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Effects of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si.
I. Acoustical Modes
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We have performed a systematic study of free-carrier effects on the elastic constant C~ (this paper)
and on the Raman spectrum (a succeeding paper) of heavily doped p-type Si. We have considered

samples with a wide range of impurity {boron) concentrations, with and without the application of
uniaxial stress. The data on the acoustical modes are compared with Keyes's theory, and extensions of
this con@ming the efFects of an external muaxial stress. In particular, we have found satisfactory
agreement between experiments and theory in the regions of high and low impurity concentrations. The
various calculations were based on models for the valence bands, yielding information as to their

applicability to problems of this nature. More generally, we have found a number of sinai&arities

between the effects of doping on the acoustical and optical zone-center vibrational modes, suggesting
that both effects are produced by the same basic mechanism.

I. INTRODUCTION

It was shown by Keyes some years ago that the
free carriers can produce significant contributions
to certain elastic constants in heavily doped semi-
conductors. ' The mechanism he proposed is, in

short, as follows: The strain associated with an
elastic wave may distort the bands and lift the
degeneracy of the band extrema where the free
carriers are contained, causing intraband and in-
terband redistribution of carriers, respectively.
This redistribution lowers the free energy of the
strained crystal or, put in another way, part of
the elastic energy is regained, thus effectively
lowering the elastic constants.

In a number of experiments the correctness of
this explanation has been confirmed; particularly
in n-type materials, quantitative agreement with
theory has been obtained, " largely due to the
simple multivalley configuration to be considered
in this case. In one experiment' it was shown that,
with the application of a uniaxial stress, the elec-
tronic contribution to the elastic constant C' in n-
Si could be removed in a manner described satis-
factorily by an extension of Keyes's theory. In

P-type Ge and Si' '6' ' the situation is less satis-
factory, both from an experimental and a theoreti-
cal viewpoint. The theory is complicated by the
fact that the free carriers are located at the va-
lence-band edge at the Brillouin-zone center. The
band structure is here quite involved, with a de-
generacy between heavy- and light-hole bands at
the j. point, and with a spin-orbit split-off band
just below (these bands are hereafter referred to
as h. h. , I.h. , and s. o. , respectively). All three
bands are warped, h. h. appreciably so; moreover,
l. h. and s. o. are considerably nonparabolic. '
On the experimental side only a few papers have
appeared showing qualitative but not quantitative

agreement with Keyes's theory. Recently a free-
carrier effect similar to the one described here
for the acoustical vibrations was observed by
Cerdeira and Cardona" for the optical phonon fre-
quencies in Ge and Si. Further information about
the nature of electronic effect on all zone-center
modes for these materials was obtained in an ex-
periment with the sample subjected to uniaxial
stress. " In that experiment it was suggested that
an intimate relationship exists between the effects
of doping on the acoustical and the optical modes.
This arises from symmetry considerations, or
more basically, from the similarity in the electron-
phonon interaction terms.

The present investigation contains a systematic
study of these and related electronic effects on the
elastic constant (this paper) and on the Raman
spectra (the following paper, hereafter referred
to as II) in heavily doped P-type Si. We have con-
sidered samples with a wide range of impurity
(boron) concentrations, with and without the appli-
cation of uniaxial stress. The Raman study was
perf ormed with several exciting laser wavelengths. '3

We compare the data with presently available
theories to show the extent and the limitations of
their validity.

In the present paper we first consider the vari-
ation of the elastic cc,.lstant C44 with carrier concen-
tration ranging from 2. 2&&10' to 1.6~10 cm '.
The results are compared with existing theories
for the low-concentration and the high-concentra-
tion limits. With uniaxial stress along the [001]
direction the degeneracy of the elastic constants
C44 and C«will be lifted, and experimentally their
electronic contributions (hereafter referred to as
nC44 and bC86, respectively) show qualitatively
different stress dependences, in agreement with
group theoretical considerations. A quantitative
comparison is attempted by extending the above-



4724 F JE LDI Y, CERDE IRA, AND CARDONA

2

E
100

XLU

UJ

X
IK
LLj 2
U

10 I I ( I I I I I I I I I I I I I I I I I

5 10& 2 5 102 2

BORON CONTENT (cm ')

FIG. 1. Fermi energy vs carrier (hole) content for
p-type Si, for zero stress p(0) and for the [001] stress
X, where the top of the 1.h. passes through the Fermi
surface, ~h =p(Xq).

mentioned theories for low and high concentrations
to include the presence of either a very small or
a very large uniaxial stress. Specifically, in the
region of high stress, X, the electronic contribu-
tions are shown to vanish: M4~ as X ' and 4C«
as X

