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The cohesive energy as a function of lattice constant and the P-V relation for Ar, Kr, and Xe have been
calculated at 7 = 0 K in the static-lattice limit. The calculation employed the self-consistent
augmented-plane-wave statistical-exchange (APW-X a) method, which, except for our own preliminary
work, has not heretofore been applied to the study of the bulk properties of a van der Waals crystal. The
agreement with experiment is at least semiquantitative with respect to the cohesive energies. The comparison
with extant P ¥V data is acceptable. By use of a static-lattice sum of a pair-potential function with
undetermined parameters, an effective pair potential is determined, with fairly realistic parameter values as a
result. Comparison with other energy-band calculations shows that the occupied one-electron energies found
in this calculation are in good agreement with those found by other workers. The conduction-band energies
are not,a result that is usual in Xa calculations. The over-all trends found in this calculation are related to
those found by Averill in a recent APW-Xa calculation on the alkali metals.

I. INTRODUCTION

Quantitative calculations of the binding energy of
the rare-gas crystals (RGC), without resort to an
intermolecular potential, were first attempted over
40 years ago. 1=¢ Of necessity, these calculations
employed a wide variety of simplifications and as-
sumptions about the repulsive energies, the order
of multipole terms retained, the values of atomic
polarizabilities, etc. London’s calculations!
seemed to give reasonable agreement with experi-
ment, but Deitz argued® (on the basis of the strong
repulsion which he found) that this result was large-
ly fortuitous. From 1935 until 1964 we are aware
of no further work along these lines, though there
developed (and continues to develop) an enormous
literature on the calculation of the properties of
the RGC from highly refined semiempirical inter-
atomic potentials.®™® Then, in 1964, Linderberg
and Bystrand!? published the results of a calcula-
tion of the cohesive energy of fcc neon. Their
treatment involved the tight-binding calculation'*
of the Hartree-Fock contribution to the cohesion
and the calculation of the correlation corrections
via approximate solution to the expressions ob-
tained by Linderberg!® from a study of the complex
dielectric permeability. The lattice-dynamical
contribution was obtained from empirical estimates
and/or other calculations. Taken at face value,
their computed cohesive energy was in good agree-
ment with experiment. Unfortunately, certain
simplifications (for example, the use of only a
single d orbital) and restrictions rendered the cal-

culated result unreliable.
For obvious reasons, the computational study of

the energy bands of the RGC has been a much more
active area of endeavor than has been the calcula-
tion of the cohesive properties. For argon there
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are many published calculations of the energy bands
including those by Knox and Bassani'® [non-self-con-
sistent (non-SC), orthogonalized-plane-wave (OPW),
local exchange], Mattheiss'” [non-SC, augmented-
plane-wave (APW), local exchange], R6ssler'® [non-
SC, Korringa-Kohn-Rostoker (KKR), local exchange],
Lipari and Fowler® (non-SC, OPW, Hartree-Fock,
and local exchange), Ramirez and Falicov® (pseu-
dopotential fit to Ref. 17), Kunz?' (SC, local orbit-
als, Hartree-Fock), Dagens and Perrot?® (non-SC,
APW, Hartree-Fock), and Lipari®'® (SC, local or-
bitals, Hartree-Fock). There are substantially
fewer papers concerning the energy bands of solid
krypton: we are aware of four. In chronological
order, they are by Fowler?® (non-SC, OPW, local
exchange), Lipari?® (non-SC, OPW, Hartree-Fock),
R&ssler'® (non-SC, KKR, local exchange), and
Lipari® (SC, local orbitals, Hartree-Fock). Ap-
parently there are only two published energy-band
calculations on Xe, by Reilly?” (non-SC,OPW, sev-
eral local exchanges) and Rossler'® (non SC, KKR, lo-
cal exchange). We are also aware of a calculation by
Boring?® in which the band gaps resulting from
three local-exchange approximations were com-
pared in the context of a self-consistent APW treat-
ment of Kr at the experimental lattice constant.
[See also A. B. Kunz and D. J. Mickish, Phys.
Rev. B 8, 779 (1973)].

In most cases, these calculations were in part
evaluated (by their originators) by the classic tests
of energy-band theory: the comparison of valence-
band widths and the direct band gap to experimental
optical properties. Such comparison usually re-
sulted in the conclusion that the Hartree-Fock (HF)
band gaps are too large, the statistical-exchange
gaps too small. The situation is confused by the
fact that several of the calculations are non-self-
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consistent, with the result that the calculated char-
acteristics of the valence and conduction bands may
be strongly influenced in these cases by the vagaries
of the crystal potential. There is substantial dis-
agreement, regarding both the s-d valence-band
separation and the valence-band width in ar-

gon, 1819:22 for example.

