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constitutive equations exactly and computed the very complex
expressions for (, and gy numerically. However, we have found
that („and g, change dramatically when seemingly justified
approximations are introduced. The only approximation we
have made is the constitutive equations themselves, since they
only approximately describe what happens in a real semimetal.

'OS. Rodriquez, Phys. Rev. 130, 1778 (1963}.
"See also R. A, Gordon, Ph. D. thesis (Brown University, 1972)

(unpublished), where this equivalence was also noted. It should
also be pointed out that Quinn in Ref. 2 applied the formalism
of Kontorovich to bismuth. Since the present paper utilizes the
collision-drag theory, a mere comparison of our results and
those of Quinn would not be meaningful. Instead, one would

have to decide which of the two approaches is the correct one
in the case of compensated semimetals. In the present paper we

did not intend to answer this fundamental question.
"See for instance A. L. Jain and S. H. Koenig, Phys. Rev.

i', 442 (1962).
' In Ref. 2 Quinn used m, = 0.01m and m„= 0.2m,

instead of our m, = 0.1m and m„= 0.2m. For these values

one has ct)„v;&y 1 &geo, ), vz, a condition necessary for the
propagation of weakly damped helicons. %'e have also
computed $y for m, = 0.01m, and m „=0.2m, however the
good agreement with the experimental data was lost and g, vs

80 still did not show a maximum. In addition we have plotted

g+( = g, +i(&.(
vs 80 (as is done in Ref. 2). This quantity also

does not exibit a maximum, the reason being that the initial
rise of (y with magnetic field is much steeper than the initial
decrease of („.

"%'e would like to emphasize here that, although the local
magnetoconductivity tensors in the quantum regime are
identical to those in the classical regime, we anticipate a
significant difference in the collision-drag forces in the two
regimes.
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The deviations from Hooke's law in whiskers in elastic uniaxial tension experiments are related to
higher-order elastic constants. Vfe derive this relation for an arbitrary crystal system and

whisker-tension-axis orientation to fourth order in the strain. The deviations from Hooke's law are

experimentally found for copper and nickel whiskers. The results are compared with other methods of
determining third-order elastic constants.

I. INTRODUCTION

The higher-order elastic constants are of in-
terest in determining the mechanical properties
of materials. They can be measured ultrasonical-
ly, either by the effect of pressure on the velocity
of ultrasound or by the generation of harmonics
during the passage of ultrasound through a crys-
tal. They can also be measured in a, 'static"
test, by observing the deviations from Hooke's law
in elastic materials. So far this latter method has
been used only in fused-quartz fibers and in "vrhisk-

ers. " It is this static method that is treated in,

this paper.
In static tests the accuracy is usually much less

than in the ultrasonic methods, but higher strains
are available, so that semiquantitative estimates
of fourth-order elastic constants can be made.
There is also some question about the effects of
dislocations and other defects on the results of
ultrasonic tests. In these static tests it is doubt-
ful that dislocations can play a large role„since
the large uniaxial stress (of the order of 10 N/tn )
mould move any dislocations out of the crystal.

Section II treats the theory of these static experi-
ments, extending the theory of Murnaghan to ar-
bitrary crystal symmetry and arbitrary crystallo-

graphic orientation of the fiber axis and to third
poorer in the applied stress. A particularly sim-
ple form is derived for both the quadratic and
cubic terms of a generalized Hooke's law for
fibers. Section III treats a modification of the ex-
perimental procedure of Pomell and Skove and

Sec. IV reports net results for copper and nickel
vr hiskers.

II. THEORY

%e assume that all the work required to deform
the fiber is stored in the body as elastic energy,
and that none of this energy is dissipated. If rve

expand the stored energy function 4 in terms of
the Lagrangian strain ti, 4( ti) can be written as

vrhere

() )t jkl qif lktl
3
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At equilibrium, zero strain, and room temperatuxe
we take Co= 0. Equilibrium implies (&4/es))& o= 0.

Murnaghan, using the principal of virtual work,
has derived the relationship between the stress
per unit initial area T and the strain g:

where J;„is a component of the Jacobian matrix
between the initial and final coordinates of a point
in the body. The derivatives of 4 at zero strain
are

order elastic constants. Using this coordinate
transformation, the elements of the strain tensor
are, to third order in P,

I IP+ VIIP + VIII P + QI P + ~IP2 I 2 tl

whexe the gI and gI have been separated for con-
venience and are listed in Table L Using (1) and
(3) and the expansion for I) (the Einstein summation
convention is used in this paper; whenever terms
with repeated lower-case alphabetical indices ap-
pear they are summed from 1 to 3; whenever terms
with repeated upper-case alphabetical indices ap-
pear they are summed from 1 to 6),

