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This paper presents calculations of the electronic polarizabilities of very small metallic particles and of
very thin metallic films. The theoretical model we employ for the metallic particle is simply that of N

free electrons trapped by an infinitely deep spherical potential well. The model used for the thin-film

problem is that of a system of free electrons constrained to move in the volume enclosed by two

infinite parallel planes. Linear-response theory and Poisson's equation are used to calculate the

electronic polarizability in terms of the electronic density-density response function. The numerical

results provide an idea of just how small, or how thin, a small metallic particle, or thin metallic film,

has to be for it to begin to lose its bulk property of being able to screen an externally applied electric

field.

I. INTRODUCTION AND SYNOPSIS

The purpose of this paper is to present a model
calculation of the electronic polarizabilities 0. of

very small metallic particles and of very thin
metallic films. Intimately connected with this
problem is the question of the ability of such small
or thin metallic systems to screen an externally
applied static electric field.

The motivation for these calculations stems from
a recently published criticism' of the Gorkov-
Eliashberg (GE) 1965 prediction that the electronic
polarizability of a minute metallic particle should

be enormously enhanced with respect to the bulk

classical value no= R, where 8 denotes the mean
radius of the particle. A short resume of this
criticism will serve as a convenient introduction
to the formulation of the present problem.

The electric dipole moment p developed by an
isolated metallic system in response to an exter-
nally applied field Eo is

p= fd'rr p"(r), (1.1)

in which p"(r) denotes the induced charge density
at the space point r. Within the framework of linear
response, the latter is related to the local electro-
static potential C(r) by means of the relation

p "(r)= —f d'~'C(r') X(r, r'), (1.3)

where y(r, r') denotes the electronic density-den-

sity response function characteristic of the metal-
lic system. 4(r) is given by the solution of the
Poisson equation V 4(r) = —4' '(r) or, in view of
(1.3), by the solution of

V 4(r)=4wf dr'4(r') (}(r, r') .
In terms of 4 (r), p is

p= —f d r f d r'r C(r')y, (r, r') . (1.4}

Thus given the appropriate boundary conditions
on 4(r), Egs. (1.3) and (1.4) enable p, and hence

e, to be calculated from the knowledge of the char-
acteristic response function g(r, r').

Now GE mere specifically concerned with metal-
lic particles sufficiently minute that the discrete-
ness of their conduction-electron energy levels
would have to be taken into account. For such
small (but still macroscopic) particles, GE as-
sumed that one would be able to calculate their
polarizabilities just as though each behaved as a
macroscopic "atom. '* In terms of the above formu-
lation this meant that GE introduced the drastic
assumption that the local field E(r) = —VC(r} could
be identified at every point with the applied field
Eo, so that, for example, in Eq. (1.4}one could
write 4(r)= —Eo r. It would then follow~ from
(1.4} that

p= EOOD (1 5)

or n= Ax~ where X~ denotes the static electronic
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where 0 denotes the volume of the metallic sys-
tem, and for the sake of argument, me have as-
sumed an isotropic system. Since for an isolated
conduction-electron system of macroscopic ex-
tent (b~ » 1, where k~ denotes the Fermi wave
vector of the conduction-electron system) )t~ can
be anticipated to be very large [-(k~) ], GE
concluded that the electronic polarizability of a
minute metallic particle (0= +svR ) would be great-
ly enhanced mith respect to the classical result
0|,=a'.

