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We have derived a sum rule for the electronic scattering phase shifts in a metal, produced by a

planar boundary surface. The sum rule, which states that a weighted Fermi-surface average of the

asymptotic phase of the electronic wave function in the presence of a metal surface is equal to —n/4,
is derived for the case where explicit account is taken of the energy bands and crystalline structure of
the solid. This extends the sum rule originally stated by Sugiyama for a jellium model of a metal.

Modifications of the sum rule in the presence of an applied electric field and for complex band

structure are also considered.

I. INTRODUCTION

The requirement that the surface of a bulk metal
produces no long-range monotonic potential or
charge disturbance deep in the bulk leads to a sum
rule for the asymptotic phase of the electron wave
functions. This sum rule, analogous to the Friedel
sum rule for metallic impurities, ' was first stated
by Sugiyama and recently was proved in detail by
Langreth. The sum rule states that a weighted
Fermi-surface average of the asymptotic phase of
the el.ectronic wave function in the presence of a
metal surface is equal to —z/4. Both these
authors discussed this sum rule in the context of
the jellium model for a solid surface, which ne-
glects the lattice structure and the concomitant en-
ergy bands of the real. solid.

It is the purpose of this paper to extend the dis-
cussion of the sum rule to include lattice and en-
ergy-band effects. To this end we have organized
the remainder of the paper into two sections. In
Sec. II the phase rule is derived for boundary con-
ditions appropriate to a semi-infinite solid, while
in Sec. III the problem in finite-slab geometry is
studied and the connection between the sum rule
and simple counting arguments is made clear.

II. PHASE RULE FOR SEMI-INFINITE GEOMETRY

We restrict ourselves to metal surfaces parallel
to a crystallographic plane in which there has been
no change in the two-dimensional periodicity paral-
lel to the surface. The coordinate axes are chosen
so that z is normal to the Inetal surface, with
positive z pointing out of the solid, and its origin
is chosen near the last plane of atoms. (The pre-
cise position of this origin will be made clear
later. )

The metal can be thought of as occupying the en-
tire left half-space or as being terminated near
z= —L by another surface. Both cases will be con-
sidered; for the present we need not make a
choice.

Electron wave functions in the presence of the

surface can be labeled by the quantum numbers
k„and E, where k„ is the Bloch quantum number
for periodic translations in the surface plane and

E the total energy. Under the assumption that the
bulk band structure of the metal admits only two
degenerate Bloch waves (this assumption will be
relaxed at the end of this section} for a given ki and

E, the electron states gk, z can be written in the
interior of the crystal as

(2. 2)

where a denotes the Wigner-Seitz cell in the sur-
face plane, whose area is A. This can be re-
written in terms of only gkk $ and its energy and

z derivatives on the plane z =Z. We have

[ —V'/2+ V(x)] q.* =Eq„-, (2. 3a)

and

[-V /2+ V(x)] gk„,z. —E'gk„, . ,z- (2. 3b)

where V(x} is assumed real. Atomic units (e=m
= a= 1) will be used throughout this paper. Multi-

plying (2. 3a) by gk, z. and (2. 3b) by fk z, sub-
tracting the resulting expressions, and integrating
over the two-dimensional Wigner-Seitz cell, one
finds

(E' —E) f dSlgkk, z' gk„,z

k f» [tk &Ekpfp zkIg & kz 4 Ekk]I

Ok„,z n1%c„,k 2 Pk„,l (2. 1)

where pi-, „&~ » are the two Bloch waves with energy
E and wave vectors k„and k or l. a~ and a2 are to
be chosen so that gk„z has no net current, and y

is the phase between the incident Bloch wave, taken
to have wave vector 0, andthe reflected Blochwave
with wave vector l.

