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The bandwidth of phonons emitted in avalanche spin-phonon relaxation processes is studied when the

phonon interruption time is shorter than spin-spin relaxation time. The problem has been solved by the

use of second-order Heisenberg equations of motion for phonon-number operators of each lattice mode.

It is shown that the usual rate equations, based on the assumption of time-independent bandwidth, are

not adequate in these circumstances and that the bandwidth of phonons emitted in the relaxation

process decreases during the av~»~che. Rough numerical estimates in a typical case suggest that the

bandwidth of the emitted phonons, at times at which phonon generation may be considered as

practically concluded, may still be larger than the spin-resonance linewidth. Finally, it is emphasized

that the results obtained are confirmed by considering the relaxation process in the light of the

energy-time uncertainty principle.

In this paper me shall be concerned with para-
magnetic relaxation via direct processes in sys-
tems which have been artfully displaced from
thermal equilibrium. Intuitively speaking it is
rather obvious that the spin system in a direct
relaxation process should prefer to give more of
its energy to lattice modes whose frequencies are
near to the Larmor frequency than to others. '
What is not obvious is how to predict the bandwidth
of the emitted yhonons under different relaxation
conditions, and, indeed, whether the shape of their
power spectrum may be considered constant as a
function of time. Both problems become relevant
in the phonon-bottleneck regime, i.e. , when more
phonons per unit time are created by the decaying
spins ihan could be dissipated, and particularly in
crystals where the phonon interruption time (name-
ly, the average time an emitted phonon lives be-
fore being absorbed by some other spin) is shorter
than the spin-spin relaxation time.

The first of these problems has been considered
by Giordmaine et al. , in a very careful analysis
of the relaxation of a spin system whose tempera-
ture is positive and higher than the rest of the
crystal under the conditions mentioned above.
Such a situation could hardly be described by mod-
els where each spin mould relax independently of
the others. The above-mentioned authors suggest
that in this case the bandwidth of the emitted pho-
nons should be entirely governed by repeated spin-
phonon interactions; in a subsequent paper Giord-
maine and Nash point out that under these condi-
tions spins and phonons should be considered as a
single entity, giving rise to spin-phonon modes ex-
tending throughout the crystal. By means of argu-
ments similar to those used by Jacobsen and Ste-
vens to describe propagation properties, they
show that the spectral width of the lattice-mode
excitations may exceed the spin-resonance line-

width.
The aim of this paper is to investigate the sec-

ond problem in an avalanche process: We shall
study, for interruption times shorter than the
spin-spin relaxation time, the frequency distribu-
tion of phonons emitted when the initial spin popu-
lation is inverted. This case is very different
from that considered above, since in the presence
of a self-regenerative relaxation process it is
reasonable to expect a variation of the bandwidth
of the emitted phonons during the development of
the avalanche.

Separate equations for each lattice-mode popu-
lation have been found in a previous papers on the
basis of a simplified model which should preserve
the essential features of the physical system. The
model consists of spins and phonons interacting
linearly. The spin-spin interaction is neglected
and the phonon relaxation time to the external bath
is assumed to be much longer than any character-
istic time involved. The Hamiltonian is assumed
to be of the form

X=K~, ~,'o.,+~K o,'+Z~ (o~," e'"+H. c. ), (i)

where the k dependence of the spin-phonon coupling
constant has been dropped for simplicity. We have
shomn that, with a reasonable assumption, the
spin-phonon population in the kth mode obeys the
equation

d ng 2 2 21+0'2
= (q o —sar, ) s„+q

where 0, is the difference of the spin-level popu-
lation normalized to unity, p =2', N is the num-
ber of spins in the crystal, and

b~a= ((oa (oo)2- 2

It may be worthwhile to emphasize at this point
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that the rate equations like those introduced for
the first time by Faughnan and Strandberg to de-
scribe relaxation from positive temperatures in
bottleneck conditions, and subsequently used by
Brya and Wagner to describe an avalanche in
Ce-La Magn nitrate are not suitable for our
purpose. Those equations in fact can be de-
rived from (2) if a time ind-ependent phonon
bandwidth is a Priori introduced. Such an assump-
tion is not allowed here, as we shall now show.
Straightforward integration of (2}, assuming as
initial conditions

no(t=0)= ' =0,
dt

gives

sinhvo(t —t )n(+p, t'} g
0 ~(dk

= n((u p, t') g((o o) v .
Substituting in (5) we have

g2
g, = const ——g(~o)v ( [I+o,(t')

