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The expression for the three-body potential in ionic solids, derived quantum mechanically by Lundqvist,
has been obtained classically by assuming a deformation in the charge-density distribution due to overlap of
the nearest-neighbor electron cloud. A reexamination of the effect of this potential on the lattice dynamics of
ionic solids has revealed an error in the original formulation of the so-called three-body-force shell model

which has now been eliminated. The application of the corrected equations to MgO, with only the oxygen
ion assumed polarizable, results in disperison curves which present a good agreement with the neutron

spectroscopic data.

I. INTRODUCTION

Verma and Singh' have recently developed a
three-body-force shell model (TSM) based on
Lundqvist's expression~ for the lattice potential.
The model uses a function f(a) of the nearest-neigh-
bor separation a connected with the overlap inte-
grals of electron wave functions and its space de-
rivative df/da as parameters, in addition to the
usual parameters of the simple shell model. ' On
classical considerations one can show that the TSM
takes account of the charge transfer between neigh-
boring ions in addition to the dipoles induced on the
ion sites, while the simple shell model accounts
only for the induced dipoles (Cochran4). An error
in the formulation of the TSM has been recently
pointed out by Agarwal and Verma' which concerns
the definition of shell and core charges. By re-
defining the shell and core charges suitably, it is
still possible to obtain the basic equations of the
model as they have been described before but the
meanings of the electrical and distortion polar-
izabilities become somewhat different. It is there-
fore necessary to reformulate the model correctly
and to investigate the extent to which this correc-
tion affects the results obtained earlier in various
lattice dynamical studies. ~'~

Cochran has recently shown that the TSM is
equivalent to another variation of the shell model,
viz. , the breathing shell model (BSM). 'P' A sim-
ple classical derivation of Lundqvist's expression
for the lattice potential of ionic solids and a proof
of the equivalence of the TSM and BSM have been
recently obtained by Verma' by reinterpreting an
analysis of the breathing motion of the shells in the
BSM presented by Basu and Sengupta. ' This in-
terpretation leads to a charge transfer implied in
Lundqyist's lattice potential and is in agreement
with Cochran's analysis of the TSM.

The classical derivation of the lattice potential
as given by Verma' and the necessary correction
in the TSM are briefly described in Sec. II and the

results obtained by applying the corrected TSM
equations on Mgo are given in Sec. III. The choice
of this solid is dictated by the circumstance that it
has been recently investigated by Singh and Upad-
hyaya'6 on the basis of the original TSM equations
and is expected to show prominent differences in
the numerical results obtained by the two sets of
equations in view of the large Cauchy discrepancy
with which the three-body forces are directly re-
lated. The valence of the ions also leads to a ma-
jor difference between the two sets of equations;
this difference being much larger for the divalent

MgO than for the monovalent alkali halides.

II. THEORY

Let us designate the ions in an ionic lattice
structure with two atoms per unit cell by the usual
symbol (I, v), where the cell index l is the integer
triplet (I„ lp, Ip) and the basis index x = I, 2. The
charge-density distribution p,„around an ion can
be expressed as a function of position relative to
the corresponding nucleus,

p,„=p,„(r) .
In view of the translational symmetry, p,„(r)

will be independent of l in the ideal undisturbed
state of the lattice and may be considered as a
function of the scalar distance from the correspond-
ing nucleus:

p', „(r)= p„'(y) .
In the state of vibration, the ions move out of their
equilibrium configurations causing a change in the
charge-density function which can now be expressed
as a series in spherical harmonics. Thus,

~p,„(r)= p,„(r)—pt„(r)

=fp(p') +2fg(f)yg +2fp ('Y) Yg + ' ' '
~ (2)

The first term represents an isotropic scalar
deformation of the charge cloud, the second a di-
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fo(r) = (1+a,„)g(r+ a,„r) g(—r), (4)

where g(r) is an arbitrary function and a,„ is a pa-
rameter. By choosing g(r) = p„(r), one obtains

4n'r drp, „(r)=4vr dr p„'(r ),
where

(5)

x =r+a,„r .
Equation (5) represents the breathing motion im-
plied in the breathing shell model.