Clearly, however, the constant-local-field as-
sumption invoked by GE is erroneous, since it
completely neglects the screening effect of the
system of conduction electrons, an effect that
arises irrespectively of mhether the electronic
energy levels are discrete or continuous, and
which effect is, of course, quantitatively deter-
mined by the solution of the Poisson equation
(1.3). Indeed, for very large bzR, the external
field will be always essentially screened [E(r) = 0,
almost everywhere in the interior of the metal]
even if R is still sufficiently small for the elec-
tronic energy levels to be discrete in the sense
defined by GE. The polarizability will then be
very close to 0.'0=8 . Naturally enough, the ex-
perimental attempts ' which have been made to
confirm GE's enhanced polarizability have failed. '

Of course, when kzR is not too large, the ab-
solute amount of conduction-electron charge pres-
ent in the metallic system may not be sufficiently
large to effect the complete screening of %0. In

this case, the external field begins to penetrate
the interior of the metal; the system is thus less
polarized and e will assume a value less than 0.0.
It is particularly this phenomenon —the limiting
tendency of very small metallic objects to lose
theA' bulk screening Projerties-that me wish to
investigate theoretically in the present paper.

Our program will be to solve (1.3) and (1.4) for
simple microscopic models of a small metallic
particle and a thin metallic film. The model that
we shall introduce for the metallic particle will
be that of a system of N free electrons trapped by
an infinite spherical potential well of radius R.
For the film, we shaQ consider a system of free
electrons constrained to move within the volume
enclosed by two infinite parallel planes (separated
by distance d). For either model the electronic
density-density response function )t(r, r') will be
of the form

„& -,,) 2,.~~f(e.)-f(e:)
nns Kn

x Q„(r) P„(r') Q+(r') P„(r), (1. I)

in which the p„(r) and e„denote, respectively, the
appropriate single-electron mave functions and

energy eigenvalues, and f (e„)denotes the usual
Fermi-Dirac function. The factor 2 accounts for
the spin degeneracy.

The layout of the paper will be as follows. In
Secs. II and III me reduce the problems of calculating
n and the local field E(r) for the spherical particle
and film to the numerical solution of a system of
linear equations. %e have found it convenient to
outline in, Sec. IV an approximate calculation of
a and E(r) based on a Thomas-Fermi (TF) ap-
proximation in which the right-hand side of the
integro-differential equation (1.3) is replaced by

&.'(r) 4(r),
where k, (r) denotes the TF screening wave vector
appropriate to the actual electronic density at
the point r. In Sec. V numerical results for n/ao
and E(r) as functions of both the dimensions R or
d and the value of the mean electronic density r,
will be presented and discussed. For large enough
R or d we find that the TF approximation (1.8)
closely approximates the results of the exact (and
time consuming) methods of calculation presented
in Secs. II and III.

The microscopic models employed in the present
calculations are too simplified to do proper justice
to actual small metallic particles and thin films.
From the standpoint of the calculation of 0. the
most important shortcoming of the models is prob-
ably their inherent neglect of a realistic treatment
of the electronic density in the surface region.
This criticism would be of particluar relevance to
very small dimensions, such as R or d, where the
amount of charge situated in the surface regions
mould amount to an appreciable fraction of the
metal's total charge. In his pioneering work on
the thermodynamic properties of minute metallic
particles, Kubo has stressed the importance of
surface shape irregularities that mould remove
the extremely high degeneracy of the bound elec-
tronic states of a particle of perfect sphericity.
The retention of the high degeneracy of electronic
states in the present work on the spherical particle
is probably not too serious for the calculation of
0., since the change in the distribution of the elec-
tronic charge density that would be brought about
by the removal of the degeneracy can be expected
to be minor. e

The present numerical results should, however,
give us a semiquantitative idea of just how small,
or how thin, a Small metallic particle, or thin
film, has to be for it to lose, or partially lose,
its normal bulk screening property. The degree
to which this happens is specified by the amount
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by which the radio a/ao is less than unity. For
example, in order for a small metallic particle
of mean electronic density r, = 4 to have its polariz-
ability reduced to, say, V0% of its classical value,
we find its diameter would have to be as small as
26 A. For a thin film of the same density, we
find that a similar reduction in electronic polariz-
ability would occur if the film were as thin as ap-
proximately 10 A. Detailed results of this nature
will be found in Sec. V.