0

+ 2n(&op, t') o,(t')ddt',

and, differentiating with respect to t and multi-
plying through by N,

"' = —2A([n((uo, t)+1]

xnp-n ((op, t)n,j,

(8)

(7)

(8)

0 k

0 EQ)k

Moreover, since the total number of excitations
commutes with the Hamiltonian, we should have

where n& and n2 are the populations of the two spin
levels and

A = 2v cog(ouo) .
Equation (8) is the first of the rate equations we
are looking for, provided that n(~p, t) is identified
with the average population of the modes in speak-
ing terms. Moreover, differentiating (4) we get

o, +—Q n, (t) = const.
2

(4) do 2 dn»
dt N dt0

(9)

From (3) and (4) we get

2
o,(t) = const ——Zn, (t)

D
= const —— g(&u, )n, (t) d&u,

N p

~2 t y
= const —— dt' [1+o,(t')] g(~o)

N p p

sinker, (t —t ) 2qo

6CO» p

~g sink&a~(t —t')
x g((o„)n, (t') ' d(o, , (5)

4 0 ~~k

where g(&oo) is the density of phonon states at &u,

and ~~ is the Debye temperature of the crystal.
In order to obtain the rate equation for the differ-
ence of spin-level population, it is essential to
take no(t') in (5) out of the integration in &oog for
this we must assume that no(t') is constant as a
function of co» in a band large enough to make

sinkage, (t —t )
g 4'a

small at the two ends of the band. This condition
is easily satisfied in most actual cases, and with
this assumption we have

r
sinn, ufo(t —t )

n& t g &u& dpu&

and, if we wish to obtain from (9} the rate equa-
tion for the phonon population, it becomes essen-
tial to assume that dna/dt is nearly constant within
a band (b,&o }of modes and negligible outside.
With this assumption we find

do. 2 dn((o to) g( .)d . ,dt N dt

so that

dn(u&o t) 1 d(np —n~)
dt 2(«u}g(~o) dt

Equation (11) is equivalent to Eq. (2) of Ref. 7,
provided that («u) does not vary with time, and
it is the second of the rate equations which we
have derived under the assumption of a time-in-
dependent phonon bandwidth. This assumption is,
however, in contrast with (2) in avalanche condi-
tions. In fact, although exact solutions of (2)
will not be given here, it may be guessed that (as
long as o,& 0 and for not too large times) each
mode distant in frequency from resonance by a
quantity h~k&po,' should increase its population
approximately proportional to exp([g o, —b,&uo) t),
leading to a relative decrease of the population of
this mode with respect to that of the resonant rh, cok

=0 mode, which is far from being constant as a
function of t. Moreover, due to the decrease of
0, during the avalanche, phonon modes should
progressively go out of the frequency region of
quasiexponential increase when their h(dk become
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where

o, =c,(t=o), x =h&pp/q c,, v=qo, t .
Solution (12) would be exact if a,(v) = o~P; the most
important effects on the solutions of (2) due to the
decrease of 0, with time will be considered later.
We define the width of the band of emitted phonons
by the relation

n(x, v) = (1/e)[n(x=0, v)],
which becomes, using (12),

cosh' —1(1-7)...h(1 7), 1='

(13)

(14)

In the region of interest (v& ~, x& I) this equation
has a root in the neighborhood of x - 2/v, from
which we find the bandwidth to be

{d&p)P= 2g o,/v . (15}

This is time dependent, as expected, and de-
creases with increasing time. One should remem-
ber, however, that in obtaining (15)we have neglect-
ed the effect of the time variation of O„which might
become important at large times. Although an

accurate evaluation of these effects is far from
simple, a rough estimate can be made-observing
from (2) that for each mode with a given x a time
v'~ should exist at which the quasiexponential in-
crease of the population of that mode ceases. This
time is defined by the relation

o. (r..&(x))
0 (16)

and it is now evident that solutions (12) for each
x are approximately valid only for times v & v,~(x).
For times v not much longer than v,~(x) we shall
assume

n(x, v) =n{x,v,~(x)} (17)

Solutions (12) for v& v & and (17) for v & r,„, now

permit an evaluation of the time evolution of the
bandwidth of emitted phonons (b,&p) up to times

larger than ger,
' 2, thereby magnifying the effect

of relative decrease of population. We are there-
fore led to the conclusion that at least the rate
equation (11}with constant (t«d) cannot constitute
an adequate description of the avalanche in our
model.