This interpretation of the breathing motion of the
shells depends entirely on the result (3), which is
valid only if the upper limit of integration on the
charge-density distribution is extended to infinity.
In a solid the iona (or atoms) are fairly close to-
gether and the total space can be divided among
various ions by suitably drawn dividing surfaces.
In an ionic solid where the charge-density distri-
bution is to a large extent spherically symmetric
around each nucleus, the positive- and negative-
ion spaces can be conveniently divided in spheres
of ionic radii y„centered at the corresponding lat-
tice points. The charge belonging to K-type ion
will therefore be determined by

f "[p(r)+f0(r)]4vr dr, (6)

where the upper limit is now y„ instead of ~. Even
in a static lattice the proximity of the ions will
cause a deformation of the charge clouds owing to
the overlay of electron wave functions. It is this
deformation that has been considered by Lundqvist
and is thus implied in the TSN. Let us define the
original charge on the ion in absence of the defor-
mation fo(r) to be Z„:

f "p„(r)4vr dr= Z„. ( l)

Substituting in (6) the expression (4) with g(r) = po

and assuming a,„ to be small, we obtain for the
charge on a ~-type ion

J "(1+a,„)p„(r+a,„r)4wr dr= Z„+a,„Z„,
0

where

ag„= 4mr„'p„'(r„)a, „/ „.Z
The charge neutrality over the unit cell demands

Z (Z„+a,„Z„)= 0 . (8)

pole deformation, and so on. The simple shell
model3 accounts for only the second term in the ex-
pansion. If we retain only the first two terms in
Eq. (2) and assume that the charge on an ion re-
mains unaltered during the vibrations, we obtain

f 4~r fo(r)dr=0 . (3)
0

Equation (3} is identically satisfied by a simple
function

Since a,„ is a parameter which will vary with the
proximity of neighboring iona, Eq. (8) imI)lies

Zg = —Za and a)j, = g)2

It appears as though a charge a,„Z, is trans-
ferred from the negative ion to the positive ion of
the same cell. In effect, each ion will have a
charge transferred to it from all its neighbors so
that a,„can be supposed to be the sum total of such
transfers. If we neglect overlap between ions
farther than the first, a,„will not have any contri-
bution from second and higher neighbors. In a
static lattice we can therefore consider this param-
eter to be independent not only of v but also of l.
Denoting the charge on the positive ion by Z(= I Z„I),
we can write the charge on the ions as + Z[1+a(r)]

The Coulomb energy per unit cell of this modi-
fied charge system will be

—a e'Z'[1+ a(r)]'/r

and if we neglect the square of a(r) we can write
the energy per unit cell of the ionic solid as

y = —a e~z[z+12f(r))/r+12V(r), (8)

where V(r) is the overlap repulsive potential and
we have put Za(r) = 6f(r) to obtain the expression
given by Lundqvist for cp. The Coulomb pair po-
tential coupling two iona at (I, x} and (l, y ) will be

Ig g
~ ~ Z&Z+ ~ [1+ 6f(r)]

Z„Z„. 12f(r)Z„Z„.

The first term is a central two-body potential
identical with the conventional Coulomb potential
of the rigid-ion model. The second term is also
of the same type but its magnitude depends on f(r}
which in its turn depends on the proximity of neigh-
boring ions. Thus this potential contains the coor-
dinates of atoms at (l, ~), (l, ~ ), and all the near-
est-neighboring sites of (l, ~). In view of the de-
pendence of this potential on the coordinates of
three different ions of the solid, it is termed a
three-body potential. Clearly, the three-body po-
tential derived quantum mechanically by Lundqvist
implies a charge transfer between neighboring ions.

The consideration of the short-range overlap in-
teraction and the long-range Coulomb interaction
between shells and cores in the shell model leads
to equations in which these interactions appear in
distinct terms. The consideration of three-body
interactions within the framework of the shell mod-
el can therefore be done in a simple way by in-
cluding the three-body potential in the Coulomb-
interaction terms. Inclusion of this potential leads
to two additional terms in the coupling coefficients
which depend on the second derivative of the poten-
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tial. One of these terms that contains the second
derivative of f(r) can be easily assimilated in the
nearest-neighbor overlap potential whose parame-
ters are to be determined phenomenologically.
The other term represents a long-range three-body
coupling which contains the first derivative of the
function f(r) and has been evaluated by Verma, and
Singh. ' The TSM equations are consequently ob-
tained by modifying the Coulomb matrix C of
Woods et al. to