One major feature of the recent evolution of ener-

gy-band theory is the reemergence of interest in
the use of the theory to calculate bulk properties
for the crystalline ground state. Virtually all of
this activity has been associated with the develop-
ment of local exchange-correlation theories which
postulate a total energy expression in terms of one-
electron orbitals.® The first such self-consistent
calculation appears to be due to DeCicco® who ap-
plied the APW method and the original Slater ex-
change approximation®*#® to KCl. Since that time
there have been several similar calculations on a
variety of metallic solids, including the entire al-
kali series,® lithium, %2’ aluminum,® iron, 3 and
vanadium.® Though the agreement with experi-
mental values of bulk properties found in these cal-
culations was by no means perfect, it was sufficient-
ly good in most cases to suggest that even the sim-
plest local-exchange-correlation model (the Xa
model—see Sec. II) provides a nearly quantitative
description of these metals and of the ionic insula-
tor KC1. In consequence of these successes, the
outcome of X local exchange-correlation calcula-
tions of the RGC cohesive properties is of obvious
interest, for if such calculations are successful,
a new line of attack on the RGC binding problem has
been found. On the other hand, if such calculations
fail, a clear limitation has been found for the direct
applicability of the model.

The question of the applicability of local exchange-
correlation models to the problem of inert gas inter-
actions has been raised by Konowalow ef al.,3" who
used the so-called multiple-scattering Xo meth-
0d292:29% to treat the neon diatom Ne,. They reported
finding a purely repulsive interaction, a result
which, if correct, would make any further applica-
tion of the Xa model to rare-gas systems seem un-
warranted. However, Connolly and Danese®® moti-
vated by our preliminary finding of binding in fcc
Ar with the Xo model, ® have reexamined and ex-
tended the calculation of Ref. 37. They find that
those results are unreliable because of failure to
use doutle-precision arithmetic throughout the cal-
culation. Further, their preliminary evaluation of
certain “non-muffin-tin” corrections indicates that
the repulsion of 0.0028 Ry/particle (at an internu-
clear separation of 6.0 bohr) obtained in the dou-
ble-precision muffin-tin calculation is cancelled by
non-muffin-tin corrections of ~ 0.0029 Ry/particle.
Their results are limited, by the statistical error
inherent in the numerical quadrature scheme they
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employ, to a precision of + 0. 0002 Ry/particle.
Because of the weakness of the Ne-Ne attractive
interaction, we regard it as the most difficult test
(we exclude solid helium because of the dominance
of quantum-crystal effects) for the Xa model. In
view of the preliminary nature of the work of Con-
nolly and Danese, we defer reporting on fcc neon
here and note only that we do find binding, just as
reported below for Ar, Kr, and Xe.

In Sec. II we outline the structure of the Xa mod-
el and discuss briefly both the choice of the param-
eter o and the numerical methods used. Our cal-
culated energy vs. volume results for fcc Ar, Kr,
and Xe are presented and the derived PV relations
(at zero temperature) are treated in Sec. III. In
Sec. IV we present the pair potentials obtained by
fitting lattice sums to the calculated energy versus
volume data. We give a brief discussion of the cal-
culated energy bands in Sec. V and conclude with
comments and summary in Sec. VI.

Il. SUMMARY OF APW-Xa MODEL: CALCULATIONAL
PROCEDURES

For the total energy of a many-fermion system
(we utilize a static lattice throughout our treatment)
the Xa model assumes® the expression

<Ex°¢> =<Txa>+<Wx¢> . (2 1)

The quantities which appear in this expression are,
in rydberg units,

(Txa =-;n‘fu7(1)v§u,(1)da , 2.2)
<qu>= %%éuv*‘zvfp(l)glvd.fl
+% fd-ﬁd;zp(l)ﬁ)(z)gm
+—;—/;)(1)Uxa(1)d;l . (2.3)

In turn, these quantities depend upon the one-elec-
tron spin orbitals u,; their occupancies n;; the
Coulomb operators (Roman and Greek subscripts
refer to electrons and nuclei, respectively)

Euw=22,2,/7 s, (2.4)

81u==2Z, /"1y, (2.5)

£12=2/715 ; (2.6)
the charge density

p(1)=Z nauf (Mu (1) 5 @.7)

and the local exchange-correlation operator, which
for the non-spin-polarized case is

Uxa(l) = —9a(3/8m)1/3p/3(1) . (2.8)
The choice of the parameter « is discussed below.