We may now go back to the main purpose of this
paper: to estimate approximately the distribution
of emitted phonons as a function of the frequency.
According to our previous considerations, we
assume as approximate solutions of (2), for modes

expressions [see also Ref. 5, Eq. (6)]

1+ '
n(x& t) = p p [cosh(1 -xP)'tPv —1], (12)

when the avalanche is practically concluded, or
when r, has decreased by a non-negligible amount
so that (15) is no longer valid. We proceed in the
following way. From the results of our previous
work we know that o, evolves in time quite rapidly
during the avalanche from the initial value o, to
about zero, where it lingers for times which are
orders of magnitude larger than those necessary
for the first part of the decay. We may then ar-
bitrarily define a time vf such that

at which the avalanche may be considered conclud-
ed as far as the generation of further phonons is
concerned, but cr, is still quite rapidly decaying
towards zero. Using the results of our previous
work we find

N
vp —ln ~( (16)

We observe that the band of modes effectively in-
teracting with the spins can be divided into three
regions. In the first we put the modes for which
v, (x) & vz. For these modes we can immediately
use (12) and (17), and we get

n(x v )
~ &&1-8/p)v~&&g&1+e0

f 2 0

7y fry 7'~(g)]=
2,0 e e

f~2 e& «@~oat&&) &122 2
y

where we have neglected (1 —x ) in the denomina-
tor, since the exponential x dependence should
cut any effect coming from this factor. The sec-
ond consists of a very narrow band around the
Larmor frequency, which at a=v& has not yet
entered the region of validity of (17). If the fall
of o, towards zero immediately before is rapid
enough, a good approximation for the population
of these modes should be

(19)

1 +0'gn(x=0, v~)= p' e'~
20'g

(2o)

This amounts to putting v, (x-0) = vf, which is
physically reasonable, since the exponential
growth of population of these modes after v& cer-
tainly becomes very feeble, due to the smallness
of r& o,(vz) —t«d~~. The third region consists of the
modes in between the first two; since we expect
a smooth curve for the distribution of emitted pho-
nons, we shall join (19) and (20), and describe ap-
proximately the whole curve at w = z& by the expres-
sion

n(x, v,)=n(x=O, r,) e '+~ e-"~'~&&-*",

where we have put x&=2/v&. We wish now to have
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an explicit expression for v&
—T „g(x) m (21) as a

function of x. Since x& }, we expand

1d~v x
mP +

~
2sIP

According to our previous discussion, we set
v„q(0)- v&. Moreover, from (16) we have

deut dTOM dg~ dTou 2
dx ~ p de dx p do'g

of o„as in fact could have been anticipated.
A rough numerical estimate of the bandwidth at

Ty in a typical case is possible using numbers
given in Ref. 2. For 1% paramagnetic concen-
tration of the Cu salt considered there, and by
identifying the quantity g in this paper with the
quantity 2sdpz, calculated there [see Ref. 2, Eq.
(8)], we obtain

dv'~q= 20'p
de x ~p

We approximately evaluate the last derivative as

(23)

since do, /dv is always negative, and substitute in
(21), which becomes

n(x, rq)= n(x=0, vg) exp(-» /xg)

(24)

This is the sought-for approximate expression
for the distribution of emitted phonons at time v&.
We see that the band is narrower than it would be
if we had extrapolated expression (15), which is
valid for short times. This extra narrowing is to
be attributed to the mechanism that progressively
cuts the modes in the wings of the band out of the
region of exponential growth. From (24) the extra
narrowing is inversely proportional to I (do,/dv) I,&
and tends to be less effective the steeper the decay

and through (18) we have v&= 10. Moreover, a
conservative estimate based on our previous work
gives (1/2o, ) I (do, /dr) I,&= 10 . Substituting these
values in expression (24) we get that the bandwidth
of the emitted phonons is

(n, &o)= 10 'go, 'i (25)

that is, one-tenth of the bandwidth at the beginning
of the decay. This is considerable narrowing, but
the band may be still larger than the spin-reso-
nance linewidth.

Finally, we would like to comment on our re-
sults in light of the indetermination principle
tare) 1, which Eq. (25) satisfies. We note, under
the conditions considered here, the avalanche
practically ends before that rigorous conservation
of energy might be required. In a following paper
we shall report results based on exact solutions
of (2) which provide strict energy conservation at
v» v&, and which support the results of the pres-
ent paper.
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