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The coherent-potential approximation for phonons in disordered binary alloys has been used to
interpret the observed Raman spectra of the substitutionally disordered Si-Ge alloys. The spectral
density function is calculated for the q = O optical phonons.

I. INTRODUCTION

Some of the interesting effects in the atomic vi-
brations of solids arise from the presence of de-
fects in the perfect lattice. Inrecent years a lot of
work has been done on lattice vibrations of disor-
dered alloys. The vibration spectra of a large
number of binary and pseudobinary alloys have been
studied by means of infrared absorption and Raman
scattering.! Two distinct types of behavior are
found. For some systems only long-wavelength
optical-phonon frequencies occur which shift, in
most cases, linearly with concentration from the
mode frequencies of the lighter component down-
ward to the mode frequencies of the heavier com-
ponent. In other systems vibration frequencies re-
lated to each one of the constituents can be sepa-
rately found in the middle of the concentration
range. The first, or the one-mode-type behavior,
is obtained for most of the solid solutions of alkali
halides, while the second, or two-mode-type be-
havior, is found in most solid solutions of zinc-
blende-type crystals. Balkanski® suggests that the
long-range average-crystal-potential variation may
have been large enough for the one-mode systems
to shift the eigenfrequencies of each constituent
towards a unique value, and is not sufficient for the
two-mode case. The alkali-halide mixed crystals
are strongly ionic in character, and therefore each
atom is subjected to electrostatic forces extending
much further than the statistical cluster in which
it is embedded. These forces, therefore, average
for each pair of ions and yield a unique frequency
for the mixture. On the contrary, in zinc-blende-
type mixed crystals the first-neighbor interaction
dominates and is responsible for the splitting of
the vibrational spectrum.

A third type of multimode behavior has been re-
ported for the Raman spectra of Ge-Si alloys by
Feldman et al.® over a small composition range
(0-33 at. % Si in Ge) and by Renucci et al. * over the
whole composition range. The three peaks are at-
tributed by Renucci et al. and Feldman et al. to the
vibrations of Ge-Ge, Ge-Si, and Si-Si nearest-
neighbor pairs. Silicon and germanium form a
mixed crystal in all proportions.® Because the
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silicon mass is much less than that of germanium,
one would expect local modes to be associated with
the motion of silicon atoms in germanium. Ger-
manium and silicon have a common valency, so
that such modes are not expected to be infrared
active in first order; however, they should be
Raman active. In this paper we have tried to un-
derstand the experimental observations for the
Ge-Si system by Feldman ef al.® and Renucci

et al.,* theoretically within the framework of the
coherent-potential approximation (CPA)®® for the
disordered systems.

Section II is essentially a brief review of the
work of Taylor, ® which introduced the CPA within
the multiple-scattering formalism for phonons in
disordered systems. This helps us in fixing the
notation and forms the basis of the results of the
calculation. The solution of the spectral function
for the particular system Ge-Si and its comparison
with the experimental results of Renucci ef al. and
Feldman et al. are discussed in Sec. III.

II. GENERAL FORMULATION

The Hamiltonian for the harmonic lattice con-
taining impurities is

H=Hy+H', (2.1)
where
(23]
Hy =22 %)
0 13 2IWO
+% T T bk, kg1 w1’k (2.2)
1,1’ a,B

is the perfect lattice Hamiltonian for a crystal of
Ge or Si, p(lk) is the momentum operator for the
atom of mass M; in the /th unit cell with basis index
k, and uy(lk) is the ath Cartesian component of the
displacement operator for this atom. &Ik, I’k")
are force constants. If we confine ourselves to the
mass disorder only we have

s P11
H‘,ZK; 2 (M(ZK)_MO)'

(2.3)

Such an assumption makes the disorder cell local-
ized. Contributions to H' come from impurity
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sites only. An examination of the optical modes of
germanium® and silicon'? in directions [100] and
[110], obtained through neutron-scattering mea-
surements by Ghose et al.® and Dolling, !° respec-
tively, shows that the optical phonons scale by
numbers which lie between 0. 58 and 0.61. This is
reasonably close to (Mg /Mg,)!”?=0.62. This en-
couraged us to take into account only the mass
change in the present calculation.