II. A,C~~, NO STRESS

A. Experimental

The electronic contribution M4~ to the elastic
constant C44 was obtained by measuring the change
in velocity (for a fast transverse wave propagating
along [110)) in the doped samples relative to an
intrinsic reference sample. For this experiment
all samples (including the reference) were pre
pared in the same jig. The jig was a circular
brass flat with holes on which each sample could
be glued. The thickness of the jig was somewhat
less than the desired crystal thickness, allowing
both (110) end faces of the samples to be exposed
for preparation. All samples were then carefully
lapped and polished simultaneously to a thickness
of 8. 210+ 0. 002 mm and with a maximum devia-
tion from parallelicity of 3x 10 cm/cm (-6 sec
of arc). The crystal orientations were accurate

5F Q f 5E (2& Q fz (5E (ll)2
aE,

where f, = (I+e z " '&
)

' is the Fermi distribu-
tion function for a state of wave vector k. 6E~"
and 5E~' are the changes in energy of state k to
first and second order in the ultrasonic strains,
respectively, and p is the Fermi energy. The
expression (1) is then compared to an equivalent
expression in terms of the cubic elastic constants:

+ M (2(ezzezz+ ezzezz+ ezzezz)

+ 2n,C„(e' + e„',+ e,', ) . (2)

For details on the calculation we refer to Sec. III

to~0. 5 .
The change in fast transverse velocity from that

of the reference sample was measured by a pulse
echo technique, '4 using a Matec rf pulse generator
and receiver (model No. 6000). The pulses were
excited by a 20-MHz AC quartz transducer bonded
to the sample by Nonaq stopcock grease. The
measured velocity change versus impurity content
is shown in Table I. This table also contains the
relative change in elastic constant KC44/C(( (su-
perscript i for intrinsic), where the value C«
=0. V951x10 dyn/cm was taken from Ref. 5.

Table I further shows the Fermi energy [mea-
sured from the top of h. h. (l. h. )] as computed nu-
merically from k p bands. An average of the
bands along all (100), (111), and (110) directions
was used for this purpose, and the results are
shown in Fig. 1. For details on this calculation
we refer to Appendix A and Fig. 4.

8. Theory

There exist, at present, tractable descriptions
of the electronic effects on the elastic constants
in the limit of small carrier concentration, and

in the high-concentration limit. " In these calcula-
tions one attempts to find the free energy to sec-
ond order in the small ultrasonic strain. This
free energy has the form

TABLE I. Change in fast transverse velocity for propagation along [110], and relative
change in the elastic constant C44 with doping (Fermi energy). T=300 K.

Impurity content
(10"cm ')

4v
(10 cm/sec)

C44/C44 (%)

Fermi level I p t

(meV)

0. 22

—Q. 1

—0. 09

0, 6

—0. 5

—0. 23

17

1.5

—2. 0

—0. 74

29

2. 6

—3.4

—1.22

40

—7. 7

—2. 66

69

16

—13.4
—4. 53

114
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and Appendix B, where this problem is treated on
a more general basis including the stress depen-
dence of A%44. We now consider the results for
the low- and the high-concentration limits.

The low-concentration limit is defined by p, «40,
where ho= 44 meV (for Si) is the spin-orbit splitting
at the zone center. In this limit only l. h. and
h. h. are populated by free carriers, and both of
these bands can be taken to be parabolic. Bir and
Tursunov's expression for this case is"'

(3)
d is a deformation potential constant; P, D, and
B are valence-band parameters defined in Ref. 11.
F'«z(p/ksT) and E,~z(p. /ksT) are the well-known
Fermi integrals, and N is the free-carrier (hole)
concentration.

In their calculation of the high-concentration
counterpart to Eq. (3) Cerdeira and Cardona"
omitted a contribution to bC44 arising from the
second term in Eq. (1). This contribution (increas-
ing ldC«l by about 16/o) has been included here
(see Sec. III), leading to the following high-con-
centration (p. » 60) expression:

(
bC44 d N F q~q

C44 „c 2C44 k~T F1/f2
(4)

where K is a numerical constant (K = 0. 69), the
origin of which is made clear in Appendix B. Equa-
tion (4) was obtained by approximating l. h. and
h. h. by two parabolic bands (both with the h. h.
mass mH) which run parallel with a constant energy
separation of 3&0. The s. o. band was neglected
since only a relatively small number of free car-
riers are contained in it (always less than 4%).

C. Discussion

case) and thus eliminate the effect of doping on the
elastic properties, essentially confirming the
electronic nature of the phenomenon. The corre-
sponding effect in P-type Si' is to lift the h. h. —
l. h. degeneracy at the zone center and for very
high stresses, to eliminate the band distortions
produced by the acoustical and optical vibrations.