Following Langreth, we proceed by constructing
an expression for the total charge per unit area A,
in the state gk „, to the right of a plane z parallel
to the surface. Denoting this by Nk „(z)we have

Nk„„(Z)= f„j ~gk„„(z) ~'d dzS,
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;j-dSv [q&, Vy„-,„q-;„,.Vq(, ,]. (2.4)

Integrating now from z = 7 to z = a&xi using the
fact that t)t«„z 0 as z ~, and then taking the
limit that E'-E, one finds

8 8
«I z( ) 4IT«,z 4«g, z

8
4«„,z s 4«,z (2 5)8E ' 8Z )i ~

We turn to the task of constructing an explicit
form for the bracketed expression in (2. 5). For
simplicity we suppress the k„,E subscripts and

denote d&a/dE as ~'. Then

tiI'= (a&+ik'za&)P» (-af, —2iX'az+il'az)e ' "P&

+a ef«««kI aze-$2)(ail» l l (2. 6)
8u 8u
8k 8~

where

y«(x) =-e'"u«(x) . (2. 7)
Taking the z derivatives of g and g' one finds for

sq* , s 4

8Z 8Z
(2. 8)

S~= —a~(az-2iX'a«+il'zaz)e +" «y, —y«
'

I

—az(a~+i kz a)e' '" ' p«- p*,
z j 8z 8z

(2. 9)

I ' ISz= a~(a&+ zk za&)
~a

8z
+a«(az- AX az+zl zaz) A —ps

8~a I ' I ' I 89 t

8Z 8Z 8Z
(2. 10)

2k I +A ~ gkg Jh gag

8z 8k ' 8z 8k

Z

k l ~f kg ~* ~fig 2 z~4~ ~-Ax8u 8u
4 '' 8z 8t "8z 4

Fortunately, enormous simplifications can be ef-
fected in these expressions if the required dS in-
tegrations on the plane z = z are performed and a
number of identities valid for the Bloch waves
and proved in the Appendix are exploited.

The term f„dSS~ vanishes because of the iden-
tity

-i, dE, dE
dSS2

d dk
+

dl

-4a', X'/d+ 2z (a', +a,')/d, (2. 15)

Turning to f dS S«we show in the Appendix that
the first bracketed expression in (2. 11) can be
written

& 8y* 8idSI 'y, — ~' y, =0
( 8z 8Z

proved in the Appendix.
In simplifiying f dSS, we use

2i 8E
d 8k

(2. 13)

(2. 14)

2 dE, it 8E
I. «( ) - «1-Id skz y

where

r
Z~=zg u~ 8k u~dV.

(2. 16)

(2. 17)

A

«there E is the energy and dE/dk the average ve-
ocity in the three-dimensional unit cell, and d is
.he width (in the z direction) of a unit cell. This
xpression follows from the fact that the left-hand

side of (2. 14) represents the current through the
area A and should therefore be proportional to
&E/&k. (See Appendix for complete proof. )

With (2. 14) and the analogous expression with
k replaced by l one obtains

"A

'E
dSSs=

d Iai I
I

D (z)-Z„- i

( 82E 8g
+ Iaz I ID, (z) —Z, —i

&

—
E . (2. 18)

D,(z) represents the fluctuation of the integrated
charge density of bulk state k and is defined ex-
plicitly in the Appendix. Using (2. 16) and the anal-
ogous expression with k replaced by l one finds
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Finally the first bracketed expression in Eq.
(2. 12) for S4 is shown in the Appendix to be

zg '~ '" dE
sin[(k —l)d/2] dl (2. 19)

where &»(z) is defined in the Appendix. It van-
ishes as k —l-0 and is periodic inz with period
d; in addition,

kl 1k

This leads to

2CEgQ2

J
' sin[(k —I )d/2]

x Im{e '&' '"[1+a„(z)]j.
Combining (2. 15), (2. 18), and (2. 21),

(2. 20)

(2. 21)

2 2

N(z)= ——(aq+a2)+2 y' — [D,(z)-Z ]-2 2 2 a2, &E a&
d d &l d

Q

d
' [D()-Z, ]

a&a&sin[(k —I)z+ 2}t] afar 5 (2X+Q-l )c) ~
sin[(k —I)d/2] sin[(k —l)d/2]

J dI Pf,

skag„.

zl =5(kii- k(i) 5(E E') . —

This means choosing

dk 2 dl
a) -—Ad, a2-—-Ad

d

(2. 23)

(2. 24}

Now, Eq. (2. 22) represents the charge to the
right of z in a single state (k„,E}. The total elec-
tronic charge in this region, due to states within
the band at each k„, is given by

N (z)= [d k„dE 8(E —E)¹„,(z},

where 8(x) = 1 if x & 0, and 8(x) = 0 if x & 0.
If there are surface states for some k~~, we ob-

tain an additional contribution, independent of z,
sufficiently deep in the crystal,

NT8 = 2 d k
~,Ns, P})7f J

(2. 26)

where Ns p is the number of bound states for
given k„. The total electronic charge is then
Nz ——NT~+NT8 .