The one-electron effective Schrédinger equation
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which follows from (2.1) by application of the varia-
tional principle is

[— Vi+ 2.8 +dezgmp(2)

- 6a ((3/81r)p(1))”3] u;(1)=€u; (1), (2.9)
with solution by iteration to self-consistency being
customary. The relation of the €, to (Ey,) is such
that the minimum total energy of the system is ob-
tained by choosing the n, in accord to Fermi statis-
tics (see Ref. 29a for details).

The static lattice cohesive energy per particle at
a unit cell volume V is then defined, for a monatom-
ic solid, as

E(V)= <EXa(V)>solid/N" <EXa>atom

where the subscript solid indicates the value for
the periodic volume in question, N is the number
of atoms in that volume, and the subscript atom
indicates the value for the isolated atom. It is un-
derstood in Eq. (2.10) that both terms on the right-
hand side are calculated with the same value of a.
[Note that Eq. (2.10) is the negative of the “cohe-
sion” employed in Ref, 31.]. The minimum value
of E(V) will be quoted as the calculated value of the
cohesive energy, with the corresponding value of
a, the lattice constant, as the calculated equilibri-
um lattice constant.

The zero-temperature PV relation can be ob-
tained from the model by two procedures which
are analytically equivalent but computationally
distinct. The first is the direct application of the
thermodynamic definition of pressure to the Xa
total energy (2.1):

(2. 10)

 d(Egy)
P-——TVXQ— . (2.11)

Computational utilization of this expression in-
volves numerical differentiation of a tabular func-
tion and consequent well-known loss of precision.
An alternative procedure is to appeal to the virial
theorem??

PV= T}i' [2<TXa> + <Wxa>] ’ (2.12)

which eliminates the numerical differentiation at
the cost of using (T, and (W,,) separately. On
account of the variation principle, these latter
quantities are determined to lower order of preci-
sion than is (Ey,). The relative merits of Egs.
(2.11) and (2. 12) have been discussed, for exam-
ple, by Léwdin.*® For convenience we have uni-
formly employed Eq. (2.12) in the work reported
here.

The selection of a value for « (the only dispos-
able parameter in the model) has been the subject
of much investigation and discussion. #® QOne fairly
common choice is ayg: the value of o for which
(Exa)atom 1S €qual the Hartree-Fock total energy for
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the isolated atom. Since it is reasonably well es-
tablished*! that the Hartree-Fock treatment of a
van der Waals system yields a purely repulsive
interaction, the adjustment of « to yield a sepa-
rated-atom limit which is identical (in total energy)
to the Hartree-Fock atomic limit seems unlikely to
be the most propitious procedure. The alternative
which we have selected divorces the calculation
from the Hartree-Fock atom, for we have employed
what is usually called ayy. This is the value that
results from requiring

<Exa>atom = <Esna>atom

Here the subscript SD¢ indicates that the expecta-
tion of the exact many-electron Hamiltonian is with
respect to a single determinant of the occupied X«
orbitals. Equation (2.13) is equivalent to requiring
(for the isolated atom)

2<T5Da>/<VSDa> =-1,

where 7 and V are the exact total kinetic and po-
tential energy operators. Equation (2. 14) gives

the origin of the nomenclature ayy, since that re-
lation is just the virial theorem for the SDa wave
function. Presumably the SDa determinant would
dominate in a configuration-interaction (CI) expan-
sion based on the X« orbitals, if, as has been con-
jectured, *? the latter are reasonable facsimiles of
the natural spin orbitals.* If this suggestion is cor-
rect the use of @y, amounts to requiring that (Ey,)
be equal to the leading contribution from the CI ex-
pansion of the atomic ground state. If not, then the
use of ayr is at least a pragmatic way to construct
a simple many-electron wave function from the Xa
orbitals which describes the isolated atom in a
physically sensible way [i.e., Eq. (2.14) is satis-
fied].

The values of ayy which we have used throughout
this work are given in Table I. For Ar and Xr
these are taken from Schwarz,*® while the value for
Xe was obtained by us using the same procedures
as did Schwarz. Some indication of the quality of
the description of the isolated atom provided by
this choice of a can be obtained by comparing the
resulting atomic excitation energies to experiment.
In Ar, we find [E,,(3p° 4s')— E,,(3p°® 45°)]
=0.871835Ry. Forcomparison, the weighted mean
over the experimentally observed* 3p° 4s' levels
gives [E(3p5 4s')- E(3p® 45°)]=0.856383 Ry. It
should be noted that the X« result is, as indicated,

(2.13)

(2.14)

TABLE I. Values of ayy used in the present calcula-
tions.
Ar 0.72131
Kr 0.70544
Xe 0.69962
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the difference of the two total energies and does
not in any way rely upon an attempt to interpret
the X« eigenvalues via Koopmans’s theorem. As
has been oft discussed, 2*%% the Xa eigenvalues
for the system ground state cannot be interpreted
in the same way as Hartree-Fock eigenvalues. We
will return to this point in our discussion of the
calculated energy bands.