In this section we present a study of the stress
dependence of electronic effects on the elastic
constant C«(C86) for P-type Si in four samples
ranging in Boron content from 6x10 to 1.6X10 0

cm '.
A. Experimental

The stress apparatus used has been extensively
discussed in the literature. "'6 The samples were
in the forms of square prisms with dimensions
2~2&& 17 mm, with the long edges parallel to the
[001] (stress) direction. bC«and EC88 versus
stress (compression) were measured as changes
in the velocities for 30-MHz transverse waves
propagating in the [100]direction (i.e. , perpendicu-
lar to the stress). Under the action of the stress
C44 splits into a "singlet" C«, which can be mea-
sured for an ultrasonic polarization perpendicular
to the stress X, and a "doublet" C44, which is ob-
tained for a polarization parallel to X. Small
(2x 2-mm) 30-MHz AC quartz transducers were
bonded with epoxy to the (100) surfaces of the sam-
ples. Because of the presence of the transducers
the samples usually broke at a stress of less than
9X10 dyn/cm . Reproducibility of the data with
various samples from the same material, and
with different size transducers, indicated that
stress nonhomogeneities arising from the presence
of the solidly bonded transducers did not mea-

We note that the expressions (3) and (4) are the
same except for a numerical factor. This suggests
replacing the constant K in Eq. (4) by a function
K(p), where K(g) now can be regarded as a semi-
empirical function to be determined experimentally.
Such a function can be useful in related free-
carrier problems, where the complicated band
structure makes accurate descriptions prohibitive.
The experimentally obtained K(p, ) is shown in Fig.
2 (filled circles), where for comparison, the ac-
tual numerical constant K is also shown (dashed
horizontal line) in both limits of concentration.

The experimental points agree reasonably with
the calculations in the high-limit and low-limit
case. The discrepancy is about what one should
expect on the basis of the band approximations used.

III ACE+ AND ACee VERSUS [0011 UNIAXIAL STRESS

As pointed out previously' a large uniaxial com-
pression can split valley degeneracies (n-type

1.0.—

0.8--

K - 069

0.4
KLc 0.40

0.2--

0
0

I

100

I I

20 40 60 80

FERMI ENERGY, p. (meV)
FIG. 2. Semiempirical function K(p) {filled circles)

compared with numerical estimates of K in the high-con-
centration {HC) and in the low-concentration {LC) limits.
Measured at 300 K.
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surably influence the data obtained.
The results of these measurements, performed

at liquid-nitrogen temperature, are presented in
Fig. 3. The pure electronic effects were obtained
by subtracting the stress dependence of the cor-
responding elastic constants for an intrinsic sam-
ple of the same dimensions (measured separately)
from those found in the doped samples.

B. Theory and Discussion

In this subsection we first present a group-
theoretical argument for the qualitatively different
stress dependences of bC44 and bC«, with special
reference to the low-stress limit. Subsequently
we present a calculation of the behavior of bC«
and LK« in the extreme-high-stress limit showing
that the electronic effects should disappear, there-
by establishing a plausibility argument for the
qualitative shape of the curves in Fig. 3. Finally
we extend Keyes's theory to include the presence
of a small external uniaxial stress.

The initial slopes of AC44 and aC«versus stress
(low-stress limit) can be qualitatively explained
as follows (see also Ref. 12): Group theory re-
quires that a linear term in the stress dependence
must have opposite signs for dC, 4 and 4C«, the
latter with twice the slope of the former —the pure
uniaxial stress X along [001] belongs to the (x
+y —2x ) row of the I',2 representation, and there-
fore contributions to the free energy [Eq. (1)]
linear in X and quadratic in the phonon displace-
ments p„„, p„„p,„, must have the form

H =H, +H'

with

0 0 0

E —~2J 0 0 0

0 0 0 0

0

v2F F 0

0

bF Dr. (p ~, + p,', —2 p~2) X .
This expression shows that the effect of stress on
the singlet phonon, p~ has a slope of opposite sign
and twice as large as thatof thedoublet, p„,and p„,.
This is borne out experimentally. From Fig. 3
we find the ratios [bC68(X) —AC68(0)]/[dC«(X)
—aC«(0)] in the range —2. 0 to —3. 0, always with

I~44I increasing, and [AC«l decreasing initially
with increasing compression.

Now we turn the attention to the opposite limit:
that of very high stresses. In Appendix A we have
written the 6&6 k ~ p Hamiltonian relevant for the
present band structure. "'' By assuming that the
energy shifts produced by the external stress are
large compared to typical band energies within the
Fermi sea and also compared to the spin-orbit
splitting 40, the secular equation can be solved by
straightforward perturbation methods. We write
the 6 & 6 Ham iltonian as follow s:

F = —3be2 e=X/3(C„—C,2) .

& is here the traceless part of the strain associated
with the uniaxial stress X, and it has the tensorial
form

0~O4

O

0.5-
0

CI

X
1.0-

0 0

Y=e~O 1 0

(D D -2
(8)

b is a deformation potential constant, and Cyg,
C» are elastic stiffness constants.

Diagonalization of the Hamiltonian Ho leads to the
following set of zone-center eigenvalues:

1.5- Xh. h. = p(F- 40)+ 2(9E + 2FrDO+ 40)'

&,.D
= 2(F —dP) —2(9F + 2Fdo+ no)'~

(9)

FIG. 3. Stress dependence of b C44 and b, C6& for [001j
uniaxial stress in p-Si samples of different impurity con-
centrations. The experimental temperature was 77 K.