The displacement-displacement double-time
thermal Green’s functions!! are defined as

Gi(lk, Uk’ t—1")
27 ug (1K, 2); ug(l'k’, E ) rer
= 2mi{{uy (I, 1), usl'x’, t"]) 0t =¢'), (2.4a)
G (1k, I'k"; t—t")
=27(uy (Ik, 1); ug(l'k’, 61

n

=2mi(u, Uk, 1), u(I'k’, 1)) 0(2 - 1), (2. 4b)
8(f)=1, >0
=0, t<o0.

@, B denote the Cartesian components and () r de-
notes the thermal average. The average over dif-
ferent configurations is denoted simply by (). The
Fourier time transform of G is given by

Gy ik, 1'k"; wtié):z—];;f Gt 1k, I'k"; 1)

Xei(“’*“”dt . (2. 5)

We shall suppress the infinitesimal quantity 5 and
understand that for the retarded and advanced
cases w approaches the real axis from the upper
and lower half-planes, respectively. For a har-
monic lattice, both Green’s functions of (2. 4) for
a system described by Egs. (2.1)-(2. 3) satisfy
identical second-order differential equations of
motion which, when transformed according to
(2.5), give the following equation for G:

= Mw?G g4Ik, 1'k’; w)
v 20 By, (K, 1"K™)G,e(1" K", Uk’; w)

per,y
PUNY

== 8,50(Ik, 1'k")
+ 20 Collk, 1K' w)G,a(1"'k", 1'k"; w), (2.6)

Copllr, 1k’ w)=[My - M(Ix)]w?6,40(Ik, I'k"). (2.7)

For a defect atom at /;«;, it is convenient to de-
scribe the change in mass,

My = M(1;x;) = Mgetixi) | (2.8)
by the matrix

CL*P Ik, 1'k’; w) = Moe 1% w26, ;6(Ik,1 'k NB(IK, 1;K ) .
(2.9)
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e'%i*i) therefore gives the fractional mass change
at (/;k;) occupied by an atom of type p. If the
Green’s function for the perfect lattice [i.e., C=0
in Eq. (2.6)], denoted by P, is known, then one
obtains for G

Goallk, U'k'; w)=Py4lxk, U'k’; w)

+Myew? 27 Py, (IK, Ky w)G,a(sks, 1K' w).

$7
Ks
(2.10)
(s«,) denotes the impurity site. Now
P4k, U'k"; w)
Jk (A P -ib;'(ﬁ;x-ﬁlu,‘l')
1_ 5~ 0*(@)of(Q)e L@

WL W@

N is the number of unit cells and j specifies the 3s
branches, where s is the number of atoms per unit
cell. w;(q) are the eigenvalues and 07(q) are the
eigenvectors of the dynamical matrix for a perfect
crystal. Equation (2. 10) for the Green’s function
of the imperfect crystal G can be rewritten in the
form

Gk, 1'k"; w)=P(lk, I'k"; w)

+ 2 P(lky Liky; w)g(lle, Laka; w)g(lz"zyl”‘,; w),
iy

K1pK2
(2.12)
where the defect matrix is given by
Cllx, U'k"; w)= 2 CH*(Ik, I'k"; w).  (2.13)

I{Ki_

Equation (2. 12) is the usual Dyson equation with C
as perturbation. If we introduce the f matrix,

Clky, LKy w)
1 ‘2(11"1, loka; w)I_’(lle Lok w) ’
(2.14)

Tk, Loky; w)=

we can write
Gk, U'k’; w)=P(lk, I'k’; w)

+ 20 POk, 1ky 0)T(ky, Lk o)
11,13 -
K1rk2

XP(lpky, 1'k’; w).  (2.15)

Averaging (2. 15) over all configurations, we have
(G(Ik, I'k"; w) =PIk, I'k’; w)

+ 20 Pk, Liky; w)T(lky, LKy @)

11y I
K1) Kg

XP(lpky, Uk’ w). (2.16)

On iterating Eq. (2.12) and averaging, we have the
result in terms of the self-energy Z:

Gk, I'k"; w) =PIk, I'k’; w)

+ 20 PIK, Liky; @)Z (U4, LKy; ©)

tlp
K1y K2

X(G(lxK2, 1'k"; w)).