Our calculational procedure for the solution of
Eq. (2.9) in the crystal was the self-consistent
augmented-plane-wave (APW) expansion method. 4
As a consequence of the very flat character of the
bands and the large intervals separating them, we
were almost always able to treat only the topmost
occupied s and p bands as true band states without
any discernible loss in precision. The lower states
were calculated as atomiclike levels in the crystal-
line self-consistent muffin-tin potential. The band
states were calculated at the equivalent of 32 uni-
formly spaced points in the first Brillouin zone.

At each of these points K the expansion in K of the
solution to Eq. (2.9) was truncated at |k+&|2<"78
X (1/a)? (where a is the lattice constant), while the
expansion in L was truncated at L=11. On the ba-
sis of computational experience (for Ar) with larg-
er truncations, we estimate the numerical preci-
sion of the present calculation to be about +0.0002
Ry in the cohesive energy for Ar and +0.003 Ry in
Xe (i.e.,about two parts in 107 in total energy).
The corresponding numerical precision in the cal-
culated pressures is of the order of 8-10%. The
computer code used was that previously employed
by Averill,3! which has been checked against the
independently developed code used by Perrot. For
Li with a = £ both codes yield a cohesive energy®!+*®
of —0.1236 Ry, a gratifying indication of reliabili-
ty. The isolated atom calculations were made using
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a shortened version of the Herman-Skillman code.*’
All computations (both crystalline and atomic) used
the Herman-Skillman radial mesh. Double-preci-
sion arithmetic was used exclusively. The calcu-
lations were performed on the IBM 360/65 and
370/165 machines of the University of Florida.

III. COHESIVE ENERGIES, PV RELATIONS

In Figs. 1-4 we present plots of our calculated
E-vs-Vresults. In all these figures the curve con-
necting the calculated points is only a plausible
“guide for the eye.” It will be noted in Fig. 1 that
Ar has separated to the (calculational) atomic limit
at V=20002.u.3%[a.u.?= (bohr radius)®], correspond-
ing to =20 a.u. =10.584 A. Thus, E(a=20 a.u.)
=0. 0000 +0. 0002 Ry, so that the shape of E(a) for
large a is quite likely to be unreliable. In Table
II we compare our calculated equilibrium E and a
with the “experimental” static lattice values. The
static lattice cohesive energies were obtained from
the experimental values given by Pollack® by in-
clusion of the estimated zero-point energies tabu-
lated by him.*® Each of the calculated equilibrium
cohesive energies in Table II corresponds to that
value of a for which we were able to obtain the
lowest (in magnitude) calculated pressure. In all
cases, this calculated pressure was <1 kbar.

The calculated values of a shown in Table I were
obtained by interpolation of the calculated PV data
to P=0.

Perhaps the most obvious remark to be made
about the data exhibited in Table II is that the mod-
el does exhibit binding of the proper order of mag-
nitude and something like the proper dependence
on Z. That the calculated Z dependence of E is
too weak is to some extent misleading, for the
numerical precision of the calculation also de-

E vs V- Ar, APW
a=0.72131

FIG. 1. Cohesive ener-
gy of fcc Ar as calculated
in the range of unit cell

volumes 182.25—2000 cu-
bic atomic units, inclusive.

T T T T T

100 300 500 700
V(a.u3)

T T T T T
900 1100 1300

T T T T T
1500 1700 1900
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-0.0046
E vsV - Ar APW
-0.0050 a=0.72131
-0.0054
=
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w
-0.0062
-0.0066
'o‘oo""vvvrvvvvl!rrs
180 200 220 240 260 280 V (a.u”)
T T Y Y - T
16.0 18.0 200 220 240 26.0
V (cm¥/mole)

FIG. 2. Cohesive energy of fcc Ar as calculated in the
“bowl ” region.

creases with Z. Application of our precision es-
timate (recall Sec. II) of 2 parts in 107 of total
energy gives numerical uncertainties of 0.0002 Ry
for Ar (total energy ~1050 Ry), 0.001 Ry for Kr
(total energy =~ 5500 Ry), and 0.003 Ry in Xe (total
energy ~ 14 500 Ry). As a distinctly secondary
consideration we note that the error bars given for
the Xe latent heat of sublimation at T=0 K may be
unrealistically small. Thus, Dobbs and Jones®
report Ly, = 3830 + 50 cal/mole on the basis of
work by Clusius and Weigand® and Whalley and
Schneider. % However, the value given in Ref. 52
(and quoted in Ref. 48) is 3828 cal/mole, with no