2 CIJ ~I~J'+ 6 IJ'K~I~I'0 g+ 24CI JQI, gIQ J'QI(„'gg

where n is the order of the derivative and x is the
thermodynamic coordinate held constant in the
measurement of C",», , which in these experi-
ments is the temperature T. Thus 4= poI', where
po is the initial density and E the Helmholtz free
energy per unit mass. It is convenient to use the
contracted index notation in which 11-1, 22- 2,
33 3, 23 4, 13 5, 12 6. In this convention,

I),I = 2 (1+5)I ) I)I,

IJ'coo D I J'' T

where 5&& is the Kronecker 5. Tensor coordinates
will be denoted by lower-case indices, and co-
ordinates in the contracted notation will be denoted
by upper-case indices. Ne will have occasion to
use the compliances

+6 CuXI. 'JPr JI.P ~

1 S

to third order in P.
For uniform uniaxial tension in the (001) direc-

tion, the stress per unit initial area is given by
TI =P5sI. To first order, the relation between
stress and strain (2) becomes

P~SI-CIS JP-
Multiplying through by (C I)KI summing on I,

(C )Ks oK~

which gives the obvious identification

&X= SSE:.

To second order, we then have

SI ( P ) sf+ CII( zzP + )I)+ 2 CIIK0IoKP

Multiplying through by (C ')KI, and summing, we
find

%'e assume the uniaxial tension to be applied
along the xs ((001)) axis of the sample, and the re
lation between initial coordinates of a point in the
body (a, ) to be related to the final coordinates (x, )
by an expansion in terms of the applied force per
unit initial area (P) by

xs ——(1+(TIP+os(P + ass)P + ~ ~ ~ ) as2 S

+ (1+osP+ ossP + vsssP+ ' '' )as,2

xs (1+osP+ v22P + osssP + ' ' ' )a22 S

+ (1+osP+ossP +osssP + ~ ~ ~ )as,2 S

&2= (1+osP+ossP +osssP + ~ ~ ~ )as2 S

+(1+osP+ossP +osssP + ~ ~ ~ )ag
2 S

+ (1+osP+ ossP + osss P + ~ ~ ~ )as2 S

ere the OI's are expansion coefficients whic
will be xelated to the second-, third-, and fourth-

TABLE I. Elements of strain matrix.

q,'=2(o', +oss)+2o',

~2 = &~02+&e~+ 204

'Os =kos

~4 +3 4

~S =030S

qs' = )os(o~ + os) + 2o4os

= 0'10'if+ o'eaee+ «so ss

&2 =02022+ &eoee+ 404044

~3 =&3O'33

~4 +3+44 ++4+33

~S =030'SS+OSO'33

ne -~&e&~~i+~»~+ ~ace~«+~»

+2 ~04&ss+O s044~

SSL SSS ~vP & CIJXS~I SSJ'SSI(,

For experimental reasons, a nonlinearity param-
eter 5 is defined:

( OQ1= oss(SSS) = —2 —2(Sss) CIIKSSISSISSK,

where the subscript 001 indicates the tension is
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applied to the sample along the (001) crystallo-
graphic direction. It is possible to rotate this re-
sult to allow for cases when tension is applied
along other crystallographic directions. For a
crystal whose long axis has a direction cosine with
respect to the crystallographic axes as&, the non-
linearity parameter 5001 is given by

3 1
QQ1 3 Z Z Z

where

+@=+3&+@S&y.r ~

SzK= (2 —5Iz) SIz, K

(not summed on 8, j)
33 3$ 3j Sk&l k jul

To third order in P, the relation between stress
and strain is

P58z+ (o88P —o8P +P) 58z+CzrozzKP +qz

+ CzzKozP(gK+P oKK)+~CzzKLozoKoLP .I 2 1 3

As before, we multiply by (C ')„z and sum, getting

NNN (S33 83)SN8 —P 'gN

—CzzKS„z Spz(P &K+oKK)

6 Ci JKg S„ISsJ Ssz Ss

It is again convenient to define a nonlinearity param-
eter f for a sample whose axis lies along the (001)
direction. This g is a combination of the second-,
third-, and fourth-order elastic constants, where-
as 5 is a combination of the second- and third-or-
der constants:

-3
~001=o883(S88)

= —2(1+ 25001)+ 3(S88) CzzKS3zS8zBK

—
8 (S88) CzzKL S3zS3zSQKSQL,

where

B» CLNNSQLSQNS
——KN .

As before, for other crystallographic directions,
&001 is found by rotating axes to be

~001 2(1+ 2~002)+ 3(S33) CzJK+zozPK

8 ( 33) ZZKLOZ+Z K L ~

PK C NNP+N NPKP

In tensile experiments it is the extension (e),
the change in length of the whisker divided by the
length of the whisker, in the direction of the ap-
plied force that is determined experimentally. If
the force is applied in the (001) direction, e8 is
given by

e8 ——(K3 —a8)/a 8.