(2.17)
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Now we make an approximation E for the actual
self-energy Z. A new Green’s function is defined
in terms of E as

GOk, 1'k"; w)=P(Ik, I'k"; w)

+ 2 Pk, 1k W)E (K4, LKy, w)

11y
K1sKy

XGlpkp, L'k ) . (2.18)

Then writing Eq. (2.12) in terms of G° rather than
P, we obtain
Gk, U'k’; w) =Gk, I'k"; w)
+ 20 Gk, Lyky; W)V 122 (11K, Loy @)
g
XG(ZZKZ) l,K,’ w) ’

(2.19)
with
V22 (14K, Loy w) = —E(liky, Lok w)

for a host atom at Ik,
= =E (1K), laky; ) (2. 202)
+ Mo€w®d(l Ky, Iokp)1
for a defect atom at l,k,.
(2. 20b)

In the single-site CPA we choose our system
such that besides the site, say, (I«) (which has the
liberty of being occupied by the host atom or the
defect atom), all the rest of the sites are configu-
rationally averaged. If we identify E with the exact
Z, then G° becomes equal to the exact (G) and the
self-consistency condition for determining E is®

2 e?Td, w)=0. (2.21)

»
¢’ is the concentration of the p-type atoms in the
lattice and hence is proportional to the probability
of the occurrence of a p-type atom at a site. T is
calculated in terms of the modified Green’s function
G’. Equation (2.21) is

(1-c)T"+cT=0,
with

VP
P_ —

T
where % and d stand for host and defect, respec-
tively. The explicit form of V? is given in Eq.
(2. 20) and on simplification we get

- 1 - - -1
E(q, w)(bﬁ‘/:z G(a, w)E(q, w))
q

X(I_ - (1 - ¢)Mpew?G"(w)
+ J%Z 90(6, w)g(a, w)):Mocewzl. (2.22)

q

where
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G(w) =Gk, IKk; w) =1%Z_3 G%q, w). (2.23)

Thus E(q, w) is independent of g, so that
32 GG WEG o) =CAE(W),
Q

and on further simplification Eq. (2.22) becomes

E(w) = Mocew’l - E(w)[Mpew®] -E(w)]G(w)=0 .
(2.24)
We write

E_l(w):M(,E(w)sz_, (2. 25)

convert (2. 18) into q representation, and change the
unperturbed Green’s function (2. 11) from normal
coordinate representation to gj representation.

This enables us to write

__1__ (w’) '
Go(w)-MO fm dw’, (2. 28)
with
P =y I oy @ - o'}, (2.27)

which is the phonon density of states of the unper-
turbed host crystal. Writing (2. 26) as

G%(w) = (1/Mp)§%(w)

and using (2. 25), we write (2. 24), finally, in the
form

€(w) - c€ = €(w)[ € — €(w)]w?g%w), (2.28)
where
g"(w)=f 1 _E((‘Z’))] — dw’. (2.29)

The averaged Green’s function (G(q, w)) is spe-
cified by the spectral density

(2.30)

We can cast the spectral density function into a

aldj, w)=-7"1Im(G(qj, w)).

fornmr which is convenient for calculation. From
Eqs. (2.26) and (2. 27) we have

0 _ 1 f 5{“’1(*) - w'} ’
G (w)_NM(,% —,[—J—;w i@ —e” %' (23D

G%w) may be written in terms of the modes speci-
fied by q, j as

¢w)=3 T '@, ), (2.32)
')
where
Go(a.i; w) = (l/MO)
X({w?[1 - Re&(w)] - wi(Q)} - iw?* Im&(w))™ .
(2. 33)