II. FORMAL SOLUTION FOR SPHERICAL PARTICLE

The wave functions and energy eigenvalues of
the bound electronic states of an infinitely deep
spherical potential well of radius 8 are

gnim(r)=c&g i(ni„r/R)F, (e),
e,„=(1/2mR ) aoi„,

(2 1)

(2. 2)

2i is/R ol og (+ (2 3)

where j', (x) denotes the derivative of j,(x) with
respect to x. In (2. 1), e denotes the unit vector
r/r, and the origin of the coordinate system is
the center of the sphere. The response function
}((r, r'), (1.V), is

2 o ~ g f(&i.)-f(&i ~)
fnla l nffa $ n fn

x gP ~(r) g,~(r') g f'„.~~(r') g,.&~.(r) .
(2 4)

In order to calculate p we shall have to solve

Vo4(r)=4m f d r'g(r, r') 4(r')
= —4vp "(r)

(2. 5)

(2 6)

for 4(r). If we take the constant external field
Eo to be directed along the z axis, we may write,
in spherical coordinates (r, 8, P),

4(r) = —Eor cos8+ 4"(r), (2. V)

defining the induced potential 4"(r). The latter
must satisfy

iimVe "(r)=0 as ~r ~--. (2. 8)

Also, 4" and its associatedfield —04" mustbe con-
tinuous. Since, in view of the definitionof our model,
p"(r) = 0 for Ir I &R, itfollows from (2. 6) that

& 4 '(r)= 0, ir i
&R .

Equations (2. 9) and (2. 8) are satisfied by

4"(r)= (coEoR /r ) cos8,

(2. 9)

(2. 10)

inwhich O. ,„denotes the nth zero of the spherical Bes-
sel function j, (n = 1, 2, . . . ; I = 0, 1, 2, . . . ), F, the
mthsphericalharmonic[m= —I, —(I —1), . . . ,
(I —1), I], and c,„are the normalisingcoefficients

4 "(r)=Eo[cor+Rf(r)] cos8, (2. 11)

where f (r} is some function of r I.n view of (2.6),
(2. 11}implies

p"(r) = (EoR/4s)g(r) cos8, (2. 12)
where

g = —[f"+ (2/r)f' —2f/r'] . (2. 13)

The continuity of 4" and f ' at r = R will, in view
of (2. 10) and (2. 11), impose the conditions

f(R)=o,
Rf'(R) = —3co

(2. 14)

(2. iS)

f (r)=&c.ji(~~r/R) .
@~1

(2. 16)

Equation (2. 14) is automatically satisfied, where-
as (2. 15) leads to

~ Ico--' o ~ en~ i (+in) +in
Mj,

The function g(r ) becomes

(2. 1V}

(2. 18)

E we equate the right-hand sides of Eqs. (2. 5) and
(2. 6}, we obtain

g(r)= f~ dss'q(r, s)[(co- 1)s/R+f(r)), (2. 19)
where

4(r. s) = 4v f dO(e) f d A(e') Y,o(e) Yio(e') X(re, se'). ,

(2. 20)
Inserting (2. 16), (2. 18), and (2. 20) into (2. 19),
and making use of the explicit forin (2.4) for
X(r, r'}, we obtain, after considerable algebra,
the following system of linear equations for the
coefficients c„(n= 1, 2, . . . ):

Z X „c„=a, m=1, 2, . . .
~1

with

Before going ahead with the solution f (r), let us
first demonstrate that the polarizability of the
sphere will be just o=R eo= noc&, i.e. , the con-
stant co measures the deviation of e from the
classical polarizability R . To see this, we insert
(2. 12) into (1.1). After evaluating the angular in-
tegrals, we obtain

r

p= Eo(oR) f drr'g(r) .
Using (2. 13)and partially integrating twice leads to

p= Eo(s R') [f(R)—Rf '(R)]

or, on using (2. 14) and (2. 15),

p = EoR co= o.'Eo . (Q. E.D. )

We now expand the function f (r) in terms of the
complete orthogonal set j,(a„r/R) (n = 1, 2, . . . ):

where eo is a constant. For Ir I &R, a solution
for @"(r}may be written in the form

