s. eb)

(3.ec)

(s. ed)

0 0 —26(1+ 2y)

The matrix M is diagonalized trivially and its
eigenvectors and eigenvalues are well known. They
are

Then the eigenvalue Eq. (3.6) has the form

(s. Io)

where the matrix M is given by

(3. 14a)

1+y -1+26
M= —1 2+d —2&

—y+ 4~y

—1+2~

1+y —26(1+ 2y)

(s. 11)

V„=~ 0 , ri„=1+2y (3. 14b)

(S. 14c)
The matrix M may be written as a sum of two
terms:

M=MP+m, (3.12)

where M has matrix elements that are all of or-
der unity while the matrix elements of m are all
of order of d or 6, which are presumed to be much
less than 1.

1

where the subscripts s, v, and t refer to scalar,
vector, and tensor polarizations, which these vec-
tors represent. Using the eigenvectors and eigen-
values of MP and standard first-order perturbation
theory, we can compute the effect of adding the
matrix m to M . Assuming that y is sufficiently
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different from 1 that the ratios d/(y —1) and
5/(y —1) a.re perturbative, we find that the eigen-
vectors of M are approximately given by

nuclear levels. For a single molecule the NMR

signal will be a doublet, split by the intramolecu-
lar dipole-dipole interaction. The strengths of
these two absorption signals may be written as

1Us

1 —25+ d/9

1 —2d/9 , g. =d/3 (3. 15a,)

$ (t) -=$,[p, (t) —p, (t)i,
$'(t) = $,[p-, (t) —p, (t)),

(3. 20a)

(S. 20b)

1Utt

1+ 25+ d/9

1+ 6/2(y —1)

—5/(y —1) t)„= 1+ 2y —6 —4 5y

where SD is a constant that depends on the experi-
mental apparatus. We evaluate Eqs. (3.20} using
Eqs. (3. 19) and inserting the value of 6, d, and
the q's. The result to lowest order in 5 and d is

U

—1+ 6/2(y —1)

1 —2d/9+ 6(1 —4y)/2(y —1)
- 2- 2d/9

1 —2d/9 —6(1 —4y)/2(y —1)

2d
g, =3 —3&+—

3

(3. 15b)

(3. 15c) 1/Tt = Wt + 2Wa . (s. 22)

R —R$t(t} $ e Rt v-'0 0 (1 e tlT t-}y (1 e 3lvtt -)
3k T 9'

(s. 21)
where R is the average conversion rate and the R"
are the conversion rates from the states M. The
spin-lattice relaxation time Tj is related to W& and

W& by

p (0)=-, , m=O, + l. (s. 16)

The constants a; are determined by using Eq.
(3. 16} in Eq. (3. 5),

EU' a;= —', , m=O, +1 (s. iv)

which has the solution

1
W3

' (S. 18a.)

To complete our solution we must specify the
initial condition of the system. Experimentally it
is possible to prepare the system in a state in
which the three nuclear levels are equally popu-
lated. This is done by sweeping back and forth
across the line with a strong rf field. Then for a
sample of pure ortho-hydrogen at t=0 we have

This is just the relaxation time for a state of vec-
tor polarization. The rate of time development
and the magnitude of the tensor polarization which
results from anisotropic ortho-para conversion,
depend only on the probability of 4M =+1 transi-
tions-that is, on the quantity 3W, .

IV. THEORETICAL NMR ABSORPTION LINE SHAPES

Using the results of Sec. II and III, we are now
in a position to predict the shape of the NMR spec-
trum in ordered solid ortho-Hz. Let us first con-
sider the case in which T& relaxation is fast com-
pared to the ortho-para conversion rate. Then to
a good approximation we can neglect ortho-para
conversion. The unbroadened absorption by mole-
cules oriented along a particular direction and
which are in thermal equilibrium is

2'
IP 3

(3. 18b) $(v) = ' ' ' [6(v - v, ) + &(v —v-) l,3kT
(4. 1)

a, = (3.18c)

Then, using Eqs. (3. 5), (3.15), and (3.18), we can
write down the populations of the nuclear states.
We find, to first order in d and 6, that

where v, and v are defined in Eq. (1.2). The sig-
nal that is actually observed will always have a
nonzero linewidth due to fluctuations in local fields
at the nuclei and to instrumental effects. A good
approximation for the actual observed signal is

e' "P,(t)= —,(1 —26+d/9)e~t t'

(S.1Oa)+ 2 6e ~wtt (d/27) ~t wtt

e' "pa(t) = —,(1 —2d/9)e~'~" + (2d/2V)e~t tt

(3. 19b)

$(v)= '"' '[g(v- v, )+g(v- v )I,3kT

where

g(, ) = l, -aim, a

v'2mr

(4. 2)

(4. s)

e' tt p, (t) = -', (1+26+d/9)e~tv&t

—r'~e ~ &' —(d/27)e "t t' (S. lee)

The absorption signal observed in NMR is pro-
portional to the difference in population of adjacent

is a normalized Gaussian line-shape function of
width o.