The stress mixes the wave functions in the follow-
ing manner [written on (J, Mz) basis, see Appen-
dix A]:
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Iti.n. =
I a, a&, 4&.n. =

I a~ a&y

1 13 1 1 1
Pan, aI2 2)+c(a 2)

t)'n. n. = a
I a —

2&
—c

I 2, —a),
0"=-c

I 2 2&+a
I 2 2&

0'.. =c IL —2&+ala, —-'&,

where

(10)

]. 1/2

H2 (9F + 2Fha n )

S/2

(9F2 2F& + ~2)saba

On the original (d, Mz) basis the perturbation Ham-
iltonian 0' has the following form:

—Qa'/W2 0

-Q/v 2 -v 2G

0

0 —Q/W2
(12)

~aQ4 0 0

v2 Ga' —Q*/&2 —Qa'

where for a general k vector, and an acoustical
phonon (p~, p„, p„,),

Q = —[dp~+Bk„k, —i(dp„, +Bk„k,)),
G = —av 3 B(k„—k„)+i(dp„„+Dk„k„). (13)

At high stresses, all the carriers will be in h. h. ,
which therefore is the only band of interest. To
second order in perturbation theory, the energy of
h. h. becomes

2
tH(h h &f ~+

f h, h
(14)

or

&Eh.h. = Eh. h. &h. h.

(a —c/v 2) IQ I + (a+ca 2) IG I

2(3F —42)+ a(9F + 2Fnn+ nba)'

IQ I2'
2 (9F2+ 2F n,,+ ~2)"2 (16)

= —(I/3be)[da(pa, + pa, )+B (k, +k„)ka

+ 2Bd(p, ak„ka+ paak„k, )) . (16)

From this we obtain the contribution to the free
energy from the leading term in e, according to
Eq. (1):

GF Qf GE (2~, g fn (GE &i&)2
a +2 8E- a

Nd
(p..+ p,.) .

Consider first the extreme- high- stress limit E» .
In this case a= v aa, c = —W leading to

GEn. ~= IQ I'/F

I

N is the total number of free carriers per cm'.
By comparing with an equivalent expression for
5F written in terms of the tetragonal constants we
f ind:

4C«= —Nd /Gbe, nC22 ——0 . (18)

Thus, we have shown that both b,C44 and b,C«dis-
appear at very large stresses: 4C44 as X ', and
LCM as a higher power in (1/X). It can easily be
seen that by retaining the stress dependence in a
and c [Eq. (11)], the leading term in the stress de-
pendence of 4C« is proportional to X

Owing to the inavailability of high-stress data
on the elastic constants, the asymptotic dependence
of C44 and C«calculated here cannot be directly
tested. However, in the Raman experiment" (see
following paper, II) such data can be obtained for
low-concentration samples (see data on Gx 10"
cm 2) essentially confirming the X ' behavior pre-
dicted for the doublet. Nonetheless, the discussion
above leads to conclusions about the qualitative be-
havior of the stress dependences of AC«and 4C«
in agreement with experiment: By continuity, if
I AC« I were initially (for small stresses) to in-
crease, and at high stresses to disappear, it must
necessarily pass through a maximum. Such a be-
havior is indeed indicated in the experiments,
particularly for the low-concentration samples
(and very clearly confirmed in the Raman Experi-
ments in II). If F22 were to decrease initially,
and then disappear, one would expect a monotonic
decrease over the entire range of stresses. Again
this is confi. med by the experiments.

In the opposite limit, that of small stresses, the
calculation of he initial slope in F88 and 4C44 will
be outlined. For certain details of the treatment
we refer to Appendix B. We again divide the dis-
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( E,=Qbe',

&(=E(e, 0)= (Eg+Eg, +E,)'

Es 2dD(P k k +Pggk kg+Pygkykg))ultra-

(20)

sound 2 2 2 2Ep =(f (Pgy+Pgg+Pyg} ~

(Note A, B, B, b, d, and e are negat(Ue in abso-
lute sign. ) The energy shift due to the ultrasonic
strain is:

5E(&, P) =E(t, P) —E(e, 0) . (21)

By expanding 5E(e, p) to second order in p we ob
tain, in agreement with previous notation,

~E(i) 1 E&P
2 x

(22)

(5E' '} is expanded to first power in the uniaxial
strain and averaged over all directions in k space
(see Appendix B), leading to

d2D 2

cussion into two parts: First, the problem is con-
sidered in the low-concentration limit, essentially
extending the Bir and Tursunov theory, to include
a small external stress. Second, the high-concen-
tration case is developed along the same lines.