0.006

E vs V — Kr, APW
@ =0.70544

T T -T T Y T 3,
220 260 300 340 380 420V (a.u?)
T T T T T T

200 240 280 320 36.0

400
V(em3/mole)

FIG. 3. Calculated cohesive energy for fcc Kr.

|

0.016;

E vs V- Xe , APW
@:069962

00124

0.008

E (Ry)

-0.008

540 V (a.ud)
480 V(cm¥Ymole)

260 300 340 380 420 460 500
- - - - T v
240 280 320 360 400 440

FIG. 4. Calculated cohesive energy for fcc Xe.

specified uncertainty. By comparison, L, is re-
ported in Ref. 50 as 1850+ 12 cal/mole and in Ref.
52 as 1878+ 40 cal/mole. It may be that a 2% or
larger uncertainty should be applied to Ly, just as
for L,, in Ref. 52, particularly since Ly, is ob-
tained by extrapolation from the latent heat of va-
porization at boiling (= 165 K).

The effect of the choice of & upon the calculated
cohesive energy may be illustrated by considering
the effect of choosing the “Kohn-Sham-Gaspar”
value a=3%.%® For Ar at a=10.039 a.u. we find
E(a=%)=-0.0053 Ry/particle, an underbinding of
20%. The use of the Kohn-Sham-Gaspar choice
of @ would lead to results in much poorer accord
with the empirical binding energies than those dis-
played in Table II, since past calculational experi-
ence® with the APW-Xa method indicates that the
lessened binding found for Ar with o =2 would also
occur to about the same degree for Kr and Xe.

In Figs. 5-8 we display the computed PV rela-
tions. For the positive pressures we have com-
puted relevant P and V results. These are tabu-
lated in Table II, along with the experimental
quantities as obtained from the empirical Birch-
Murnaghan equation of state obtained by Stewart, 5
The empirical pressures listed for Ar differ from
those we quoted earlier®® because of an error in
reading Stewart’s graphical 0-K isotherm. The
Xe experimental Birch-Murnaghan parameters are
attributed by Stewart to Packard and Swenson, 5* In
either case, the raw experimental data were ob-
tained from piston displacement measurements in
the range 0 < P <20 kbar. As is well known, 53=%
such measurements present a number of severe
technical problems and attendant errors. Notable
among these are frictional errors (both sample and
apparatus), calibration errors (due to large ther-
mal gradients between the piston and the device
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FIG. 5. Calculated PV
relation (from the virial
theorem) for fcc Ar, over
the same volume range as
Fig. 1.
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measuring its displacement), and errors resulting
from the requisite extrapolation to P=0. As we
have noted (recall Sec. II) the numerical precision
of the present calculations is about 10% in the pres-
sure. In view of the problems of precision pre-
sented by both the calculations and the experiments
we view the comparison given in Table III as ac-
ceptable.

: PvsV - Ar, APW
a=0.72131

P (kbar)
Y
1

T T T T T T T T T 3
180 200 220 240 260 280 V(a.u®)
T T T T T T

16.0 18.0 200 220 240 260

V(cm3/mole)

FIG. 6. Detail of calculated Ar PV relation corre-
sponding to Fig. 2.

IV. EFFECTIVE PAIR POTENTIALS

It is not novel®® to remark that the microscopic
theory of the lattice dynamics of insulators is in
a less-than-desirable state of development, at
least so far as computational tractability is con-
cerned. As a rather poor, temporary substitute
for sucha calculation, we may ask whether the cal-

o} P vs V-Kr, APW
a:0.70544

P (kbar)

50
Vie.u3)

T T T T T
220 240 260 280 30.0
Viem3/mole)

FIG. 7. Calculated PV relation for fcc Kr.
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FIG. 8. Calculated PV relation for fcc Xe.

culated static lattice energies E(V) determine a
“reasonable” pair potential, That is, we assume
an interatomic potential U;; which contains core
radius, well depth, etc., parameters. We then
invoke the Born-QOppenheimer approximation®” to
require that

N
E(V)= ‘2]:]:', ?zv-u 4.1)

for all V with the particles at their corresponding
lattice sites. Since the assumed functional form
for v,; cannot be exact (because of the omission of
three-body, four-body, etc., forces), we vary the
parameters in U;; until the lattice sum in Eq. (4.1)
is closest, in a nonlinear-least-squares sense, to
the APW-Xa E(V) data.