The condition that the surface produces no long-
range monotonic potential disturbance deep in the
bulk is expressed by the equation

r~ 0+

[N r (z )-Nr" (z }]dz = 0;lim
gp~ aN

0

(2. 27)

where N~r"(z) is the ionic counterpart to Nr(z)

The imaginary terms in f dSS„cancel upon collec-
tion because they sum to d(a', v, +azv~)/dE = 0,
making N(z) manifestly real. This derivative van-
ishes because (a, v, +azvz) is the average velocity
of the state, which must vanish for all E.

To proceed further, we must determine a, and
a2. They are fixed by the relation just mentioned
and the normalization. In this section, where we
deal with the semi-infinite crystal, we choose to
normalize so that

In evaluating (2. 25) using (2. 22) and (2. 24), we
note first that the terms involving D~(z) and D, (z)
yield zero on integrating over Z, since their spa-
tial average is zero (see Appendix).

The terms containing a&a2 in (2. 22) require
some discussion. As written, they are in a form
convenient for the region k —I & v/d. If k —I- 2v/d,
it would be more convenient to replace k —l with
k —I —2x/d in both terms, with a consequent re-
definition of 4». This does not really matter un-
less the Fermi surface reaches the zone boundary
for some k~, . Considering first the case where
this does not happen, we can say that the term con-
taining &» contributes only to the Friedel oscilla-
tions produced by the surface, which fall off to
zero as z - —, and thus do not contribute to
(2. 27). The other term also contributes to these
oscillations, but contains, in addition, a contribu-
tion from the neighborhood of k —l = 0, which is
independent of z. In this neighborhood, it is suf-
ficient to set a&=a&= &Add(k —I)/dE. Then pro-
vided only that sin[2y(k —I = 0}]= 0, we find, on
performing the E integration,

A

(2 )3
d'kll(- v/2)

as the contribution of the a~az terms to (2. 27).
The integral extends over those k„within the
Fermi surface.

The assumption about g(k —l = 0) is valid except
on the boundaries separating regions of k with
bound states from regions without them. The er-
ror made in neglecting these regions decreases to
zero in the limit z- —~.

If the Fermi surface reaches the zone boundary,
we must consider the modification just discussed
and find that there is an additonal z-independent
contribution from the region k —l-2v/d, which
just cancels the contribution already found. The
total contribution of the a~a2 terms to (2. 27) is then
just
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d k „(-v/2)(n -n,), (2. 28) +
(2 )s

d kINrs(k»)

where n (n, ) is the number of minima (maxima) in
energy, below the Fermi level at k„.

The contribution of the remaining terms of
(2. 22)-(2. 27) is just

—zA
~

dk„(k —l)s —
2 s dk„

x()f~ —gs)+ s Jl d k» Z»dk, (2. 29)
2r

where the subscript F means that quantity is to be
evaluated at the Fermi surface or the zone boun-

dary, whichever has lower energy, and Xo is to be
evaluated at the minimum energy for given k, .
The coefficient of (-z)A in this expression is just
the electronic density p of the perfect crystal as it
must be.

The presence of the Z„ in (2. 29) is a bit of an
inconvenience. This quantity is familiar from band

theory (see Ref. 5, p. 313). It has the property
that it is sensitive to the choice of over-all phases
for the Bloch functions. This is also true of the
X's and the Z, occur in just such a way as guaran-
tees that (2. 29) be invariant if the phases are
changed. If the undisturbed crystal has a sym-
metry under which z changes sign, such as in-
version or a mirror plane parallel to the surface,
the natural choice of phases will make the integral
of the Z» in Eq. (2. 29) vanish. Lacking such a
symmetry, the attempt to make the integral vanish
would not be worthwhile.

To discuss the contribution of bound states, we

suppose at first that for some k „ there are no
bound states. For such kjj we choose Xo= 0. Then
if we move in R„ to a region where a bound state
has split off below the band edge, we lose a state
from the band. If X~ is continuous in this region,
this means that Xo decreases dicontinuously by m.

Thus the number of bound-states split off is given
by —ygs. Similarly, if the Fermi surface reaches
the zone boundary, and a state is split off at the
top, X~ increases dicontinuously by m.