The starting point in the low concentration limit
is the Dresselhaus, Kip, and Kittel' expression
for the parabolic region of h. h. (-) and 1.h. (+)
(&s»E,.„,E„.„.): AdaPted to our situatio. & their
expression is [it can also be extracted from Eq.
(A2) in Appendix A]

E(e, P)=Ak + (E, +Egz+Ez+Egp+Ep)'~', (19)

where the upper (lower) sign refers to l. h. (h. h. ).
This convention is maintained throughout. Further

I E =Bsks+Cs(k k +k k2+ksks) =B k

static Eg, = 3Bbe(2k2 k„—k-s),

2 2 2
&( (2Pgy —Pzg —Pyz) ~ (24)

g Bh 15B

x[(2m )"'- (2m, )'"]~(4~
"2 (p.', + p.'.+ p,'.)

3jg d2D2Bb g 1/2 1/2
'70~k Zs(m &~ }"'
x Iud "'(2p!, p!. -p!,).- (26)

The terms symmetric in ~„, ~„E and p
(24) and (26) give the low-temperature limit of the
Bir and Tursunov formula, from which Eq. (3) can
be obtained by including the proper temperature
dependence (see Refs. 1 and 2). Here we are in-
terested in the free-energy term linear in e. By
adding the contributions from 5F'" and 5F' ' and

comparing with the free-energy expression in terms
of the tetragonal elastic constants, we obtain

When considering the free-energy term associated
with 6E' ', special caution is required: A difficulty
arises when X in Eq. (21) is expanded to first pow-
er in &. ~uch an expansion leads to a divergence
in the term linear in e, when the sum over occupied
states is performed. As shown in Appendix B,
this difficulty is avoided by deferring the expansion
in e until after the k-space summation. In prac-
tical terms this is equivalent to neglecting the con-
tribution arising from the lower limit of integration
when converting gg- $ dE g(E). With this in mind
&( in Eq. (21) can be expanded to first order in e,
as before, yielding for the angular average of 6E' '

d 1 D
15 B

3 d2D2Bb g
+

70 BSk4 ( Pgy Pzg —Pyz) ~

a,nd for 5F'2'

5F(2& Q f (5E(2&)

6Bbe
+ sks (2Pgy Pgz Pyz)7Bk (23)

ass ———
106& kB4 (2m&() + (2mL)

3 d'D Bbc S/2 j. /2

This gives the following contribution to the free
energy [second term in Eq. (1}]:

5F(1) Q f&) ((5E(1&)2)
eEa

= —
16ks gs [(2ms)"'+ (2mL)"'] I( l"'

2 2 2x (pgy + p,g y p„g)

1 d D Bbe
[(2m )1&2~ (2&&1 )1&2] ~IL

~

1)2
35m hB

2

I l)y» )' '- (y )'"j)la28 mLm&(

I 1
+C44 Q DC 66 ~ (27)

We use the following values for the various nu-

merical constants: d = —4. 85 eV, b= —2. 1 eV, '

We note that these expressions are, necessarily,
in agreement with the group-theoretical argument
presented earlier. Furthermore (since B, B, b,
and e are negative), aCss is positive, i. e. , I ass l
is reduced with stress, in accordance with the ex-
periments.
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B= —0. 755 /2mo, C =27. 56(I /2mo), B~=B + —,'C
= 6. 075(h /2m 0), m H

= 0. 5m 0, mi = 0. 16m 0,
~o

C«= 0. 976x 10' dyn/cmi, (C»- C,2)= 1.026x 10'~

dyn/cm (at 77 K). ' We thereby obtain the following
value for the initial (low-stress) slope of AC66
versus stress:

~C',/'C'
44 = 1 34x 10 'I p(eV)

IX (kbar)
(28)

This slope has been computed for the samples used
and is compared with the experimental slopes in
Table II.

As expected the slope deviates from the pre-
dicted value when the Fermi level is of the order
of the spin-orbit splitting or larger. (N= 2. 6x10'~
cm ' or higher). However, for the lowest-concen-
tration sample (N= 6x 10' cm ) the Bir and Tursu-
nov condition (p «d, o) is approximately satisfied,
and as a consequence the theory reproduces the
experimental value to within about 3(P/0. This agree-
ment must be considered as very satisfactory in
view of the complicated band structure at hand and
the accumulating uncertainties in the parameters
used for the theoretical evaluation.

In an attempt to fit the slopes for the high-con-
centration samples we return to a band model de-
scribed earlier, assuming h. h. and l. h. being
parabolic (both with a h. h. mass) and running paral-
lel with a separation of 340. Again s.o. is ne-
glected. The procedure for this case is to con-
sider the bands along the three- and fourfold axes
when applying stress. The additional energy shifts
under the action of the ultrasonic strain (p~, p„„
p„) are then computed and the angular averages
&(5E'") ) and &5E' ') are calculated. In this case,
however, the angular average is approximated by
the weighted average for all the (100) and the &111)
directions.