(2. 21)
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((f inl f(l 1)n2
a„=4R Q I

t "1"2 +t + (l-1) Yt"1~(t-1) 2f51 tl2

1 flni f((Bl)no (l+ 1) 2 2B ((n„~nn)C'()n~ni)+, , B„((n~n~)C ((nuns)),t.1 (l.l)"2 y'"1y(t.1)"2

(2. 22)

,
&f)., f—(i 1).-2 flnl f ()B1)n2 (l + 1)4R ~ II( 2 2 B' (lnin2}B„(lnln2) + B (l"1"2)B (l"(n2), l

l 1 2I
+t 1 +(t 1) 2 Yt 11(t-1) 2 tn1 (t41)n2 +tn1 Y(t+1)n2

—Ba a)„j((a) )- 5 „a)„y,„. (2. 23}

yi. = 32 j((a).)]' . (2. 24)

The quantities B„(ln,n2), B„(lnln2), C'(lnin2), and
C (lnln2) are defined by

1
B„(lnln2)= f dxx j (1a)n«)ji(ai„l«) jl ((a() 1)„«),

B„'(ln,n, )= f dxx j,(a,„x)j,(,„,x)j„,(a(„»„«),
(2. 25)

C'(ln, n2)= $ dxx'j, (ai. «)jl 1(a(i 1)n «),
1 2

2 sC (ln, n2)= f dxx jl(ain «)j(B1(a()nl)n «) ~

Finally, the f„denote the Fermi-Dirac functions
f(e)„)which we shall take as step functions (T = 0):

()t tn ~ +Z

ar defines the Fermi level Er = (I /2mR ) a)„and
determines the number of electrons N by

(2. 26)

2 Q(21+1)f,„=N . (2. 27)

The components of the local field are
8@

E,=-—=Eof,(r) cos8,

Here R=R/ai), where as=I /me denotes the Bohr
radius and

where k„and k„are arbitrary real numbers, while
k, is quantized according to

k, = (((/d)N, N= 1, 2, . . .
The response function }((r,r') for the film is

}((r,r')= 2e f dk, f dk„ f dk„' f dk„'

„g g f (&2)-f (&p)

a, t, &Ps —~P

(3. 3)

x( (r)(2(r') g (r')(J)2, (r) . (3.4)

We shall consider the polarization of the film re-
sulting from the application of a constant external
field Eo in the z direction, i.e. , perpendicular to
the plane of the film. The resulting induced charge
density will only depend on the z coordinate, in
which case we may define a polarizability per unit
area:

coordinates («, y, z} in which the planes are given
by z =+a, where a= md. The electronic wave func-
tions and energy eigenvalues are

(})f(r)=(1/2(()e ' n" e ' )2'(1/a) ~ sink, (z+a), (3. 1)

en= (I /2m)(k„+ k„+k,), (3. 2}

j ac
Eo —————Eof2(r}sin--e,

where

fl(r) = 1 co- ~ a(„ji(a( r/R)
nn1

(2. 28)

(2. 29)

a = (1/E, ) g dz z p "(z) .
The Poisson equation will be of the form

d2

dz 2 4(z}=—4((p"(z)

= f dz' q(z, z')C(z'),

(3. 5)

(3.6)

(3. 7)

f2(r) = 1+co+ (R/r) Z c„j,(a,„r/R) .
n=1

Here co is given by (2. 17), which may be reex-
pressed as

1 ~ (-1)"c„a,„ (2. 30)

III. FORMAL SOLUTION FOR FILM

Our microscopic model of the metallic film con-
sists of a system of free electrons confined to
move in the volume enclosed by two parallel planes
separated by the distance d. We choose Cartesian

with

q(z, z')=4((f d«' fdy'}((r, r')

[the right-hand side of (3.8) depends only on z
and z' as is seen by inserting (3.4), (3.2)]. We
may write