Along the x8 axis a, =a8= 0. Thus from (4)

The method used to determine 5 and f in these
experiments is a modification of the technique of
Powell and Skove in which a small low-frequency
oscillatory stress is applied in addition to a large
stress. The response of the sample to both the
static and the oscillatory forces is monitored and
those data are then related to the point-wise de-
rivative of the stress-strain curve.

A diagram of the apparatus is shown in Fig. 1.
It is a modification of the tensile machine of Bren-
ner. The static force was applied by a large elec-
tromagnet acting on two ceramic magnets and the
small oscillatory force by a separate smaller
electromagnet acting on the same magnets. Two
permanent magnets were used to help cancel non-
linearities in the relation between the magnet cur-
rent and the resulting force. For the large elec-
tromagnet these nonlinearities were less than 0. 1%
and they were less than 0. 01% for the smaller
electromagnet.

—D
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FIG. 1. Top-section view of apparatus: A, mounting
block; 8, whisker mount; C, differential transformer;
D, leaf spring; E, oscillating electromagnet; F, constant
electromagnet; G, ceramic magnet; H, quartz rod; J,
spring support; K, quartz base plate.

$0SP + O'33 P + 0 SSSP ~
2 3

It is simpler to write as in terms of Es, Young's
modulus for the (001) direction:

1 "1
ES SSS S

e8 ——(P/E3)+ &001(P/E8) + g 001(P/E8)

or in an arbitrary direction,

e8= (P/E )+ 5ppz(P/E ) + $001(P/E )

where E', f'001, )001 are calculated as before.
These equations have been derived for second

order in the special cases of isotropic symmetry
by Murnaghan, 8 and of cubic symmetry in the (100),
(110), and (111)directions by Seegar and Buck.
Table II gives expressions for 5 and g in these di-
rections for the special case of cubic symmetry.
These results are somewhat simpler than those
of Seegar and Buck and of course are extended to
fourth order in the case of f.

III. EXPERIMENTAL TECHNIQUE
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TABLE II. The parameters p and f for special orientations with cubic symmetry.
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6PP4 = 63ppspppsp=
—

P
—$44 [Csgs(X + $}+ 3Cf43(X +X +X) + 3CgssX 1~

6pn= $ vF [Cf44(F +4$js) +3Csgp(Y +2$43 Y +4$43 Y) +6C433$43 Y +3C444$43$44+3C44P44)]y

64((- —$- gG [(Cn4+ 6 C(43+ 2 C433)Z + 3(C(44+ 2Cgps)$44+ 2C4M$44],

Lpps= Lsppsppspp= 2(1 +26pp() +Sos (C 4f 4(zB4+X Bs) + C(43[(X +2X)Bf+ (3X +2X+1)B3]

+C433(X Bs+2XB3))—Sgs[xCsssg(X +y)+ XC433(X +X +X)+Csup(X +2X ) + 2C(433(2X +X )],

( fpf
— 2 (1 + 26434) +4F (C4g4(yF pg +$43ps) + C443[(a Y +2$&3Y+2$43)p4 + (yY +2$43 Y)ps]

+ Cf33 (2$&3Yp& + sF ps) + C&44(zSfpps +$&3$44ps) + C&sp(k$44 p& + $44 Ypso

—TF [Cffff(8F +Sf2) + Cfff2(yY +Sf2Y +4Sf2 Y) +3Cff22(SF +Sf2Y )+3Cff23(Sf2Y +Sf2Y )

+ )Cn44$43$44+ 3 C(344$43$44 Y+ g(Cgspp+ C4344) $44 Y +
lt} C4444$44] ~

9
( 4 f f

-2 (1+ 26 &&&)
+ YG [(Cff f +6 C(43 + 2 C(33}Z ps + (C444 + 2 C(pp) ($44ps + 2$44Zps) + 2 C434$44p4]

+ XG [(C444g+8C(ns+6C4433+12Cu33)Z +6(C(444+2Cg(pp+4C(344+2Cgsps)$44Z + (C4444+ 6C4444}$44+ 24C4434$44Z],

where

X=Sf2/Sff9 Y=Sff+Sf23 2 Sff+2Sf2, F= Y+ gS44,

G=Z+ $44~ Bg = —Sgs(26ppg+3), B3=$44 [(C444+2Cf33}(X +X +X) + C443(6X + 9X +3X+1)]

pf Cf4 4 (zY + $43) + gC443(F + 2$43Y + 4' Y) + IC433$43Y + zCg44$43$44+zC443$44F,

ps- 3 (Cgn+6Csgs+2C433)Z +
3 (C344+2C443)$44Z~

Ps= C444($$nF +$&3Y-Stp) +Cup(yY +3$&3F +2$43)+ yC433(Y —$43F +4$uF}+kC444$44(Y-Sgp)

TP4 = (C444+ 2C444}$44Z+ C434$44.