In Table IV we give the results of this procedure
for a few simple potential functions, with empiri-
cally determined parameters for comparison,

The empirical parameters for the Ar “exp-6-8"
potential were obtained by least-squares fit of lat-
tice sums of that potential to lattice sums of the
Barker-Bobetic pair potential, 5 including the tri-
ple dipole interactions. The previously discussed
deficiencies of the calculated E(V) show up in these
data in obvious ways. For example, the inadequate
well depths for Kr and especially Xe are direct
consequences of the underbinding in evidence in
Table II. The fact that the shape of E(V) for Xe

is physically realistic (which follows immediately
from the agreement of the calculated and empiri-
cal PV relations, see Table III) suggests that a
rigid shift downward of E(V) to match the empiri-
cal static lattice cohesive energy would result in

a significant improvement in the potential param-
eters and such is the case. For the Lennard-
Jones (LJ) potential, a downward shift of all the
calculated Xe energies by 694.7 K (=0. 0044 Ry)
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TABLE I. Calculated and experimental cohesive en-
ergies and interpolated equilibrium lattice constants.

E (Ry/particle) a @.u.)
Expt.? Cale.” Expt.* Cale.®
Ar -0.00648 —0.00664 (9.668) 10.038 9.599

Kr —0.00896
Xe —0.01259

—0.00727 (10.61)
—-0.00812 (11.66)

10.666 10.507
11.586 11.677

3See Ref. 48.

PCalculated at the lattice constant in a.u. shown in
parentheses. This value corresponds to the lattice con-
stant at which the most binding was actually computed and
not to the interpolated calculated equilibrium lattice con-
stant. See text regarding numerical uncertainties.

®Value from interpolation of calculated P-vs-V curve
for P=0.

results in fitted potential parameters of o=3. 965
A, €=222.88 K.

The results given in Table IV also illuminate
some deficiencies of the calculated E(V) which are
not obvious by direct inspection. For example,
the coefficient ¢ in the “exp-6-8" potential for Ar
is determined by the present calculation to be pos-
itive, a clearly unphysical result which suggests
that the calculated E(V) goes to zero too rapidly,
with increasing V. The same difficulty is hidden
in the calculated LJ parameters. The assumed
potential form relates long and short range be-
havior in a very rigid and inflexible way and the
result is a seemingly good set of parameters but
very high standard deviations with respect to the
calculated E(V). For Ar, Kr, and Xe those stan-
dard deviations for the LJ potential are, in order,
88.3, 63.5, and 56. 6 K, values which are notice-
ably larger than the precision of the correspond-
ing numerical E(V) data. A major contribution to
these large standard deviations occurs in the re-

TABLE III. Calculated and experimental pressures for
various ratios of the volume V to the equilibrium volume
V.

v P(kbar)
vy Calc. Expt.?
Ar. 0.969 1,55 0.85
0.824 18.17 10.06
0.646 92,68 70.87
Kr 0,942 3.19 2.26
0.862 10.46 8.17
0.671 65.16 75.27
Xe 0.996 0.14 0.17
0.955 1.95 2,04
0.936 11.99 12.60
0.628 78.57 102.12

2Reference 53.
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TABLE 1IV.
tice energies.
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Parameters for some simple pair potentials, as determined by least-squares fit to APW-Xa static lat-

Vir) =4€l0/7)12 = (0/7)%]; “Lennard-Jones ”

Ar Kr Xe
Expt.? Cale. Expt.? Calc. Expt.? Cale.
() 3.400 3.722 +0, 008 3.635 4,086 0,006 3.960 4,548 +0, 004
€(K) 119.4 117.1 +4.8 164.7 130.2 +3.,2 231.5 143.8 +2.5
V) =ef{expl2alr/7y—1)] - 2 expla(r/ry—1)]}; “Morse”
Ar Kr Xe
Expt.? Calc. Expt.? Cale. Expt.? Cale.
7o(A) 3.7793 3.616 0, 011 4,0294 3.971 0. 009 4.3984 4,430 £0, 017
€ (K) 149.1 158.8+2.2 208.7 174.2 +1.4 288.5 189.4 £2,20
a —6.05 —6.866+0.103 -6.21 —6.8660.078 -5.98 —6.805+0,119
V) = explalr = b)] + cr= + dr-¥; “exp-6-8 "
Ar
Expt. © Cale.
a(A-) —3.832+0,005 —3.425+0,039
b(A) 4.994 0,035 5.438 +0, 048
c(KA®) —5.84(+0,34) x10° 9.01(+1.26)x10°
d(KAY) —1.28(+0,85) x106  —3,21(+0.32) x107

%G. G. Chell and 1. J. Zucker, J. Phys. C1, 35 (1968).
bReference 12, Table II.

gion beyond the minimum, where a lattice sum of
LJ potentials tends to zero much more slowly than
the APW E(V) it is being forced to fit. These dif-
ficulties in examining the large 7 behavior are ag-
gravated by the fact that for the lattice constant in
Ar, for example, at which a lattice sum of the
best available pair potential is dominated by the
r™® behavior, the corresponding static lattice ener-
gy is smaller than the numerical precision of our
calculations., Thus, we can only say that our cal-
culated E(V) data go to zero with increasing V
faster than predicted by the best pair potential for
that vange of V for which the pure van der Waals
attraction is not dominant.