For the purpose of this calculation it is useful
to choose the axis of quantization (Z axis) parallel
to R. The i axis is chosen to be along the direc-
tion n xk (v is a unit vector along the stress axis,
i. e. , [001]), and the y axis to be parallel to x xx.

where 0 and 4 indicate spin up and spin down, re-
spectively. The matrix elements of the electron-
phonon interaction Hamiltonian (see Appendix A)
are for any given direction of k

&vi(2) IH" Ivi(, )&= l(&xlBw Ix&+ &y IH" ly))~

(v1(2) IH., Iv2(1)) l(&x IB"Ix) —
&y IH" Iy&)

+i&x IH„Iy& .

The resulting 2~2 secular determinant has the
solution

E=&vilH. , lv|&+(l'+ l&vilH. .lva&l')'". (»)

Note that here+ refers to l. h. , while —refers to
h. h. E is found for a given stress, E(e, 0); and
for stress and ultrasonic strain, E(e, p). The
shift due to the ultrasonic strain is that expanded
to include first order 6E ' and second order 6E' '

in p, as before. The resulting angular averages
of (5E ") and 5E' ' are to first order in e (for de-
tails, see Appendix B):

&(5E'")'& =
2, d'(p' +p.'.+ p'„)

24 b~
d (2p~ —p„, —p„),

0
(32)

25 d2

0
(33)

The contribution to the free energy [Eq. (1)] is, in
this case, evaluated for a degenerate electron gas
(T= 0 K):

The wave functions for this case have the following
form':

Iv,}= — (x+ iy)0, Iv3& = (x —iy )4,
1 . 1

1 . 1
(29)

Iva)= ~ (x —iy)t Iv4)= —~ (x+iy)i,

TABLE II. AC6'6/C4~4 versus X in the limit of small stresses. The experimental
values are compared with estimates from the expressions derived for the low-con-
centration limit (LC) and for the high-concentration limit (H(;). T=77 K.

Sample (10' cm )

I pl (mev)

0. 6

17

2. 6

40 69 114

Pp kbar )X EXP

(
«' 44

Lc

P kbar )
Hc

0. 130

0. 103

0, 198

0. 067

0. 030

0. 173

0. 051

0. 020

0. 155

0. 040

0. 014
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12 b~
+

7 ~ d (gH g L)(3pxy pxg
—pyg) ~ (34)

6F = —— (&g —&z)+ 4(gs+g'z, ) (Pxy+Pxg+Pyg)
0

TABLE III. Comparison of stress for which 1.h. pass-
es through the Fermi level, with extrapolated stress
for which AC66=0. The table also shows Fermi level
versus impurity content with all carriers in h. h. , and

~C44/Cg4 (X=O) for T=77 K.

N„and Xz are the total number of carriers in h. h.
and l. h. , respectively. g&and gl, are the densities
of states at the Fermi surface in the respective
bands.

Again the term symmetric in p~, p„, , and p„
gives the low-temperature limit of the zero-stress
contribution to BC~4, and can be cast into the form
shown in Eq. (4} (see Appendix 8). From Eq. (34)
we can now obtain the lowest-order stress depen-
dence in 4C66 and 4C44.

Sample (10 cm )

i p(X&) [ (meV)
for all carriers

in h. h.

0. 6 2. 6

12. 0

Stress X2 (kbar)
where bC66=0

(extrapol. )

4. 5 11.0

Stress X& {kbar)
where Eh h. -Eq, h =Q 5. 0

124

22. 0

20. 6

16

215

36. 8

30. 9

12 be
aC'66 = d (g H gz)-

0

8 C44 = —~ F6~ .
(35)

EC44/C4~4 {%%up)

at77 K
—0. 58 —1.95 —3. 31 —4. 94

We again note that the group-theoretical require-
ment (EC44= ——,

' LCM) is satisfied.
The values of the slope (6C~gC«)/X have been

calculated for the relevant impurity concentrations
and are shown in Table II. By comparison with

the experimental data, we observe that this calcu-
lation results in an underestimation of the mea-
sured slopes by an order of magnitude. The most
likely explanation for this discrepancy is that me

are not sampling a representative set of directions
in k space for our angular average of the stress
behavior, indicating one limitation of the simple
high-concentration limit used here. The same
difficulty did not occur for the Bir- Tursunov limit,
where the angular average is a more realistic one.

Finally in this section, we would like to draw

the attention to a particular property of the stress
data. We have noted that experimentally I bC«t
decreases nearly linearly with stress over the en-

tire range of stresses used. The slope should flat-
ten out at large stress, as ~66 approaches zero.
This decrease in slope is observed for the 6& 10'-
cm sample in Fig. 3 but not for the other samples,
owing to the limited range of stresses at hand in

this experiment. However, for the Raman singlet
(see II) the same behavior is also evident for higher-
concentration samples. The curious fact in all
these cases is that 4C,~ (and the carrier effect on

the Raman singlet} extrapolates to zero for a stress
X, corresponding to l. h. passing through the Fer-
mi surface. In Table III me show a comparison of

the extrapolated stress X2 (where I AC861= 0) and

the calculated stress X~ [when IE„h. —E, „.I
= P, (X,)].