C = Z[z+12f(a)]C+V, (lo)

a„=e'Y„'Z[Z+ 12/(a)]/(k„+ S,) (12)

and the distortion polarizability can be defined by

d„= e Y~(z[z+ 12f(a)]) ~ /(k„+ So) . (13)

The definitions of the core and shell charge given
above enable us to express the total polarizability
per unit cell in a simple way. Thus, we can write

*=8=
k S+ R' e'Zz+12fa, 14

where the symbols used have the same meanings
as in Woods et al. ~ Clearly, Eq. (14) can be ob-

where V is the matrix corresponding to the terms
containing the first derivative of the charge trans-
fer function f(r).

The Coulomb matrix appears in the equations of
motion of the shell model in terms representing
interactions between the cores, the shells, and the
cores and the shells. These terms will contain
the charges of the cores and shells as multiplying
factors. The error in Verma and Singh's' model
is that the Coulomb matrix has been modified
everywhere according to Eq. (10), implying modi-
fication of all charges by the factor Z[z+12f(a)],
while the expression for polarizability defining the
shell charge has not been suitably modified. Thus
Verma and Singh erroneously retain in their
model, the expression for a as

a =e Y'/(k+So) .

The correct equations can be obtained in a simple
way by suitably defining the core and the shell
charges which have an arbitrary nature.

Since the charges including the transferred
charge on the ions are Z„=+ [Z+6f(a)], the core
and shell charges should for convenience be as-
sumed in the form X„[z+6f(a)] and Y„[Z+6f(a)]
such that X„+Y„=+1. The Coulomb interaction
between the cores and shells will now be easily ob-
tained correctly by replacing the Coulomb matrix
C by C as suggested by Verma and Singh. ' Thus
the equations of the three-body-force shell model
are restored, provided we assume the core and

shell charges in the form suggested above. The
polarizability equation will now be

The basic equations for the calculation of the
parameters are

C&&= 4
—5. 112Z[z+12f(a)]+A+9.3204Z a11 4 4 da

(15)
e2

C&z= ~ 0. 226Z[z+12f(a)] —B+9.3204Z a ~
4a0

(16)
e

C44 =
4 (2. 556Z[Z+ 12f(a)]+B), (17)4 4 4

B= —1.165Z[Z+ 12f(a)], (18)2, 4w e' i, Z[z+12f(a)]=R ———ZTO 0 3 f
I 8m' e2 Z'2 df

P(o2Lo=RO+ —— Z [Z+12f(a)]+6 a-
fr.

(2o)

(19)

where

8m~ 1 d
3 Z[Z+12y( )]

(21)
(22)

(23)

fr= 1 -3 va/v,

Z =1 -d2+d1 p

(24)

Ro = (e /v) (A + 2B) .
These equations, together with Eq. (12) or (13)

determine the parameters A, B, f(a), (adf/da), d„,
and Y„of the theory. However, the calculation of
the parameters leads to imaginary or negative val-
ues for the parameter d, unless the positive-ion
polarizability is chosen to be of the order of 0.005
or lower. Even the experimental values of the

tained from Eq. (2. 3. 11) of Woods et al. by re-
placing the charge e on the ion by ez[z+6f(a)] and
then by neglecting the square of f(a) as we have
done before in deriving the exyression for the po-
tential energy. It may also be pointed out here
that the original definition of the shell charges
does not satisfy the consistency condition of the
equations of motion and the present modified form
eliminates this drawback (Sinha").

The corrections required in the TSM are only in
respect of Eqs. (12) and (13). These equations,
however, modify the parameters of the theory sub-
stantially and in view of the successes of the TSM
it is pertinent to investigate the consequences of
this modification. To do this we have applied the
corrected equations to the study of phonon disper-
sion in MgO which has recently been investigated
by Singh and Upadhyaya. '

III. CALCULATIONS AND RESULT



THREE-BODY-FORCE SHELL MODEL AND THE LATTICE. . . 4883

TABLE I. Input data. TABLE II. Model parameters.