If the sample is a powder of randomly oriented
crystallites, Eq. (4. 2) must be averaged over all
orientations of the molecule. Then the signal has
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that within experimental error

(4. 5)

The difference R -R'=D may be obtained from
Eq. (2. 52}. The result is

D = 8 RPz(cosP). (4. 6)

In order to evaluate Eq. (4. 5) we need the value
of W&, which is the rate of &m=+1 transitions.
Since the NMR signal represents a linear combina-
tion of nuclear states with vector and tensor polar-
izations, the relaxation rates which are measured
experimentally are a linear combination of 1/T,
and 3Wi. In the previous paper (I), it is argued

&(v)= '"' ' [g(v-v. (P))+g(v —v (P))]sinPdPdA,
6wkT

(4. 4)
where we have explicitly noted the dependence of

v, and v on P. Unfortunately the integration of Eq.
(4. 4) cannot be performed analytically. However,
numerical integration for a particular choice of
o/d is rather simple. The result for o/d=0. 145'~~
is shown by curve (a) in Fig. 6.

Next we consider the case in which the ortho-
para conversion rate is nonzero. After a time long
compared to T„we see from Eq. (3. 21} that the
signal from molecules oriented along a particular
direction will have the form

3kT
'

QW

2p. Hz R -R'
1

1/Ti = 3Wi, (4. 7)

since the relaxation rate appears to be uniform
throughout the NMR line.

Referring back to the definition of T& in Eq.
(3.22), we see that Eq. (4. 7) is equivalent to say-
ing that

Wg
——W~ . (4. 6)

Thus we were not justified in Sec. III, where we
defined y -=Wi/Wz, in assuming that quantities such
as 5/(y —1) are perturbative. However, we have
repeated the calculation of Sec. III for the case y
= 1. Using first-order degenerate perturbation
theory, we found that the final equation, Eq. (3.21),
is unchanged. Then using Eq. (4. 7) and averaging
over all orientations of the molecules we find that

y= 3RTikT/16p~HO. (4. 10)

Since v, (P) and v (P) are both linear in Pm(cos8)
[see Eq. (1.2)], the enhancement of the signal in

Eq. (4. 9) will be a, linear function of the frequency
as measured from the center of the line with the
maximum and minimum enhancements occurring
at the outer edges of the line with magnitude (1+y)

S( )= '"' ' ([I+yP (cosP)]g( —.(P))
6nkT

+ [(1—yP~(cosP))g(v —v (P))]] sinPdPdg,
(4. 9)

where

FIG. 6. Theoretical
shape of the (Pake) NMR
spectrum in the presence
of ortho-para conversion.
Curves (a), (b), (c), and

(d) correspond to y=0,
0.277, 1.0, and 1.5, re-
spectively, where y is de-
fined in Eq. (4.10). Note
that for y&1, the "absorp-
tion" becomes negative on
the low-frequency side of
the spectrum.

—@~a
Lv

d
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BT&=p. 364x1p ',
PpHo

kT

y= 0. 277.

(4. 11a)

(4. 11b)

(4. 11c)

In Fig. 6 curve (b) represents the absorption for
this value of y while curves (c}and (d) correspond
to y=1.0 and 1.5, respectively. Since the Legen-
dre polynomial Pz(cosP) has values between 1 and
——,', it is clear from Eq. (4. 9) and from Fig. 6
that, when y is greater than 1, the low-energy side
of the spectrum will emit power.

The agreement between theory and the experi-
mental data presented in I is fair. The theory
predicts that the enhancement of the peaks corre-
sponding to Pz(cosP) = - 2 should be half as much as
for the shoulders which correspond to Pz(cosp} = 1.
The actual experimental ratio is 0. 196:0. 518,
which is somewhat less than &. The experimental-
ly derived values of y are 0.392 and 0.518, both
of which are significantly higher than the value
0. 277 given in Eq. (4. 1lc). Thus although our
theory certainly gives qualitatively correct results,
it appears that the observed spectrum is more
strongly enhanced than we would predict, and there
may be a small deviation from the rule which says
that the anisotropy in the conversion rate is pro-
portional to Pq(cosP). There is certainly a need
here for more experimental work, especially since
the hydrogen data in I is for only one sample at a
single temperature and field strength. More ex-
tensive measurements, perhaps with higher-purity
ortho-hydrogen samples, would allow us to make
a detailed comparison between theory and experi-
ment.

In conclusion, we summarize the main results of
this paper:

(i) We have derived an expression for the two-
phonon ortho-para conversion rate, as a function
of the initial nuclear-magnetic state of the mole-
cule, for a high-purity powder of solid ortho-hy-
drogen in the ordered state. This expression
shows that the conversion rate from the Ml = 0 nu-

clear state is different from that from the Mi =+1
states and that this difference is proportional to
Pz(cosP), where P is the direction of the molecular
symmetry axis.

(ii) A dividend which arises from the above cal-

and (1 —y), respectively. Two prominent peaks
also occur in the spectrum at energies correspond-
ing to P~(cosP) = —&. These peaks will be enhanced
by (1+&/2) on the high-energy side and by (1 —y/2)
on the low-energy side.