In the CPA
G@j, w)=G6%qj, w).
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Separating the real and imaginary parts in (2. 33),
we get for the imaginary part

Im(G@Jj, w)= ﬁlo

y w? Imé(w)
{0 [1-Re&(w)] - w3Q)P + {wIme(w)P -

(2. 34)

This gives the spectral density, which can be
evaluated by calculating the self-energy from the
self-consistent equations (2. 28) and (2.29). The
function p(w’) has been taken from Dolling and
Cowley’s calculations'? based on their neutron
spectroscopic measurements for Ge and Si. The
density of states is taken as a histogram of very
closely spaced points and integration of (2.29) is
done using Simpson’s rule, with an initial appro-
priate choice of €(w). At low frequencies one can
expect from (2. 28) that Re€(w)=~ce (€=0.613 for a
Si-Ge alloy, with Ge taken as host). So the start-
ing point is taken at low frequency, and as an ap-
propriate choice of €(w) we take ce as its real part
and give some sufficiently large value for its
imaginary part in order that the final result may
converge at a complex root. Equation (2. 28) is
then solved. The value of €(w) thus found is again
fed back into (2. 29) according to the scheme speci-
fied in the Newton-Raphson method applied to a
function of a complex variable. Equations (2. 28)
and (2. 29) are thus solved by this iterative proce-
dure. Thereafter we calculate the spectral density
function from (2. 34) for q =0 optical modes of Si-Ge
alloys. We then proceed to higher frequencies in
small steps of w, using the previous value of €(w) as
the starting point at each stage. The most difficult
region for solving (2.28) and (2.29)is that in which a
gapdevelops in €(w), where €(w) varies rapidly with w
and even diverges at higher concentrations. In the
process of the calculation, as soon as we reach the
gap from lower frequencies, we switch over to the
top of the band and then come down in small steps
of w till we again reach the gap. This way we
avoid the region of the gap where the calculation
diverges. Around the gap the Re€(w) varies tre-
mendously in a very small frequency range. In
this range the frequency grid is made very very
narrow. The results are discussed in Sec. III.

III. RESULTS AND DISCUSSION

The peaks of the spectral density function for
optical modes at q =0 in this calculation give in-
formation about the zone-center optical vibrations
of alloys of Ge and Si, either of the two taken as
the host crystal. For low concentrations of Ge in
Si, one of these may be identified as being due to
the heavy defect resonance and the other is near
the optical frequency of Si. In our calculations we
find that the spectral function shows two distinct
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peaks. In the impurity band region the spectral
function is not sharply peaked, and peaks are too
broad to be called peaks. As the defect concen-
tration increases, the weaker peak becomes merely
a shoulder on the larger peak (cf. Fig. 1). At any
concentration, the more prominent peak is at-
tributed to the majority atoms. With germanium
taken as host lattice, when silicon is added in small
quantity it gives risetoa very weak and broad reso-
nance, but this resonance gains prominence as
more and more silicon is added. At the middle of
the concentration range, the two peaks are of com-
parable prominence, and as more Si is added the
lower peak gradually loses prominence while the
upper peak becomes narrower. Eventually the
lower peak appears only as a shoulder to the upper
peak, which approaches optical frequency for pure
silicon. When Si is taken as host and Ge is added
to it, the similar structure of peaks is seen
throughout the composition range with a shift in the
frequency scale. The peaks at all compositions
are shifted to slightly higher frequencies and the
amount of shift remains almost constant. This
shift may be attributed to the changes in force con-
stants during the alloying process. In our calcula-
tions we have not considered the changes in force
constants that accompany the alloying process.
When Ge is taken as host we have assumed the

(@)
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#1G. 2. Plot of (a) frequency of the upper peak vs Si

concentration and (b) frequency of the lower peak vs Si
concentration [solid line denotes Si as host, broken line
denotes Ge as host, dot-dash line denotes the average
with concentrations as weighting factors, and X’s denote
the experimental measurements by Renucci et al. (Ref.