The condition LCM= 0 is satisfied when the (ex-
trapolated) stress induced change in DC86 equals
the total shift M44 discussed in Sec. II. Note that

DC4~ mas measured at 300 K, but can easily be con-
verted to 77 K (listed in Table III) from the tem-

perature dependence in Eq. (4).
The strong correlation between the stresses X,

and X2 in Table III suggests that an interband re-
distribution mechanism dominates the behavior of

&C«, i. e. , &CM vanishes when l. h is moved out
of the Fermi sea. On the other hand AC44 should
be dominated by intraband redistribution, since
lM«l has its maximum value where l. h. passes
through the Fermi level. We recall the earlier
conclusion that LK'66~X for high stresses where
only interband redistribution is possible; while
AC4~c~-X ', lending credence to the above observa-
tion.

As for the linear stress dependence of AC66, we
can only argue that this is consistent with the fact
that the observed slope does not change appreciably
from sample to sample: The slope is insensitive
to the Fermi energy, and is not influenced by this
as it chang s with stress [one can appreciate the
change in p. by comparing the values in Table I,
p(X=0), with those in Table III, p, (X=X,)].

IV. CONCLUSIONS

In ihis paper we have presented the results of
a systematic investigation of the effect of free car-
riers on the elastic constant C44 in P-Si. We mea-
sured the concentration dependence of AC44 and

compared it with simple band-model calculations
in the low- and high-concentration limit. As one
measure of the free-carrier effect in 4C44 we

defined the band parameter K(p, ), which could be
calculated in those two limits; and the values found

mere in satisfactory agreement with those obtained

experimentally.
By applying a strong uniaxial stress to the sam-

ples, the free-carrier effects to C44 are expected
to disappear. We could not see this, except possi-
bly for AC66 in the 6~ 10' -cm sample, owing to
the limited stress range that could be applied.
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However, we have developed theories for the low-
and high-stress limits, predicting qualitative fea-
tures of AC44 versus stress in agreement with the
observations. A quantitative estimate for the low-
stress low-concentration case proved to be in very
good agreement with the experimental data for the
6~10' -cm sample. A similar estimate for the
high-concentration case was off by an order of mag-
nitude, a fact that can be attributed to inadequacies
in the model.

In conclusion, we can state that semiquantitative,
and in some cases quantitative, confirmation of
the Keyes mechanism for the free-carrier effects
on the elastic constant C44 in P-Si has been achieved.
The experimental data were compared to various
calculations based on models for the valence bands,
yielding information as to the applicability of such

models in calculations of this nature.

APPENDIX A

The band calculations performed in this work are
based on the combined strain kinetic energy Hamil-
tonian""

H=8 Tr(n)- 3+[(L„'——,'L') n„„+c.p. ]

—3&3+(L„L}n +c.p. ], (Al)

c.p. means cyclic permutation. n is any symmet-
ric tensor (either strain e,&

or k-vector combina-
tions k,k&); (L,L~) means —,'(L,L&+L&L&); a, a, and
~ are the appropriate deformation potentials or
band parameter constants. On a (J, Mz) basis (J
= —,'), (Al) can be written as a 6 x6 matrix of the
following form":

—Q~/v 2 —&2F

~3q g

v 2G*

Wq Wzc

&2F —Q/

&2F F —Q

(A2)

where the columns correspond to I~, ~), I2, ~),
2) 12 Q) I g 2), and I

—'„——', ), respectively.
The term QTr( n ) in Eq. (Al) provides a uniform
energy shift of all states and has been omitted in
Eq. (A2), but can be added at the end. The dif-

ferent terms in Eq. (A2) are given by

F = —,
' $(2n„—n„, —n„),

G = —,'v 3+(n„——n„)+iSn,„,
Q = -5)(n„,—in„),

(A3)

0

WAVE VECTOR Ik( (10 cm ')
5 10 15 20

with

n()-be()+Bk(k~, e = 1 (i =j)

=de, q+Dk, kq, & = 1 (i 4j) (A4)

50-

E

~ 100-
UJ
X
UJ

150-

For the purpose of computing the Fermi energy
versus carrier concentration and versus stress we
diagonalized the 6x6 Hamiltonian [Eq. (A2)] for
all fourfold, threefold, and twofold directions in
k space and used a weighted average of the re-
sulting bands. These average bands for zero ex-
ternal stress are shown in Fig. 4.