For the experiment reported in I we have T
= 1.1 K, T, = 75 sec, and Ho = 2650 G. If we take
the experimentally determined value of R = 1.75Vo/

h, we find

The authors gratefully acknowledge the sugges-
tions of Dr. M. Pryce which led to a great simpli-
fication of the algebra in Sec. III.

APPENDIX A: EVALUATION OF THE TWO-PHONON
SPECTRAL DENSITY IN THE DEBYE APPROXIMATION

We wish to evaluate the spectral function
GP'(N, N;E,o), which is defined in Eq. (2. 25). If
we make the approximation that the crystal is iso-
tropic and consequently that all modes with a given

ikey

are degenerate, then we may choose any three
orthogonal unit vectors as the polarization vectors.
In particular, we may take

(Al)

Then the sums over v, 7, m, and n in Eq. (2. 25)
are performed trivially with the result

(2)
2 2

G~ (N, N;E)P)=25Ng. 2MRg@0 D

1 g En
» » g»f»

x
~
(1 —e "'"')(1—e'"""~)~'

X 5(Eio —ef —egg) . (A2)

We may transform the sums over k to integrals
over energy by making the substitution

1 3
N g 4'

+ED
&2d~d~, . (A3)

culation is an analytic expression for the average
conversion rate which is valid for either the or-
dered or disordered phases. Since this expression
is a simple function of the intermolecular distance
and the Debye energy, it is possible to determine
the density dependence of the two-phonon conver-
sion rate using measured values of ED vs molar
volume. Our conclusion is that for molar volumes
of less than 20 cc/mole the two-phonon conversion
rate is negligible and conversion proceeds almost
completely via the one-phonon mechanism.

(iii) We have calculated the effect of the differ-
ence in ortho-para conversion rates from different
nuclear states upon the populations of these states.
We find that the amount that these populations are
disturbed from the equilibrium Boltzman distribu-
tion is proportional to the difference in ortho-para
conversion rates divided by S'&, which is the rate
of 4MI =+ 1 transitions.

(iv) Finally, we have compared our theory to the
only available NMB data for high-purity ortho-H2
in the ordered phase. We find that the asymmetry
of the line does depend upon P~(cosP) to a, reason-
able approximation. On the other hand, the mag-
nitude of the asymmetry seems to be about 60%
higher than our theory predicts.

ACKNOWLEDGMENT
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Then the angular integrals are easily evaluated: g = b f [1-jp(a+ x)][1 j-p(a —x)] (a —xP)dx.
(A12)

where jp(x) is a spherical Bessel function

jp(x) = (sinx)/x.

(A4)

(A5}

Using Eq. (A5} we have

q=b f [(a —x ) —(a- x) sin(a+x)
p

—(a+ x) sin(a —x)+ sin(a+ x) sin(a —x)]dx, (A13)

We also define the energy &p, which is the energy
of a phonon with wave vector k= 2v/Q. Then

m
'"

&p=E~ — W2 ~1.44E~.p D

Using Eqs. (A3)-(A5} in Eq. (A2), we find that

(A5)

x[1—Rj p(2ve /ep)]ee 5(Egp —e —e ).
(A7}

To perform the double integral in Eq. (A7), we
change variables to

{AS)

Then the integral over && is trivial because of the
6 function. %'e are left with

I2 2

G, (X,X;Z„)=135„„.
p D

4 t+D +D gx ~ J
d& de'[1- jp(2ve/ep)]E~

+ 2 cosa (siny —2b cosy)

+ —,'(siny cosy —y cos2a)). (A14)

APPENDIX B: VALUES OF SEVERAL COEFFICIENTS

1
C(110'0 0)=-

C(O, K, K;O, M)= C(K, O, K;M, O)= 1,

C(422;0, 0)=P,
1/~10,

C(121;M, O) = —2/ 10,
1/~10,

C(112;0,0)=Q

which is a sum of elementary integrals. The solu-
tion is

q = b 'Oa'y y'—/3)+ 2a cos2b

18
~P '»&;EiP)=E 5ar. » ~~a (A9)

W(2141;3, 2) =~~
where

1 ~~a ~&p

p [1-jp(x(E~p+ p}/' p)]ED "p

[1 jp("(&~p a)/ p)](&fp p)d&2 i (A10)

W(2251; 4, 3}= —,1

1
W(3131;2, 0) =

and where we have made the assumption that E&
& Ezp. For small molar volumes where E& &Earp&

the upper bound on the integral in Eq. (A10) is En.
This integral may be performed analytically if we
write the Bessel function as (sinx)/x. However,
first it is convenient to change to dimensionless
variables

W(3131;2,2)= p j&~,

W(1212; 1,0}=
~1

1

W(1212;12}=ipJ+g,

b=~ — = 2. 1876,

a = bop/En,

y=2b —a.
Then g is given by

(Alla)

(A11b)

(A11c)

X(532; 532;0, 0, 0)=~3
1

X(532; 532;0, 2, 2) =
1

X(532; 532;2, 2, 2)=p gpgp .
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