It follows that the surface states below the bot-
tom of the band for k„within the Fermi surface
can be accounted for by eliminating Xo from Eq.
(2. 29). Surface states below the bottom of the
band for other k„, or above the top of the band for
k jj where all states are occupied, must be included
explicitly. This contribution can be designated by
A

NTs (k„).
We now write the total electronic contribution

to (2. 27) as

—pA(z —Z, ) — s d k~~
A a xs

(2s) „ " v

—fd'k„)(s —»v f d'k„(n —n, )+ s f d'k~, NTs

+p(Z» zi»») = 0. (2. 32)

In accordance with the previous discussion, there
will be many cases, probably almost all those of
current interest, where the final term can be made
to vanish by suitable choice of phases and origin
of coordinates. When this is done our expression
differs from those of Langreth and Sugiyama only
by the presence of n, in the second integral, and
in the third term. The first of these is a result
of band structures which has no analog for jel-
lium. The second represents an oversight in
Langreth's footnote 6.

We should note that this derivation has assumed
that there is no external field. In the presence of
such a field, Equation (2. 27) should be modified
by a right-hand side proportional to the field,
which would then appear also in (2. 32).

So far, we have assumed that, for each k„, only
two Bloch states have a given energy. This is not
a very desirable restriction, and we would like to
sketch briefly the consequences of its removal.

A set of states which satisfy the boundary con-
dition on the right can be written

g; s ——(g». —$» ug( } . (2. 33)

d k„(n —n, ), (2. 30)j
where Z„ is the average of Z„over the Fermi sea.

Now Nr"(z) will have, in the interior of.the
crystal, the form

Nr"'(z) = p'"A(Z —Z&„)+oscillating terms.
(2. 31)

The oscillating terms average to zero. The quan-
tity Z, is determined by the arrangement of ions
in the perfect crystal and by the nature of the sur-
face, that is, by where the cut is made and what
ions are removed. Its position with respect to
a given plane of atoms in the interior does not de-
pend upon surface rearrangements of the atoms.

For complicated crystal structures or surfaces,
z„,must be computed. For an important class of
situations, however, it can be determined easily.
This class consists of those cases where the metal
contains just the ions on one side of a plane, about
which the undisturbed average planar density, in-
tegrated over x and y, is symmetric. In such
cases z& is simply the value of z on this plane.
All such cases are included among the cases where
Z~ can conveniently be made to vanish.

Now the coefficients of z in (2.30) and (2. 31)
must cancel, since the undisturbed crystal is
neutral. Therefore, (2. 27) can be put in the form
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Here the g»'s are Bloch functions whose velocity
v» is positive, while the g, have negative velocities.
Their normalizations are chosen so that they all
have the same current —relative to the cp~'s used
so far, they are divided by Iv~l ~ . The matrix
u&& describes the reflection from the boundary of
the states g». The index k„ is suppressed and we
have used a summation convention.

An arbitrary function C, ~ of energy E can be
written, in the interior of the medium, as

@s,z (4i 4li»iii) +is ' (2. 34)

Any such function must have a vanishing expecta-
tion value of velocity. Imposing this requirement
leads to the conclusion that u;z is a unitary matrix—
which is why we have chosen this normalization for
the ij», .

The functions P, z are normalized to 5(E E')—
and we can find the total density by siluaring ijt, z,
summing over i, and integrating over E„and E.

The result of a calculation paralleling that above
is —2h„should be replaced by (In lu l)i, . This, of
course, reduces to (- 2Xr) when there are only two
states at the Fermi surface.

With this modification our results are also ap-
plicable in cases of reconstruction, whose principal
effect for present purposes is to result in a smaller
Brillouin zone, by mapping several k„ into one.
This necessarily produces more than two states of
given energy at a given k„.