P, = Cf44Sf2~~+ Cf66S44Y2

)(=K44 cos(&f + Q)

2 Ks+K~ 2
2 1/2

2 2m + (0 R
m

cos(&A+ Q).

(6)
K& and K& are the spring constants of the whisker
and the apparatus, respectively, ~ is the frequency
(rad/sec) of the driving force, R is the damping

The transducer for the displacement of the rod
(and hence the extension of the whisker) was a dif-
ferential transformer. The output of the differen-
tial transformer was linear in displacement over
the range of an experiment to better than 0. 01%.
The steady displacement was measured with a dif-
ferential voltmeter and the oscillatory displace-
ment with a lock-in amplifier whose output drove
the smaller electromagnet. In no case was the
oscillatory force more than 5% of the maximum
steady force.

The displacements used in the experiment were
small, and extensive thermal and mechanical shield-
ing was necessary. Wherever possible fused quartz
was used in the construction of the puller and dur-
ing measurements the apparatus was enclosed in
a styrofoam box. The whole apparatus was mounted
from the ceiling, forming a pendulum whose period
was about 3 sec.

The puller is essentially a driven harmonic oscil-
lator and its response y can be described by

constant, m is the mass of the pulling-rod as-
sembly, K„is the measured spring constant of
the sample-puller system, t is the time, and Q is
the phase. The term K„is proportional to the out-
put of the lock-in amplifier. From Eq. (6)

Ks, ——(Kps —&O R ) +m&0 —Kz.2 2 2 1/2 2

If K& is to be measured accurately it is impera-
tive that R and ~ be small enough so that the term
sPR' can be neglected. R was found to be less
than 20 g/sec. Equation (7) indicates that there
is an optimum value for co for which

mm -K&=0.2

Thus the optimum ~ is the resonant frequency of
the apparatus when no whisker is present. For the
present apparatus, the moving mass was 12 g and
the resonant frequency about 4 Hz (&u= 25 rad/sec).
At this frequency & R is indeed negligible with
respect to K„and K~= K„.

The Cu whiskers were grown in porcelain boats
by hydrogen reduction of Cu halides in the manner
described by Brenner. X-ray analyses showed
that only whiskers whose growth axes were in the
(001) direction were produced from CuBr Both.
(011) and (001) whiskers in about equal numbers
were produced from CuCl, and (111)and (001)
whiskers in about equal numbers were produced
from CuI. This dependence of the growth axes on
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the source material has also been reported by
Powell and Skove. Most of the Cu whiskers used
in these experiments were grown from the reagent-
grade Cu halide. Those whiskers designated as
pure, however, were grown from the high-purity
(99. 999%) Cu halide obtained from Johnson, Mat-
they, and Co. , Ltd. , London, England. It is un-
likely that the whiskers grown from the high-purity
material were much purer, however, since resid-
ual-resistivity ratios (+00„/R4.,„=70) were inde-
pendent of source material.

In addition to the nominally pure Cu whiskers,
several doped samples were studied. The Ag-doped
whiskers were grown from Cul to which 0. 5-mole%
Agl had been added. Zn-doped samples were grown
from CuBr to which small pieces of metallic Zn

had been added. The doped samples were grown in
the same manner as the undoped samples.

The ¹iwhiskers used for this study were also
produced by the halide-reduction technique, in the
manner described by Bailon. ' These whiskers
were grown in ceramic boats which had been baked
out in an attempt to remove volatile impurities.
Reagent-grade NiBr& was used for the growth of
Ni samples and only (001) whiskers were found.
After growth all the samples were stored in an
evacuated desiccator to retard oxidation and con-
tamination.

The whiskers were held in the pulling apparatus
with diphenyl carbizide which was melted around
the whisker. All whiskers were checked for glue-
joint slippage by applying an extension of about
0. 5% for about 15 min. Several samples were held
at 1% extension for 12 h with no change in the re-
sults before and after the long-term stress.

If y represents the output of the lock-in amplifier,
then y ~de/d(P/E) or y ~ 1/K„. From (5),

y 1+ 25'(P/E')+ 3g'(P/E')'.

If yo represents the lock-in amplifier output when
P = 0, it is possible to define a dimensionless
parameter M such that

amplifier, and C„C2, and Cz are the fitting param-
eters determined by the least-squares analysis.
It can be shown that

Yo Cb

M = (y —C~)/C~,

5= (C/C&)LoKw/2y,

g = (CgC ) (L K ) /Sy

where K&=K&-K~ J 0 is the initial unstretched
gauge length of the sample, y is the response of the
differential transformer &L/4 V, and all the other
terms have been previously defined. K„can be de-
termined from the slope of the force-elongation
curve which was taken separately.