(3.8)

has to satisfy the conditions

4(z) = —Eoz+ 4) (z), (3. 8)

defining the induced potential 4". The induced
field E", given by

(3. 10)
dz
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and

iim E"(z)=0 as lz I-" (3.11) gA „c„=a„,m=1, 2, . . .
n=1

(3.25)

E"(-z)=E"(z), (3. 12)

(3. 14)

Equations (3. 11)-(3.14) are satisfied by

the latter expressing the symmetry of the problem.
As 4, and hence 4]", is only determined up to an
additive constant, (3. 12) may be replaced by

@ (-z)=-@ (z). (3. 13)

Since p"(z) =0 for )z ( &a, it follows from (3.6)
that

with

A~„=16(d/az) Q a(N, N')I(N, N', m)
NN'

x [I(N, N', n) —2z nI(N, N')] —o (2on ) 5„„,
(3. 26)

a = 16(d/az) g a(N, N')I(N, ¹,m) J(N, N'),
NoN8

(3.27)
in which

(F -N ) 8(F N) —-(F -NI ) 8(F —N' )ag, N') =
N —N"

(3. 28)

4"(z)=Eoacosgnz, (3. 15) J(N, N') = ~ S(N,N'), o —,
)o I ) (3.29)1, 1 1

where co is some constant. For )z ) &a, a solution
for 4 ' may be written in the form

I(N, N', n)= —S(N, N')
I

1, ( 1 1

4"(z)=Eo[coz+df (z)], (3. 16)

with some function f (z), which in view of (3. 13)
has to be odd. Equations (3.6) and (3. 16) give

1
N+¹+2n N+N' —2nj'

p "(z)= —(Eod/4z)f" (z) . (3. 17)
Here 8 is the usual unit step function and

The continuity of 4" and E"at z = +a will, in view
of (3. 15) and (3. 17), impose the conditions

S(N N')= 1, N N' odd-
0, N-¹ even . (3. 31)

f(a)=f(-a)=O,
2af'(a) = 2af'(- a) = —co .

(3. 18)

(3. 19)

The quantity F is related to k~ through

F=kzd/v . (3.32)

Inserting (3. 17) into (3. 5) leads, after a partial
integration, to

a= (d/4z) [f(a) —f (-a) —af'(a) —af'(-a)] (3.20)

or, using (3. 18) and (3. 19),

The local field E (z) = Eo+E "(z) for Iz t & a may be
expressed as follows:

Z(z)=E ()c~ Zz Znc„[1—(-))"ccn(nzz/z)]),
n=1

(3.33)
a= (d/4z)co . (3.21) using (3. 16), (3. 22), and (3. 23).

Hence c, measures the deviation from the classi-
cal polarizability per unit area ao= d/4v.

We now expand the function f(z) in terms of the
orthogonal set sin(vnz/a), n = 1, 2, . . . :

IV. A THOMAS-FERMI APPROXIMATION

We define a "Thomas-Fermi" approximation
(TFA) by replacing the actual Poisson equation
(1.3) by the equation

f(z) = Q (- I)"c„sin(vnz/a) .
n=1

(3. 22) V 4)(r) =k, (r) 4)(r),

where

(4. 1)

c,= —2z Qnc„.
n=1

(3.23)

If we equate the right-hand sides of Eqs. (3.6) and
(3. 7), we obtain, using (3. 16) and (3. 17),

Equation (3. 18) is automatically satisfied, where-
as (3. 19) leads to k, (r) =no(r)k,

in which

no(r) = n(r)/n,

k,'= (4/a, ) (3n/z)"' .

(4 2)

(4. 3)

f"(z)= 1 dz'q(z, z')[(co-1)(z'/d)+f(z')].
(3. 24)

Inserting (3.22) and (3.8) into (2. 24), we obtain
the following system of linear equations for the
coefficients c„(n= 1, 2, . . . ):

Here n(r) denotes the local electronic density,
n is the mean electronic density (n =N/0), and k,
is the standard Thomas-Fermi wave vector of a
bulk electron gas of uniform density n. We give
no formal justification for this particular defini-
tion of a TF approximation. For sufficiently large
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values of the dimensions R and d, we have found
the scheme to closely approximate the numerical
results of the exact methods of calculation out-
lined in Secs. II and III.