III. PHASE RULE FOR SLAB GEOMETRY

The condition that (2. 1) and (3.1) represent the
same ijI»„z is then

q—= —(K+X)= ,'Nd—(k —I) —6 —X=mv, (3.2)

dE

= —2a ~ —
~

2v dg
2d dE (3.3)

In this evaluation we have used Eils. (2. 13) and
(2. 14) using v, =dE/dL

Now, the average current density in the interior
of the slab is just (ai

v»+aviv,

)/d which must van-
ish:

where g is a function of E. For a thick slab, this
condition leads to a set of levels characterized by
a nearly uniform difference between successive
values of q

—= (k —I)/2.
We may calculate the normalization integral for

i'»„z in two steps. First we compute the contri-
bution between planes at z and+~, as in Sec. II.
Then we perform the analogous computation using
(3.1) for the contribution between planes at —~
and z. It is readily seen that the condition (3.2)
results in the cancellation, upon adding these two
parts, of all terms except those involving X' or

The total normalization integral then turns out
to be

1= ~dS ~l dz itt*ijt
gA J-e

We have now established the sum rule for the
case of a semi-infinite medium. It is of some in-
terest to consider instead the case of a finite slab,
where the relation between the sum rule and simple
counting arguments is more apparent.

The presence of the right-hand boundary has the
consequence that, in the interior of the crystal,
the wave function ijI z has the form (2. 1). Sim-
ilarly, a boundary on the left results in the require-
ment that g»» z has the form

,E —a& yp, , g, a2e y p (3.1)

2 2
ag vk+a2vl = 0.

Therefore, we have

2a21Vk dn 2a22VI dn
d dE d dE '

d dk
a&= ——,

2 dq'

d dla2=
2 dn'

a1+a2= d2 2 dq

(3.4)

The phase f consists of a part 5 intrinsic to the
left-hand boundary, as well as a term due to the
fact that we shall keep our coordinate origin near
the right-hand boundary. Suppose we know ( for a
particular slab, and want to determine it for a
thicker slab containing n more unit slabs of thick-
ness d, added on at the left. We easily find that
the new t, called f„, is just P ——,'(k —l)nd. In
general, then, for a slab containing N unit slabs,
we would write f = ——,'Nd(k —I)+5. (If the slab
should happen not to contain exactly an integral
number of unit slabs, as might occur for a not too
simple crystal structure, we would choose N to be
the nearest integer. )

where we freely regard k, l, E, q, or q as inde-
pendent variables.

We now want to construct a sum rule by means
of a two-step argument. First, we shall establish
that, for a given Fermi level E~, the average
density of electrons deep in the interior of the slab
is the same, to order 1/N, as in the unbounded
crystal. This means that in order to maintain neu-
trality deep in the interior, E~ is the same, to
order 1/N, as'in the unbounded crystal. Second,
we shall obtain an expression for the total number
of electrons, in an infinite prism of cross section
A, in terms of the phases. The requirement that
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dg g 2 dg p dg
(3.10)

this number be the same as the nuclear charge will
then yield the sum rule.

In this argument we shall ignore some points
which were covered in Sec. 1I. These are bound
surface states, and cases where the Fermi level
reaches the zone boundary. They could be added
at the end, but are irrelevant to our basic purpose
in this section.

The charge density for the wave function just
discussed in the interior of the slab is given by

e*C =a~
I q. l'+as

I q il' 2a, az Re(q*, q, e'").
(3.5)

For the average density p(zo) in a unit cell situated
between the planes zo-d/2 and zo+d/2, we obtain,
upon using (A19),

Ap(zo) = aq +as —2aq az cos(2X+ 2qzq)

—2aq az Re [~»(zo+ d/2)e "+'+'0']. (3.6)

Here, we could replace X bg —4. p(zo) is, of
course, also dependent on k„and E, and 0 is the
unit-cell volume.

Since we want to evaluate the density in the in-
terior, we choose to write zo as Nd/2+-c, where

~
z [ is & Nd/4. (There is no difficulty in choosing

~
z

~
)Nd/4, but we would then use a slightly dif-

ferent method of evaluation. )
Using Eq. (3.2), we can write

—(2X+ 2qzo} = q+ (5 —)() —2qz =mv —(X —6+2qz).

Then, with the aid of Eq. (3.4), Eq. (3.6) takes
the form

np(zo) Q 1 2( [v,v, i
)"'(-1)"

d dg IvaI + Ivrl

x cos(2qe —5+X)

„-2(lv v i) '(-. 1)
Iv~ I + I v& I

x Re[a„(z +d/2)s "+'~'"'])I~ (3.7)

To sum the first term of (3.7) over allowed E's
for fixed k„, we write

1 d &

dg dg g dq]
E&Eg

where s is a sawtooth function, equal to ~ at 0, de-
creasing linearly to ——,

' at w, jumping to —,', and so
on. Thus, we have

dq+s ~ —
~ s dq, (3.9}

dg g~p dg 0 J dr/'

where q~ is the value of q for E =E~ at the given
k„. The contribution of the last term is of order
1/N and we shall neglect it. Thus we have

The final term fluctuates with mean value zero,
as a function of g. It is of order 1/N and, on in-
tegrating over k„, becomes of order 1/Nz, so that
we shall neglect it also.