The largest uncertainty in the results came from
Lp, the sample gauge length measurement and was
about 8%. This was due to the difficulty in judging
exactly where the glue contact began.

In order to judge the effect of still higher-order
elastic constants, a plot of the relation

M/I = (y —C i)/C tI= (Ca/C &)+ (C3/C x)I
was made. The intercept and slope are related to
5 and &, respectively, and any effect of higher-
order constants will show up as a deviation from
a straight line. No significant deviations were
found, as illustrated in Fig. 2.

IV. RESULTS

The data for each whisker are given in Table III.
The uncertainties in 6 and f are mainly due to the
standard deviations to the least-squares fit to (8).
The scatter in the data as well as the apparent

I
'

I
'

I
'

I
'

I
' l

& 101&

This definition is advantageous since the constant
of proportionality between y and K„ is not precisely
known, since the whisker cross section is not well
known. The only problem that now remains is to
relate this result to experimental quantities and
to determine yo.

A least-squares fit of the data was made to the
function

0 -s--

&OOI &

a I s l I i I ~ I e I a

.2 .4 .6 .8 1.0 1.2
IO*P/E

y = C j+ C2I+ CGI,2 (8)

where I is i —io, i is the instantaneous current in
the large electromagnet, io is the current in this
magnet at which the sample is just tight (i. e. , at
P= 0. ), y is the instantaneous output of the lock-in

FIG. 2. Plot of the meter reading M (proportional to
the slope of the stress-strain curve) divided by the mag-
net current I (proportional to the applied stress) vs I for
a copper whisker. The intercept is related to the third-
order elastic constants, the slope to the fourth-order
elastic constants, and the linearity of the plot shows that
the effect of higher-order constants is negligible.
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TABLE III. Values of g and g for each sample. TABLE IV. Predicted values of 6 and g.

A. Copper (001 )
—3.5 + 0.2
-4.2+ 0.4
-4.2+ 0.3
-4.3+ 0.2
—4.3+ 0.7
-4.4 + 0.3
-4.5 + 0.2
—4.6 + 0.2
-4.9 + 0.2
—5.0+ 0.5
—5.1 + 0.4
—3.9+ 0.2

B. Copper (101)
8.3+ 0.4
9.2 + 0.6

10.3+ 0.8

2'7 6 11
29+ 21
71+ 15
55+ 5
75+ 7
66+14
67+ 7
86+ 10
89+ 11
90+ 28

128+ 16
27+ 4

182 + 22
193+ 62
192 + 73

&~ %)

0.76
0.61
1.20
1.66
1.33
1.20
1.26
0.97
0.82
0.85
1.07
1.88

0.8
0.6
0.5

Source

I
I
Cl
Cl
Cl
Cl
Br
Br
Br
I
Cl
CuZn

Cl
Cl
Cl

~OOI &OOI &191 Ref.

A. Copper
-4.4 ~ 0.2
-3.3+ 1.3
—4.6 + 0.2
-2.2 + 0.3
—6.9

8.9+ 0.7 2.1+ 0.7
4.8 2.1

10.7 + 0.1 3.8 + 0.9
7.2 + 0.1 2.7 + 0.3

66+ 25 184 + 25 20 + 10 Present

70
35

122

Present
B. Nickel
—2.8 + 0.6 ~ ~ ~ 30+ 20 ~ ~ ~ ~ ~ ~

—0.7+ 0.5 ~ ~ ~ ~ ~ ~ 19 ~ ~ ~ ~ ~ ~ C
—6.6 ~ ~ ~ ~ ~ ~ 119 ~ ~ ~ ~ ~ ~ d

Powell and Skove (Ref. 4)
"Using C&& and C&&& of Hiki and Granato (Ref. 2) with

the theoretical values of C&&z& of Rose (see Ref. d) to
predict fop'.

'Using C&z and C~zz of Salama (Ref. 11) with the theo-
retical values of C&J'I of Rose (see Ref. d) to predict
&oos ~

Using the theoretical values of M. F. Rose [Phys.
Status Solidi ~17 K199 (1966)].

C. Copper (111)
0.9+ 0.1
1.4+ 0.4
2.2 + 0.3
2.6 + 0.3
2.7~ 0.3
3.9 + 0.3
0.8 + 0.2
1.2 + 0.1
1.8 + 0.1

D. Nickel (001)
—2.3+ 0.3
-2.4 + 0.2
—3.2 + 0.3
-3.7+ 0.4
-4.1 + 0.6

101+ 14
95+ 36
41+ 36
4~ 17

—5+8
5+ 20

14+ 4
85+ 13
23~ 5

11+7
36+ 8
46+ 10

142 + 28
43~ 30

0.66
0.70
0.54
0.56
0.79
0.56
0.76
0.81
0.91

1.3
1.3
1.5
0, 5
0.9

I
Ia
I
I
I
CuAg
CuZn
CuZn

Br
Br
Br
Br
Bl

'Denotes high-purity halide used in growth.

relationship between the magnitudes of 5 and f may
be due to the presence of impurities in the sam-
ples. To test this hypothesis several doped sam-
ples were studied. From Table III it is seen that
the magnitude of 5 for doped samples tends to be
smaller than that for the undoped samples. It is
also seen that f may be influenced by the presence
of doping agents. It does not seem that this ex-
plains all of the scatter, however.