For the spherical particle problem (see Sec. II)
we have

n(r)=2 &f(ZI.) II}'I (r)
I

l fnn

0.9 —.

0.8—
rs =6

0.7—

0.6—

0 I ~ I ~

)
I

= 2 Qf (o.,„) c',„[j,(n, „r/R)]' .
ln

For r &R we have from (2. 7) and (2. 10)

C (r) = —E,(r —cpR /rP) cos8,

while for r &R we set

4(r) = E ph (r) cos 8,
where, in view of (4. 1),

(4. 4)

(4. 5)

(4 6)

0.5—
O

0.4—Ct

0
0.5—

O.2 -(THOMAS-FERMI
APPROXIMATION)

h" + (2/r)h' —(2/rz)h =npk,'h . (4 7)

The continuity of 4I and —V4 at r =R leads to

O.I—
~ I I I I I0

50
h(R) =R(cp —1), h'(R}= —(2cp+ 1). (4. 6) R/ae

In addition, h(r) has to be regular at r = 0. Now

from (4. 7) it follows that h(r) vanishes linearly
with r as r-0. Hence we can solve (4. 7) by set-
ting

FIG. 2. Qt/np vs R/a~ for a spherical particle in the
TF approximation with ~g=6. The broken curve is an
extrapolation of the calculated values.

h(r) = ah, (r), (4 9)

where h, (r) satisfies (4. 7) with the initial condi-
tions

h l(0) = 0, hil(0) = 1. (4. 10)

and

Rh l(R) —h l(R )
Rh', (R)+ 2hl(R)

(4. 11)

This can be done numerically on an electronic com-
puter. From (4. 6) and (4. 9),

Z (kr —k, ) sink, (z+a) .
27Ja & kkg F

(4. 13)

Correspondingly, the mean electronic density n is
given by

As in Sec. II, cp determines a/ap. The local field
—VP(r) is easily obtained from (4. 5) or (4. 6).

In the case of the film we have

"(r)= 2 f dk* f dk, ~f (eg) I qp(r)
kg

a = —3R/[Rh', (R)+ 2hl(R)]. (4. 12)
n= Q (k„-k )4' k&k

a
Op

1.0

0.5

ys

y

r s~
XH

4(z ) = Epz + Epac p sgnz (4. 15)

= (I/4IIa) [N„kr ~p(v/d) Nr(Nr+ 1) (2N„+ 1}],
(4. 14)

where N& is the largest integer smaller than
F= k Il/dr. For Iz I &a, we have from (3. 9) and

(3. 15),

I

10

L PAR TIC LES

I

20 30

while for )z I &a we set

4(z)=Eph(z),

with h(- z) = —h(z) and

(4. 16)

FIG. 1. 0'/at p vs 8/a~ for small spherical metallic
particles with various values of rg. Full curves denote
the SCF calculation, broken curves and the points && the
TF approximation.

h" =noksh (4. 17)

in view of (4. 1). The continuity of 4 and 4' at
Iz I

= a leads to
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f8 *4 s2
S

TABLE I. Parameters used in the spherical particle
calculations.

O
LU

R/a8e1

a/a ohio
O

lal

a. g

LLI

0%
0 0.5

r/R

4.0
0

0.5

r/R

1.0

FIG. 3. Local field E(r)/Ep vs r/8 for various small
spheres: the full curve denotes the SCF calculation, the
broken curve the TF approximation.