4)].



4676

force constants to be the same for the alloy as for
pure Ge. Similarly, with Si we take the alloy force
constants to be identical to those of Si. In order
to take into account in an approximate manner the
force-constant changes due to alloying, we have
done all calculations by first taking Ge as a host,
then taking Si as a host lattice, and finally taking
the average of the two values after weighting them
with the concentration of that constituent which is
regarded as host in the corresponding calculation.
This appears to be reasonable and has the appear-
ances of a virtual crystal approximation for the
force constants. We shall mention only these
weighted averages of force constants in our further
discussion.

The variation of the frequencies assigned to the
peak in the spectral function with the variation of
the Si concentration is shown in Fig. 2. The lower
peak shows only slight variation with composition.
The frequency decreases as the silicon content in-
creases. The maximum variation, when Ge was
host, was observed to be 16 cm™; when Si was
host it was 20 cm™. These variations for the fre-
quency of the upper peak were 76 and 74 cm™!, re-
spectively, in the two cases. The slight decrease
in the lower frequency with increasing Si content
obtained in our calculations does not agree with the
experimental results of Chang, Lacina, and Per-
shan, '® but is in agreement with the observations
of Feldman et al.® and Renucci et al.* At 33 at. %
Si the calculated downward shift is about 7% of the
Ge optical-mode frequency. Xinh!* has treated
Raman scattering of light by crystals of the dia-
mond structure containing substitutional random-
mass defects and no force-constant changes. He
obtained theoretical expressions for the Raman
scattering using a self-energy calculated to lowest
order in the concentration of the minority atoms. !*
His results should be valid, therefore, only for
small concentrations. These results, when applied
to Si in Ge, show that the Raman-active localized-
mode frequency for small finite concentrations is
slightly higher than the localized-mode frequency
for a single mass defect. The theory also predicts
that the peak in the Raman spectra of the disordered
crystal which corresponds to the optical mode
(q=0) of the perfect Ge crystal should shift to lower
frequencies with increasing Si concentration.

VIPIN SRIVASTAVA AND S. K.
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As may be seen from Fig. 2, the upper peaks
obtained by Renucci ef al., which they assign to
be Si-Si nearest-neighbor vibrations, are very
close to the upper peaks obtained by us taking Si
as host, i.e., assuming atoms to be joined by the
Si-Si force constant in the alloy. Similarly, the
so-called Ge-Ge peaks of Renucci ef al. fall very
close to our peaks obtained by taking Ge as host
where Ge-Ge force constants are assumed to pre-
vail in the whole lattice. The upper peaks obtained
by taking weighted averages fall close to the upper
peaks obtained with Ge base at small concentrations
of Si and move close to the upper peaks obtained
with Si base as the Si concentration increases.
Similar behavior is seen with the lower peaks also.
The averaged behavior in both cases is pretty well
in agreement with the behavior obtained experimen-
tally by Renucci ef al. A better agreement of the
calculation with the experimental measurements
could be obtained if, along with the mass change,
force-constant changes are also taken into account.

It is also worth noticing that many of the peaks
have characteristic asymmetry; they are sharp on
the high-frequency side and broader at lower fre-
quencies. This is consistent with the CPA theory.
The CPA gives the sharp edges of the bands of the
density of states, consequently lopsided spectral
functions for the phonons belonging to the q values
at these edges.” We are concerned with the top of
the optical band; hence the peaks obtained by us
are sharp at the high-frequency side.

Feldman ef al. and Renucci ef al. have assigned
the three peaks to the vibrations of the pairs
Ge-Ge, Ge-Si, and Si-Si. Our calculations are
based on the CPA, which is only the singe-site
approximation treated self-consistently. This ap-
proximation by its nature smooths out the struc-
tures due to pairs or clusters, so we do not assign
the peaks in our results to the pair vibrations.

The nature of our upper and lower peaks is in cor-
respondence with the upper and lower peaks ob-
tained by Feldman et al.and Renucci et al.
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