The remaining terms of (3.7) can be written

& (-1)"d„ f(n),
m

8&8~

where f (q) is a slowly varying function of p for
e «L. This sum can be written

(3.11)

dn ——f (n),f do dg

dg dg
(3.12)

—p- (zo}= + — (1+f)
1d

d &~ '
g 2dg (3.14)

Now, as q -0 (k- I}, 1+fvanishes provided that
30(0)=X(0)=0, and the final result, on integrating
over k„, is that

V (1
Pt.~(zo)= (@)s +o~ ~ (3. iS)

where V~ is the volume of the Fermi surface. , This
is, of course, the same density as that of the in-
finite crystal for the same Fermi level. In accor-
dance with our previous remarks, then, we see
that the requirement of neutrality in the interior of
the slab implies that E~ is unchanged, at least to
order (1/N ).

Finally, we evaluate the total number N, of elec-
trons in an infinite prism of cross section A:

A f'
N, =

(~)z) d k„nl-, ,

(3.16)

n~, = Z i.
E&Sp

We carry out the first sum, over E at fixed k„, ex-
actly as in (3.8), replacing dq/dp by 1, obtaining

n f = —
2 +S(7jr).1 (3.17)

The first term is of order N, while the last two
are of order 1. The final term, however, fluctu. -
ates with mean zero and, on integrating over k„,
becomes of order 1/N, or of order 1/N relative
to the first term, and we shall neglect it. Using
our previous definitions, we write

n,-„=q, Nd/v —(1/v) (3, + X,+v/2). (3. iS)

where o(g) is a square wave function equal to —,
' for

2mv &g&(2m+1)v and equal to ——,
' for (2m —l)v

& p( 2m'. Integrating by parts we obtain

f +f +f
i

(313)
2 dg p dg „ dg dq ]

'

The last two terms are negligible in the same
way as the corresponding terms of (3.9), and we
are left with



SUM RULE FOR CRYSTALLINE METAL SURFACES 489

On integrating over k„, we have

Qz+ 5„)/2= —ff/4,

where () is the average over k„.
We note that the Z~ simply do not enter in this

discussion. They are not needed to preserve
phase invariance, because changes in phase can-
cel between 5 and X. Likewise, z&„does not
enter, since we have used only the total amount
of ionic charge, not its location.

It is easy to see that the term —ff/4 is directly
related to the fact that there is no state for q = 0.
In the slab geometry, we have states at g=mm
for m &0. In periodic boundary conditions, with
box size Nd, we have states for kNd=2mw, m not
restricted. If the energy is an even function of k,
this is equivalent to having a state for q = 0 and
two states for each q such that qL = 2m', m &0.
If we take the sum over these states as in Eq.
(3. 16), we find that nf, is just qL, not qL —z,
plus negligible oscillating terms. Stated other-
wise, 1+2[q/2m] is always greater than [fl/ff],
where []means integral part, and the average
difference is ~. This is the same ~ that occurs
in Eq. (3. 17).

The corresponding effect in the calculation of
the density can be seen in Eq. (3. 13), but this is
compensated by the contribution from the terms
with (- 1) . This reflects the fact that the wave
functions gf, z have their density concentrated in
the interior. This is particularly noticeable for
the lowest state which has one large peak at the
center of the slab and falls like cos(ff5/L) towards
the ends. In the idealized case of a slab with in-
finite barriers at the ends, the density vanishes
at the ends and is piled up a bit in the interior,
for any Fermi level.

If the slab contains extra material beyond N
unit slabs (or less), or has a periodic adsorbed
layer, obvious adjustments can be made in (3. 20).