Number of
electrons

N

2
8

20
40
68
92

138
186
306
912

8 1

1.26
2.00
2.71
3.42
4.08
4.51
5.17
5.71
6.74
9.70

y -2S

2.52
4.00
5.43
6.84
8.16
9.03

10.34
11.42
13.48
19.40

R/ag
y =4

5.04
8.00

10.86
13.68
16.33
18.06
20.67
22. 83
26.96
38.79

y =6

7.56
12.00
16.29
20.52
24.45
27. 09
31.01
34.25
40.43
58.19

h (a) = —h(- a) = a(c o
—1),

h'(a) =h'(- a) = —1 .
Setting

h(z) = bh, (z)

and imposing the initial conditions

h )(0)= 0, hi(0) = 1,

(4. 18)

(4. 19)

(4. 20)

(4. 21)

Eq. (4. 17) for h, can be integrated numerically.
From (4. 18)-(4. 20) we get

Used only in the Thomas-Fermi approximation.

tions on the basis of a numerical procedure in
which the infinite matrix A„ is replaced by a
finite 10x10 matrix (n= 1, 2, . . . , 10; m= 1, 2, . . . ,
10). As discussed in Sec. IV the numerical work
involved in the TFA consists of first calculating
the local electronic density and then numerically
integrating a differential equation. The results
of these numerical calculations are as follows.

A. Small Spherical Particles

and

cp= 1 hg(a)/ah', (a)

h = —1/h', (a) .

V. NUMERICAL RESULTS AND DISCUSSION

(4. 22)

(4. 23)

For the particle calculation it is convenient
first to choose a particular mean electronic den-
sity r, and a specific number N of electrons. The
radius R of the sphere is then fixed by the relation

R/ae =r,N

We shall refer to the "exact" methods of cal-
culation presented in Secs. II and III as the self-
consistent-field (SCF) calculation. In these cal-
culations the sets of linear equations (2. 21) (for
spherical particles) and (3. 11) (for thin films) have
to be solved. We have solved both sets of equa-

We recall that the usual electronic density param-
eter r, is related to the mean electronic density
n by the relation r, = (3/4nn) ~ /ae, where as
=I /me =0. 53 A. The values of N and r, used in
the present calculations, together with the cor-
responding values of R, are shown in Table I. The

rs

R/ae& 4.
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I
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O
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FIG. 4. E(x)/Ep vs y/R for a
spherical particle of radius 8=4.1a~
and r~= 1, calculated with the TFA
and compared with the classical
field distribution.
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a
ao

3.0 TABLE II. Diameter D of a small spherical metallic
particle at which its polarizability is reduced to 70% of
the classical value, D /8, for various values of the mean
electronic density r,.

0.5—
10.5 17 27.5 36.5

0
0

I

50
d/a

I

20 30

upper limits of the values shown for N, and con-
sequently for R, were dictated merely by the:com-
puting facilities available to us.

Numerical results for n/c. o as a function of
R/as for various values of r, are shown in Fig. 1.
The full curves denote the SCF calculation while
the broken curves and the discrete crosses depict
the results obtained from the TFA. It is seen that
for a given value of r„ the TFA will approximate
very closely the SCF results, provided R is suf-
ficiently large. In Fig. 2, n/ao vs R/as has been

0.9—

0.8—

0.7—

0.6—

0.3— THIN FII MS
tTHOMAS- FERMI

0.2 —
APPROXIMATION )

FIG. 5. e/eo vs d/a~ for thin films with various
values of r,. The full curves denote the SCF calculation
while the points +, 0, and & denote 0,/eo calculated with-
in the TF approximation for rs=1, 2, and4, respectively.

calculated in the TFA for the particular electronic
density x, = 6. Not surprisingly, the relatively
small spherical particles that we have studied
(R( 56. 2as = 31 A) all exhibit appreciable devia-
tions of n/no from 1. The local field E(r),
for r directed along the direction of Eo, is shown
in Fig. 3 as a function of r/R for two different
spherical particles (R/as= 16.3, x, =4; R/as= 5. 4,
r, = 2). Note that the closer a/ao is to unity, the
less the electric field penetrates the interior of
the sphere. The full curves in Fig. 3 denote the
SCF calculation while the broken curves denote the
TFA. The oscillations exhibited by the SCF cal-
culations for x (- &R are erroneous and reflect
our finite truncation of the matrix equation (2. 21).
In Fig. 4 the behavior of E(r) for both r &R and
r )R is shown for the particle with R = 4. 1c~ and
t', = 1, and is compared with the corresponding
classical calculation of E(r). [In the classical
problem the value of E(r) at r =R is always 3EO. ]