Constants

Cf1 (10 dyncm )

C12 (10 dyncm" )

C&& (10' dyn cm )

~ (10 2~ cm")

Values

28. 92 (30.53)

15.4G

1.742

Refs.

Sangster et al.

Sangster el al.

Sangster el al.

Tessman et al.

A B

32. 0918 -4.4199

f(a) (ndf/da) Y d

—0. 0086 —0. 1221 —l. 6490 0. 34G3

Lattice constant (10 ' cm)

~& (10 rad sec )'

~& (10 rad sec ')

&0

4. 213

13.60

7. 4G2

9.8

2. 95

U. S. Natl. Bur. Std.
Circular No. 539

Infrared absorption
frequency

Szigetid

Szigeti

Reference 18.
Weference 19.
'Value calculated from the LST relation.
Reference 20.

polarizability of the Mg ion is very low. %'e have
therefore neglected this polarizability and have
assumed only the negative ion to be polarizable.
The number of parameters are now only six and
can be calculated from Eqs. (16)-(20) and (12) or
(12) dropping the expression for C». w„and ~r
can be taken from the neutron scattering results
directly. However, since the measurements by
Sangster et al. ' for the longitudinal optic branch
near q = 0 seem to have large errors, we have pre-
ferred to use values of ~L and ~ T as derived from
the optical data. The input data are given in Table
I and the values of the parameters in Table II.
These values of the parameters were used to cal-
culate C». The calculated value has been shown in

brackets and agrees closely with the experimental
value. The elements of the dynamical matrix were
computed in the usual way for a number of wave
vectors along the principle symmetry directions
[100], [110], and [111]. The calculated frequencies
have been plotted against q in Fig. 1, together with
the inelastic neutron spectroscopic measurements
of Sangster et al. "

The order of agreement obtained in the present
study is the same as that obtained by Singh and
Upadhyaya' and by Sangster et al. " The latter
authors have used a breathing shell model. In
view of the correction suggested in Sec. II it would
seem somewhat strange that the original TSM equa-
tions have led to such excellent results on so many
ionic crystals. Effectively, the original TSM pa-
rameters correspond to values of polarizabilities
which are larger by a factor Z[Z+12f(a)]. For
monovalent solids for which Z = 1, this factor is of
the order of 1 and can lead to only minor differ-
ences from the correct theory. For divalent sol-
ids, however, the factor is of the order of 4 and
can in most cases make the calculations of the pa-
rameters impossible unless compensated for in
some way. The main difficulty arises with the ex-
pression for fz, and fT [Eqs. (21) and (22)] which
strongly influence the calculations of R0 and 8'.
Singh and Upadhyaya' have in effect divided the
nC, /v term in these expressions by Z, whereas

20 20
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FIG. 1. Dispersion
curves for Mgo. The solid
lines are theoretical curves;
8, i, and ~, are experi-
mental points from Sangster
et al. {Ref. 18).
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the correct calculation would require a division by
Z[Z+12f(a)]. Since f(a) is usually small, the two
factors do not differ much and the phenomenological
nature of the calculations can compensate for the
small difference. This seems to be the explanation
for the good agreements obtained by both the origi-
nal and the corrected TSM equations.

The six-parameter TSM theory results in agree-
ments at least as good as those of Sangster's et
al. ' eight-parameter model D. The ionic charge
obtained in this model for the best fit with experi-
mental curves is 1.918, which is not very differ-
ent from 2. The Z„defined in the TSM is the charge
contained in the sphere of radius r„ ignoring iso-
tropic deformation. This radius has a certain de-
gree of arbitrariness and hence the charge Z of the
TSM should be considered to be somewhat arbitra-
ry. This means that this quantity should also be
treated as a parameter and if enough equations are
not available for its evaluation it may be determined
by allowing it a free variation over a small range
and by selecting the value for the best fit with the

experimental dispersion curves. The best value
of Z„should logically be that derived from electron
density maps integrated to a radius r„where the
density acquires a minimum. This was the pro-
cedure used by Verma and Singh in their study of
lithium salts. Since our aim in the present work
was mainly to correct the TSM equations for the
defect mentioned above and the study of lattice dy-
namics of MgO was taken up for a check, we have
contented ourselves by selecting a simple scheme
for the study with Z = 2.
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