If the slab possesses a symmetry relating the
left and right surfaces, so that (yz) must equal
(5z), we recover individual sum rules

(3. 20)

Nf = NdAp„, — 3 d k„[(5z+g z)/2]+ w/4.
1

(3.19)
Now, if the slab contains N unit slabs of atoms
and is neutral, we find

that the average value of the field in the slab is
zero for a material with a free Fermi surface,
and would essentially duplicate the derivation of
Sec. II, with the complication arising from the
finiteness of the slab.

APPENDIX

In this appendix we shall derive some identities
useful in the simplification of Eq. (2. 8).

The first two results are trivial consequences of
the equation of continuity. If g and y are two solu-
tions of the Schr5dinger equation with the same
energy, it follows immediately that

V (qf Vg* —g Vq )= 0. (A 1)

8+ + 8+&I ff(fz)=i d~ ffvf s qff s )A Q') ~z ~z i (A3)

is independent of z. The integral is to be under-
stood as taken over a unit cell A(z) in the plane
z = const. On the other hand, if we take the integral
on the plane z+d, where d is the distance between
lattice planes in the z direction, we have

(z+d) sfff-N)df (z)

Therefore, if l w k, l»(z)= 0. This establishes Eq.
(2. 13).

If k = l and g is normalized to unity over a unit
cell, we find on integrating over a unit cell and,
using the constancy of I»(z), that

(
dS

A(g) ' Z Z
(A4)

where vf, = dE/dk is the z comporient of the expecta-
tion value of the velocity for state gf,. This estab-
lishes Eq. (2. 14).

In exact analogy to the derivation of Eq. (4), we
can write

We are particularly concerned with Bloch func-
tions, which we shall write in the form

(A 2)

where u, contains the factor e'""'*)) as well as the
usual periodic part. We are suppressing the sub-
script k„, since in any given equation, only func-
tions with the same k„will occur. Then, from
Eq. (Al), we see that the integral

&Xz) = &5z&= —z/4. (3.20')

This result, of course, agrees with the results
of Sec. II when those results are specialized to
agree with the suppositions of this discussion.

In the absence of a symmetry which forces the
result (3.20'), we would have to use an additional
argument to obtain sum rules on the (yz), (5z),
or (yz- 5z). These arguments would be based
on the requirement, not yet used in this section,

2+k dS pp Qg
A Q')

d sy sy 8 y
dz „&,) &z k &z~k

2VA

dz '+ d

where

(A5)
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where

s4»
Vpk ——oi

g S ))'nk 4k S" dV.
Q Z Z

(A14)

P»(z) will be recognized as the expression occurring
twice in Eq. (2. 11). To obtain this form we used
Eq. (A4).

Now we multiply this equation by (z -zp-d/2)
and integrate from zp to z p+ d, obtaining

gp ed

2v» dz(z —zp- d/2) dS$, (j)»- 1/d
A (g)

z dvk 2vk Zk
d dk d

(A15)

and

The Vp„are the matrix elements of velocity be-
tween the bands in question. It is one of the basic
theorems of band theory that the sum of the last
two terms on the right is just (- idv»/dk). Finally,
then

dz Z —Z — »

Sp

This can be rewritten as

(A7)

2v, f""dz f dSqj»((z)k-z pd/2)
gp A (g)

=d[P (zo) —P ], (Ag)

P„(z)= d' [Dk(z)-Zk] ——

This result is quoted in (A16).
In analogy with Eq. (A5), we write

»~d t'
2v) dz

tp A (8)
gp4 d

(A16)

where we have used the manifest periodic charac-
ter of P»(z), and P» is the average value of Pk(z).
We define the quantity Dk(z) as the dipole moment,
about the plane zp+d/2, of the charge density for
state ())k in the unit cell bounded by zp and z p+ d:

D, (z ()) = f'~ dz f dS )))k q»(z - z o
- d/2).

sp A (I)
(AQ)

It is obvious that D„(z) has periodicity d and Eq.
(AS) shows that its average value is zero.

We must now investigate P. From (A6} we can
write

dI'k= dV e'
&z &k

—(Io* —e'k' " —iy*y (A10)
ek

when the integration is over a unit cell. Now we
can write

~Qk = —» M u„k „0-l u»Z».