The Fermi level versus carrier contents (for
any given stress) is determined by the relation-
ship

2 4m&=
(2„)s 3 (kh. h. +ki.~+k..„), (A5)

FIG. 4. Valence bands in Si as weighted average of
bonds for all (100), (111), and (110) directions (zero
stress).

where k'„.h. , k,.h. , and k, , are the Fermi level
intersects with the average bands. The zero-
stress and high-stress values of p, versus N are
shown in Fig. 1 (Sec. 1).
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E
200-

C9X

150-

In Eq. (Bl) and in the first term in (B2) we can
expand to first order in e without causing difficul-
ties when performing the k summation in Eq. (1).
By using the following angular averages, the ex-
pression (21) and part of Eq. (23) can be obtained:

((()zkz(2k, —k~z —kz)) = —~)~ k

X
100-

UJ

50-

LU

1

X) 8 Xi 20 X) 30 X) 40

UNIAXIAL STRESS {10 dyn/cm )

FIG. 5. h. h. -1.h. splitting vs [Oolj uni'axial stress.
The horizontal lines represent high stress values of
Fermi levels [p„&= p(X&)J for various carrier contents.
The intersects with the curve shows the stresses for
which 1.h. passes through the Fermi surface.

In Fig. 5 is shown the h. h. -1.h. splitting w ith
stress at the zone center, used for determining
when the top of 1.h. passes through the Fermi
surface.

(k, k2(2k' —k, —k~))= ~) k

(k„k, )= (k, k, )= (k„k,)=* k

In order to calculate the last term in Eq. (B2)
(hereafter referred to as 5E'"'), we defer the ex-
pansion in e until later and use a weighted average
of all [100], [111], and [110]directions as an angu-
lar average:

5E((:)~ ~
dD " (Px~+P~~)
104 (B k + zBk be+ 9b e )

k4p„,
(B k' —38k''ba ~ Qb t )'~ )'''

This corresponds to the free-energy contribution:

by (2) Q f (5E &)) (B5)

APPENDIX B

A2 2 2 2
gE(2) ~ &xv + Pxc+ Pyc

2 [Bzk4+ 3bBe(2k2 kz kz) 9bzez]1/2

d2D

2 [B k + 3bBe(2k —k —k )+ 9b e ]
(82)

I

For the purpose of computing the initial slopes
in M44 and ~C«versus stress in the low-concen-
tration limit, we start with the expressions (19)
to (22) in Sec. III. In order to find the contribu-
tion to the free energy through redistribution we
have to calculate the angular averages of the fol-
lowing quantities:

2 2 2 2 2 2 2 2 2
(5E()))2 dDz — Pxvkxky+Pxgkxkg+Pvgkvka

B k +3bBe(2k —k —k )+9b e

(»)

The summation over k leads to the following type
of integration in energy:

~ g E&!2
I cx ~ dE

(E2 eE 2)3/2 (B6)

This integral has no obvious analytic solution, but
since the integrand has the form E~~2 for E «ac,
the contribution from the lower limit of integration
disappears. For p, »aE, we can therefore safely
expand the integrand to first order in E and per-
form the integration, retaining only the contribution
from the upper limit of integration. This therefore
justifies the procedure used in Eq. (25) and (26) of
the main text.

In the high-concentration limit we have to con-
sider the matrix elements of Eq. (30) in the follow-
ing nonequivalent directions (when both uniaxial
and ultrasonic strains are present):

k i [ [001]: x = x,

j) i( [100]: x=y,

k )( [010]:

g =Z

g =Z,

Z —Z

Z —X

Z =Pq

1 1 1k (1[111]: x= ~ (-x+y), y = —~ (x+y)+&z, z = ~ (x+y+z),
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1 1
I 1)[111]: x= —

~2 (x+y), y= ~6 (x-y)+~,z, 1
z = (-x+y+z),

V3

6 (([111]: x= ~ (x+y),
1 1 1

y= — —(x-y)+v-, z, z= ~ (x-y+z),
V6 (BV)

$ II [ill]: x= (x -y), 1
y = ~ (x+y)+Wz, 1z= (-x-y+z).v'3

The following matrix elements are being used

&z Ia., Iz)=6hz,

+ IHeely) =&3dp~ and c.p.

(B6)

d 75AC„= ———(N„—N ) 4(g +g )) . (89)
0

Using (BV) and (B6) in conjunction with Eq. (31) the
' angular averages" of Eq. (32) and Eq. (33) are ob-
tained.

From the final expression [Eq. (34)] of the free-
energy contribution, we can extract the low-tem-
perature limit of the zero-stress value of AC44.- K =

q~ (1+R ) = 0. 69, (B10)

where R = 0. 16 represents the contribution from the
second term in Eq. (BQ).

Equation (B9}can be expressed in terms of the total
number of carriers along the same lines as used
in Ref. 11. The first term is exactly the same as
the one obtained in that reference, while the second
term represents a 16% contribution of the same
sign. Therefore, the first term in (BQ) is the domi-
nant one, and it can be assumed that it also deter-
mines the temperature dependence of 4C«. In-
cluding the temperature dependence according to
Keyes' we finally obtain the expression shown in
Eq. (4}. The factor K for the high-concentration
limit is simply
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