It is possible to calculate 5 and f using the values
of the second-, third-, and fourth-order elastic
coefficients measured or calculated by others. It
turns out that 5 is relatively sensitive to small
variations in the second- and third-order elastic
coefficients. A 1% change in the values of Szz and

C~~ of Hiki and Granato causes changes of 4, 3,
and 10% in the calculated values of 5am, 5a», and

5»& respectively. Salama" studied the elastic
constants of Cu containing 9-at. % Ni and measured
a change of about 5% in the values af both the sec-
ond- and third-order elastic constants (Cqz and

Czzz). Although the amounts of impurities and

doping agents in the present samples are unknown,
it appears that the nonlinearity parameters may be
appreciably affected by the relatively small im-
purity concentrations of these whiskers.

Figure 3 is a plot of M vs P/E for Cu using the
mean values for 5 and P determined by the present
experiments. It was found that (001) and (111)
whiskers generally failed at lower stresses than
(110). The mean values of 5 and g are given in
Table IV.

Values of 5 and f were also calculated using the
values of the second-, third-, and fourth-order
elastic coefficients determined or calculated by
other researchers. The results of these calcula-
tions are also given in Table IV. The uncertain-
ties in these values of other workers were obtained
by using the extreme values of the third-order
elastic constants (Czzz) given by the individual re-

I I I I
I

I I I 1 I 1 I I

Mg
I

(mA)
'

1.3

1.2

30 60
I {mA)

120

FIG. 3. Plot of the mean data for the three orientations
of copper whiskers. The meter reading M is proportional
to the slope of the stress-strain curve, and P/E is the ap-
plied stress divided by Young's modulus in the direction
of the whisker.



M. %'. RILE Y AND M. J. SKOVE

TABLE V. Constants needed in conversions.

Constant

T
Po

(ee/er) p
Cp

(ec,/er),
(es„/er),
(es„/er),
(es4,/er),

Ni

300 K
8.90 g/cm
1.68x 10"5 K ~

1.2 x 10 K"

3.85 x106 erg/gK
1.4x103 erg/g K2

6.38x10 6 cm /dynK
-2.99x10 ' cm/dynK

5, 07x10 ~6 cm /dynK

Source

300 K
8.92 g/cm
1.27x10 5 K ~

1.1 x 10+ K 2

4.44x10 erg gK
4.5 x 10 erg/g K
3.06 x 10 cm /dynK-1.44x 10 cm /dynK
2.35 x 10 ~6 cm2/dyn K

Source

~Handbook of Chemistry and Physics, 48th ed. , (Chem-
icalRubber Co. , Cleveland, Ohio, 1967), pp. B-108, B-
123.

American Institute of Physics Handbook, 2nd ed.
(McGraw-Hill, New York, 1963), pp. 4-66, 4-67.

~Calculated from data in Ref. b.
~Calculated from data of W. C. Overton, Jr. and J.

Gaffney [Phys. Rev. ~98 969 (1955)].
'Calculated from data of G. A. Alers, J. R. Neigh-

bours, and H. Sato [J. Phys. Chem. Solids ~13 40 (1960)].

searchers. No uncertainties were given for the
second-order elastic moduli (Szz) and none were
assigned. Since the present experiments deter-
mined the isothermal nonlinearity parameters, it
was necessary to convert the adiabatic and mixed
coefficients to the isothermal ones in comparing
the present experiments with the results of others.

Thurston has given a general relationship be-
tween the adiabatic and the isothermal second-or-
der elastic constants. Powell and Skove' have
given a similar general expression relating the
mixed to the isothermal third-order elastic con-
stants. In contradiction to a statement made by
Powell and Skove, no term in their expression is
negligibly small for Cu or Ni. Table V contains
a list of the constants required in converting the
adiabatic and the mixed elastic coefficients to the
isothermal coefficients for Cu and Ni. Table VI
contains a list of the isothermal yressure de-
rivatives of the second-order elastic constants for
Cu and Ni as measured by others.

The data for Ni whiskers are also given in Table
V. The uncertainties in 5 and g were calculated
in the manner as for Cu. The experiments were
performed prior to those carried out with Cu
whiskers, and used the same apparatus as that
used by Powell and Skove. This apparatus was
not as insensitive to thermal and mechanical in-
fluences as the apparatus described above and it
did not sensitively determine the point at which
the sample became tight. For these reasons, it
is felt that the data taken on ¹ whiskers may be
neither as accurate nor as precise as that taken
on Cu whiskers. The results given in Table IV
for Ni were calculated in the same manner as for
Cu whiskers.