(All�)

Here the u„„'s are functions defined as in (A2), for
the other bands. It is easily seen, using the ortho-
normality properties of the u„k over a unit cell,
that

= S»(zo+d) —S»)(zo) (A17)

where

Sk((z o) = 4k ug ul

A() i Z

(e'~ '
) —i(,"g, ' . (A)8)

Sk~ is just the expression occurring in Eq. (2. 12).
Evidently S„(zo+d)=e' ' S„,(zo}, and we find

V g(l k)gp g psdv&e
kl( 0) [(I k)d/2] J

X, -i(l -k) (gpss/2)
9'k 4'r &

j(r-k)g

i [(l —k)d/2] (A19)

Here, &»(z) is defined as a periodic function of z
and it vanishes as k - l. Its behavior for small
k —l is readily obtained:

gp4d
g(l k ) ()gp+d /2)

Sp A(s)

+k
np g ffk

0

~Qk
Zk z Qk ~

(A12)
I

»ped

=
Jt u„u, dv + i(l —k)

0 ep

Then we have

dP» = —2vk Zk —2Q V(k, Z„p- i, (A13) As l approaches k we have
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4pi(zp)= (l —k) Qp dV+f(l —k)Dp(zp)
~QI = f (l —k )[D„(zp) —Z,] . (A21)

Equation (A19) is quoted in Eq. (2. 20) of the text.
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Inelastic low-energy-electron diffraction measurements on a clean Al(111) surface have been greatly
extended and improved. This provides the experimental basis for a much more accurate determination

of the high-momentum surface-plasmon dispersion and lifetime. The surface is prepared in situ in an

ultrahigh-vacuum scanning difFractometer by epitaxial deposition on a Si(111) single-crystal wafer.

Specular beam inelastic intensity profiles are measured in the &112& and &110& directions at 15' and
25' incidence. The primary beam energy is chosen to correspond closely to both diffraction-before-loss

and loss-before-diffraction processes involving different vestigial Bragg peaks at roughly 50 and 100 eV.
Present emphasis is on loss profiles, which have recently been shown to be essentially free of
complicating dynamical effects. The use of a 100-meV data grid and a more efficient computer
differentiation technique permits determination of loss peak positions to 50 meV under favorable

conditions. Internal consistency of the data is demonstrated here and in a more comprehensive analysis

by Duke and Landman, published separately. The analysis leads to a substantially different evaluation

of the surface-plasmon dispersion than previously obtained. There is evidence that the visibly smoother

substrate used in the present work does not affect this result significantly. Experimental procedures and

results are discussed in detail.

I. INTRODUCTION

The role of surfaces is critical in many solid-
state electronic and optical applications. Device
performance often depends on the physical, chem-
ical, and geometrical features which determine the
electron-density distribution at the surface. Mea-
surable characteristics of this distribution are
therefore of considerable practical interest. Sur-
face plasmons' offer such a characteristic in the
form of parameters defining the surface-plasmon
dispersion and lifetime (SPDL). When the plasmon
wave vector p„ is small compared to the dimensions
of the Brillouin zone the SPDL may be evaluated
from optical measurements. The spatial resolu-
tion for electron-density variations normal to the
surface is quite limited, however, being of the or-
der of 2p/p„. The SPD at larger values of p~~ has
been obtained from the distribution of 34-keV elec-
trons scattered in a Mg foil, but the surface was
not well characterized. The surface-plasmon sig-
nal using this method is often too weak for precise
results.

A more promising method, which is compatible
with elastic low-energy-electron diffraction
(ELEED), ' Auger-electron spectroscopy, P and oth-
er surface analytic tools, ~ is based on inelastic
low-energy-electron diffraction (ILEED).
Here electrons having -10—100-eV energy are in-
volved in an inversive two-step process: (a) An
electron loses energy and a related momentum in
exciting a surface plasmon; (b) the electron is elas-
tically diffracted backward by the lattice. As a re-
sult, each vestigial Bragg peak in the elastic inten-
sity vs energy curve (elastic energy profile) of an
ELEED beam is accompanied by an inelastic inten-
sity distribution which provides information on the
surface plasmon. Sections of the inelastic distri-
bution lying in the azimuth of the ELEED beam are
called energy, angular, or loss profiles, P'~~ depend-
ing on whether the primary energy E, exit (polar)
angle e', or energy loss zo, respectively, is chosen
as the scanned Variable; other variables, including
the azimuth g and the incidence angle 8, remain
fixed. The loss profile is now known to be the most
useful data form for determination of the SPDL. ' '