The deficiencies just enumerated no doubt arise
in part from the inherent limitations of our proce-
dure. That is, even if the Xa method were to
provide a completely acceptable description of
the rare-gas interaction (which we most emphat-
ically do not claim), the recipe we have used is
restricted to pair potentials in a cubically sym-
metric system. The unsatisfactory nature of the
restriction to pairwise additivity has long been
known for the alkali halides'® and a subject of
considerable discussion for the rare-gas crystals. ®
The cubic symmetry constraint is clearly energet-
ically unfavorable at low densities, since it pre-
cludes a phase transition to a less ordered system.
Nevertheless, it seems clear from Table IV that,
particularly in the case of the Morse potentials,
the APW-Xa model gives pair potentials which are
not unreasonable.

°See text.

V. ONE-ELECTRON PROPERTIES

Perhaps the most often quoted “figure of merit”
for an energy band calculation is the direct band
gap. By now it is well known?® that the virtual
Bloch levels calculated in the Xa model do not, in
the case of an insulator, correspond to the physical
conduction band levels. That is, the Xa scheme is
a model of the insulator ground state. It is no sur-
prise, therefore, that the calculated direct band
gap for Ar (I3~ Ty) is 0.607 Ry at a=10.039 a.u.
(the experimental lattice constant), 0.6145 Ry at
a=9.66773 a.u. (the calculation nearest the calcu-
lated equilibrium lattice constant, recall Table II),
and 0. 642 Ry at a=9.00 a.u. (substantially inside
the calculated equilibrium value), in comparison
with an experimental value of 1.05 Ry.® Boring?®
has found similar behavior for the Kr band gap.

More to the point are the calculated bandwidths
for the “valence” states (Ar, 3s and 3p; Kr, 4s and
4p; Xe, 5s and 5p). Since all the other extant cal-
culations have been at the relevant experimental
lattice constant, we show in Table V our bandwidths
at both the calculated and experimental value of a.
In both Ar and Kr, the present calculation yields a
valence s band that is discernibly narrower than
the Hartree-Fock calculations; no such comparison
is available for Xe but we have no reason tobelieve
that similar results would not hold. The much old-
er non-self-consistent o =1 statistical exchange
calculations disagree among themselves in the case
of the Ar 3s band, while the only similar calcula-
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TABLE V. Valence-band widths (Ry). See text for
comparisons with other calculations.

Ar 3s 3p
This calc. (agyp) 0.020 0.095
This cale. (aeqe 0.028 0.121
Statistical exchange® 0.010 0.046
Statistical exchange® 0.010 0.044
Statistical exchange® 0.022 0.145
Hartree-Fock exchange® e 0.169
Hartree-Fock exchange® oo 0.089
Hartree-Fock exchange! 0.039 0.195

Kr 4s 4p
This calc. (@) 0.022 0.116
This cale. (agqe) 0.023 0.120
Statistical exchange® 0.022 0.092
Hartree-Fock exchange® 0.033 0.208

Xe 5s 5p
This calc. (@gg)! 0.033 0.136
This calc. (@eqc) 0.031 0.130
Statistical exchange’ 0.022 0.087

*Reference 16.
PReference 17.
°Reference 20.
9Reference 19.
®Reference 22.
fReference 23.
8Reference 25.
bReference 16.
The 4d bandwidth is 0.00001 Ry.

JReference 27. Measured from figure. The statistical

exchange used is somewhat different from the Xo form.

Includes correlation corrections.