Barsch and Chang have given expressions re-1S

lating the isothermal pressure derivatives of the
three second-order elastic constants and to the
third-order elastic constants. These equations

together with those for three 5's form a set of six
linearly independent equations relating to six
third-order isothermal elastic constants for cubic
materials to known quantities. Thus it is possible
to determine these six elastic constants without
using any of the ultrasonic results that utilized
uniaxial stress. Table VII contains a list of the
isothermal third-order elastic constants for Cu
and Ni calculated in this manner. The uncer-
tainties in the third-order constants were obtained
by using the extreme values given by the individual
researchers. No uncertainties were stated for
the isothermal pressure derivatives of the second-
order elastic constants. The authors' estimate of
+ 2% was assigned. No uncertainties were stated
for the second-order elastic coefficients and none
were assigned. Table VII also includes the iso-
thermal third-order elastic constants for Cu and
Ni converted from the mixed values given by other
researchers.

In deriving the relations relating ultrasonic
changes with pressure and the third-order elastic
constants both Thurston and Brugger and Barsch
and Chang have apparently assumed that CJ"«

(8Cff/8P) z (8C(2/8P) g (8C44/8P) ~ Source

A. Copper
5.94
5.92
6.36
4.67

B. Nickel
6.03

5.19
5.02
5.20
3.53

4.87

2.63
2.36
2 ~ 35
0.85

2.38

Ref. 2
Ref. 11

a
b

Ref. 11.

W. B. Daniels and C. S. Smith, Phys. Rev. 111, 713
(1958).

Q. Lazarus, Phys. Rev. 76, 545 (1949).

TABLE VI. Pressure derivatives of the adiabatic second-
order elastic constants of Cu and Ni ~
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TABLE VII. Isothermal third-order elastic constants.

—12.4
—12.7
-13.7
—11.7
—12.8
—14.0
-12.99
-10.40

+ 0.3
+ 0.1
+ 0.1
+ 0.1
+ 0.2
+ 0.2

C112
T

-8.2
-8.2
—8.6
—6.5
—8.2
-7.8
—8.11
—7.70

A.
+ 0.2
+ 0.2
+ 0.2
+ 0.2

0.1
+ 0.1

123
T

Isothermal constants
—1.1 + 0.02
-0.72 + 0.02
—0.65 + 0.02

1.54 + 0.02
—0.56 + 0.18
—1.9 + 0.2
-1.69

0.92

for Cu
-1.0
—0.69
—0.95

1.4
—0.05
-1.4

0.87

in units
+ 0.4
+ 0.5
~ 0.5
+ 0.4
+ 0.09
+ 0.2

&166
T

of 10 cm /dyn
-7.0 + 0.4
—6.7 + 0.3
—6.6 + 0.3
—4.8 + 0.3
-7.82 + 0.05
—6.5 + 0.2
-7.96

&456
T

+ 0.9
+ 0.6
+ 0.6
+ 0.7
+ 0.9
+ 0.1

0.70
0.4
0.4

—1~ 3
—0.95
—0.2

0.70

—18.3
—20.4
—10.40

+ 0.7
+ 0.4

-11.5
-10.3
-7.70

B. Isothermal constants for Ni in units
+ 0.5 -0.2 + 0.5 ~ ~ ~

+ 0.3 —2.1 + 0.5 -1.4 + 0.6
0.92 ~ ~ ~

of 1012 cm /dyn

-9.2 + 0.3
~ ~ ~

—0.7 + 0.3
~ ~ ~

Present and Hiki and Granato (Ref. 2).
Present and Salama (Ref. 11).
Present and Daniels and Smith (Ref. a, Table VI).
Present and Lazarus (Ref. b, Table VI).

Converted from data of Hiki and Granato (Ref. 2).
~Converted from data of Salama (Ref. 11).
IPowell and Skove (Ref. 4) and Granato (Ref. 2).
"Theoretical values of Rose (Ref. d, Table IV).

is symmetric with respect to the interchange of
any indices, or that

N N N N kfCzJg= Cz~J= Cggz= CJz~=C~zJ=C g

This is not quite true, and the small differences
between the Cz« terms can often be calculated
from the relation between Cz«and Cz«given by
Brugger. In most cases the difference between
the Cz JE terms are small enough to be neglected.
Since only six mixed third-order constants have
been reported by other researchers, it is neces-
sary to assume the validity of (9) in order to cal-
culate the isothermal third-order elastic con-
stants from the results of the present experiments.