8. Thin Metallic Films

Numerical results for n/o. '0 as a function of d/as
for various values of r, are shown in Fig. 5. The
full curves denote the SCF calculations while the
symbols+, 0, and & denote specific values of
o./o. o calculated with the TFA. As a rough rule,
the TFA reproduces the SCF values of a/ao for
d/as &- 10, independently of r, Figure. 6 shows
n/no calculated in the TFA for the electronic den-
sities r, = 1 and x, = 6, for the wider range of d/as
values 10(d/az( 100. The internal field E(z) vs
z/d is shown in Fig. 7 for various film thicknesses
and r, values. The full curves denote the SCF cal-
culation and the crosses the TFA. Again the small
oscillations in E(z) obtained with the SCF calcula-
tion for the thicker films reflect the finite truncation
procedure employed in our numerical calculations.

The present numerical results indicate that the
radius R or thickness d of a small spherical metal-

0.1—

I I I I I I I I

50

d/as

'IOO

TABLE III. Thickness d of a thin metallic film at which
its polarizability is reduced to 90'70 of the classical value,
d/4m, for various values of the mean electronic density r, .

FIG. 6. 0./0. 0 vs d/a~ for thin films with r~=1 and r, =6,
calculated within the TFA.

d(L) 12 20 32 46.5
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FIG. 7. Internal field E(z)/Ep vs
z/d for various thin films. The full
curves denote the SCF approxima-
tion, and the crosses the TF approx-
imation.
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lic particle or thin metallic film has to be quite
small for a/o. o to deviate very significantly from
unity. In Table II we have listed values of the
diameter D at which the electronic polarizability
of the spherical metallic particle is reduced to
(say) 70% of its classical polarizability. Even for
the lowest metallic electronic density that we have
considered, x, = 6, this D would have to be as small

as 36. 5 A.
In Table III we have given values of the thickness

d at which the polarizability of the thin metallic
film is reduced to 90% of its classical value. For
r, = 6, the value of d would have to be 46. 5 A.

It would be interesting to know whether or not
the reduced polarizabilities considered in this paper
could be observed experimentally.

'S. Strassler, M. J. Rice, and P. Wyder, Phys. Rev. B 6, 2575
(1972).

L. P. Gorkov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz.
48, 1407 (1965) [Sov. Phys. -JETP 21, 940 (1965)].

'See, for example, D. Pines and P. Nozieres, The Theory of
Quantum Liquids, 2: Normal Fermi Liquids (Benjamin, New

York, 1966), Chap. 3; see also S. Strassler, Phys. Kondens. Mater.
10, 219 (1969).

'R. Dupree and M. A. Smithard, J. Phys. C 5, 408 (1972).
'F. Meier and P. Wyder, Phys. Lett. A 39, 51 (1972).
'Under certain circumstances, however, the original idea of

Gorkov and Eliashberg may be applicable to the linear

metallic chains of certain organometallic quasi-one-dimensional
conductors. See, M. J. Rice and J. Bernasconi, Phys. Rev.
Lett. 29, 113 (1972); J. Phys. F 2, 905 (1972).

'R. Kubo, J. Phys. Soc. Jap. 17, 975 (1962); Comments Solid
State Phys. 1, 61 (1968).

'Interestingly, recent measurements by F. Meier and P. Wyder
[Phys. Rev. Lett. 30, 181 (1973)] show that the observed
magnetic moments of minute indium particles 10gR &30 A
are very much more in accord with a model possessing the
full spherical degeneracy of the electronic states than with a
model in which such a degeneracy has been assumed removed

by surface irregularities.