Measured from figure.

tion for the Kr 4s band is in agreement with our re-
sult. The Ar 3p band is another story entirely,
with calculated band widths in the literature all the
way from 0.044 to 0.195 Ry. In our opinion, the
earlier statistical exchange results can be ignored
because of their lack of self-consistency and their
employment of a=1. We believe that the very
broad 3p bandwidths reported in Refs. 19 and 23
have been adequately explained by Rossler'® (and
confirmed by Dagens and Perrot®?) as a conse-
quence of poor convergence on the p-like states. %
Dagens and Perrot?® compared their 3p bandwidth
(0. 089 Ry) with that of Mattheiss'? (0. 049 Ry) and
concluded that the difference was as should be ex-
pected on the basis of the general relationship be-
tween the Hartree-Fock and statistical exchange-
correlation schemes. Our results do not support
this interpretation, since for the same lattice con-
stant we find a 3p bandwidth (0.095 Ry) almost iden-
tical with theirs. Clearly, our utilization of an
“optimized atom” value of o (rather than a=1) and
of self-consistency has played some role, as has
their lack of iteration to self-consistency. The rel-
ative importance of these factors is, at this point,
indeterminable.
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VL. LIMITATIONS AND IMPROVEMENTS

The calculations which we have presented suffer,
in spite of their striking degree of success, from
several deficiencies and limitations. First, there
are the restrictions which are inherent in the model:
the omission of relativistic corrections and the lack
of a well defined relationship between the exact sys-
tem total energy and the assumed Xa total energy
[Egs. (2.1)-(2.8)]. As to the former, one may
hope that the relativistic corrections for the rare
gas solid and the isolated rare-gas atom are nearly
identical and hence are essentially cancelled by
the subtraction used to find the cohesive energy. At
present there exists, to our knowledge, no firm
evidence as to the validity of this conjecture. As
to the latter, there has been much discussion® of
the degree to which the Xa method treats electron-
electron correlation and it seems safest to say that
this is at present an unresolved controversy. Nie-
bel and Venables® claim to have proved that the Xa
method cannot, in principle, contain van der Waals
forces, but their proof appears to us to rest on the
assumption that Xa energy band theory is necessar-
ily single determinant theory. We contend that this
assumption is not at all obvious, since there exist
many “single-particle” theories (e.g., t-matrix
theories, theories incorporating Jastrow product
wave functions, etc.) in which correlation effects
are introduced in the single-particle Schrédinger
equation via an effective potential.

The second way in which this calculation is lim-
ited is technical. We have employed the APW
method in its classical form, that is, with the muf-
fin-tin potential. Furthermore, the self-consisten-
cy iterations have been performed via the conventional
but little-discussed “muffin-tin-charge” approxima-
tion.** An obvious first improvement over the pres-
ent calculation would be to incorporate the non-muf-
fin-tin charge in a fashion analogous to that devised
by Connolly and Danese® for the “multiple-scatter-
ing-Xa” treatment of molecules. A second, more
difficult improvement would be the removal of the
muffin-tin approximation completely. A substantial
number of efforts inthis direction have been made. 8
There are at least two draw backs to these schemes:
(1) at this point there seems to be no clear way to
decide which is best; (ii) all of them involve a ma-
jor increase in program complexity and operating
cost relative to the extant muffin-tin codes.

In assessing the results that we have presented
we note first that the calculated cohesive energy

appears to have too weak a dependence on atomic
number. That is, 8E/8Z is too positive. Interest-
ingly, Averill’s results on the alkali metals®! may
also be characterized by the statement that 8E/8Z
is too positive, though this may be misleading,
since he found too sfrong a Z dependence. One is
tempted to conjecture, using the z* dependence of
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spin-orbit splitting as a guide, that this problem
stems from the neglect of relativistic corrections,
but we are unaware of any formal or numerical
evidence along these lines. Secondly, we note that
our present numerical techniques are utterly in-
capable of coming to grips with the question of the
relative stability of the fcc and hcp phases of solid
Ar. The energy difference involved is about 7
uRy.® Even if the Xa model is sufficiently re-
alistic to account for the stabilization energy in
principle, we would have to improve our numeri-
cal precision by two to three orders of magnitude
to be able to undertake this calculation. Such an
improvement is presently (and for the foreseeable
future) beyond our reach. Third, as already noted,
the interatomic potentials extracted from our cal-
culations reflect both the shortcomings of the com-
puted E(V) values as well as the restrictions to
pair potentials and cubic symmetry.

Despite the shortcomings just enumerated we
believe that the work reported here is a useful
first step toward our eventual goal of a truly first-
principles treatment of both the electronic and lat-
tice dynamical properties of the RGC. Within the
bounds of numerical precision, the calculated co-
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hesive energies, lattice parameters, and PV re-
lations are all in reasonable agreement with ex-
periment. In many instances the agreement is

far more favorable. The extracted pair potentials,
while not competitive in quality with those obtained
by a direct computational effort, stand in at least
a semiquantitative relation to the best available
potentials. Both non-muffin-tin and relativistic
corrections are within the realm of calculational
feasibility and, when accomplished, should pro-
vide a significant insight into the evtent of the valid-
ity of the present work
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