From Table VII it is seen that there is some dis-
agreement in the reported values of the third-order
elastic constants. R is known that the motion of
dislocations is an important factor in studying the
elastic constants of bulk samples. This is especial-
ly true for soft materials such as Cu. It has been
found that if bulk samples are bombarded with neu-
trons, the damage caused by irradiation is suffi-
cient to prevent dislocation motion. Gerlich has
studied LiF and measured changes in the second-
order elastic constants when the integrated neutron
flux exceeded 10 n/cm . Since the researchers2

who employed radiation damage used dosages of
about this order of magnitude, it seems possible
that their determinations of the third-order elastic
may be affected by this effect. The results of the
present work are in closest agreement with those

of Hiki and Granato, who used a prestressing
technique to prevent dislocation motion.

The isothermal constants were not calculated
from the adiabatic constants given by Gauster,
but it is apparent that his results are in very poor
agreement with the results of the present work.

The equations for fz, P&, and f& given in Tables
V-VII, respectively, form a set of three linearly
independent equations in the 11 fourth-order iso-
thermal elastic constants for cubit symmetry. The
uncertainties in the third-order elastic constants
preclude saying very much about the individual
fourth-order constants, except that their magni-
tudes are about 10 dyn/cm, as expected theo-
retically.

Conclusions:
Copper: We find good agreement with the third-

order elastic constants measured by Hiki and Gra-
nato, fair agreement with those measured by
Salama, and poor agreement with those measured
by Gauster. It is possible that the disagreement
with Gauster and Salama is due to the effects of
radiation damage on the elastic constants. The
fourth-order elastic constants are in order-of-
magnitude agreement with the theoretical pre-
diction of Rose.

Nickel: We find fair agreement with the results
of Salama for the third-order elastic constants
and order-of-magnitude agreement with the theo-
retical predictions for the fourth-order elastic
constants.

~Work supported in part by the National Science Foundation
and the U.S. Air Force Office of Scientific Research.

~Present address: Eaton Corp. , 466 Stephenson Highway,
Troy, Mich. 48084.
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This paper presents calculations of the electronic polarizabilities of very small metallic particles and of
very thin metallic films. The theoretical model we employ for the metallic particle is simply that of N

free electrons trapped by an infinitely deep spherical potential well. The model used for the thin-film

problem is that of a system of free electrons constrained to move in the volume enclosed by two

infinite parallel planes. Linear-response theory and Poisson's equation are used to calculate the

electronic polarizability in terms of the electronic density-density response function. The numerical

results provide an idea of just how small, or how thin, a small metallic particle, or thin metallic film,

has to be for it to begin to lose its bulk property of being able to screen an externally applied electric

field.

I. INTRODUCTION AND SYNOPSIS

The purpose of this paper is to present a model
calculation of the electronic polarizabilities 0. of

very small metallic particles and of very thin
metallic films. Intimately connected with this
problem is the question of the ability of such small
or thin metallic systems to screen an externally
applied static electric field.

The motivation for these calculations stems from
a recently published criticism' of the Gorkov-
Eliashberg (GE) 1965 prediction that the electronic
polarizability of a minute metallic particle should

be enormously enhanced with respect to the bulk

classical value no= R, where 8 denotes the mean
radius of the particle. A short resume of this
criticism will serve as a convenient introduction
to the formulation of the present problem.

The electric dipole moment p developed by an
isolated metallic system in response to an exter-
nally applied field Eo is

p= fd'rr p"(r), (1.1)

in which p"(r) denotes the induced charge density
at the space point r. Within the framework of linear
response, the latter is related to the local electro-
static potential C(r) by means of the relation

p "(r)= —f d'~'C(r') X(r, r'), (1.3)

where y(r, r') denotes the electronic density-den-

sity response function characteristic of the metal-
lic system. 4(r) is given by the solution of the
Poisson equation V 4(r) = —4' '(r) or, in view of
(1.3), by the solution of

V 4(r)=4wf dr'4(r') (}(r, r') .
In terms of 4 (r), p is

p= —f d r f d r'r C(r')y, (r, r') . (1.4}

Thus given the appropriate boundary conditions
on 4(r), Egs. (1.3) and (1.4) enable p, and hence

e, to be calculated from the knowledge of the char-
acteristic response function g(r, r').

Now GE mere specifically concerned with metal-
lic particles sufficiently minute that the discrete-
ness of their conduction-electron energy levels
would have to be taken into account. For such
small (but still macroscopic) particles, GE as-
sumed that one would be able to calculate their
polarizabilities just as though each behaved as a
macroscopic "atom. '* In terms of the above formu-
lation this meant that GE introduced the drastic
assumption that the local field E(r) = —VC(r} could
be identified at every point with the applied field
Eo, so that, for example, in Eq. (1.4}one could
write 4(r)= —Eo r. It would then follow~ from
(1.4} that

p= EOOD (1 5)

or n= Ax~ where X~ denotes the static electronic


