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Temperature Dependence of the HgTe Band Gap
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Hg and Te Debye-Wailer factors in HgTe have been measured using x-ray diff'raction. These have been
combined with a previously published pseudopotential to calculate the temperature dependence of the band

gap within the Brooks-Yu theory. The calculated value has approximately one-half the magnitude and the
opposite sign of the experimental value. A detailed analysis indicates the Debye-Wailer factors are not likely
to be the cause of the discrepancy, but that the pseudopotential may be. A further analysis shows that when
interband matrix elements are included for normal electron-phonon processes in a rough self-energy
calculation, the correct sign is obtained. The magnitude has not, however, been determined. It is also shown,
though, that a self-energy band calculation neglects significant terms if only the bands closest to the gap are
included. We conclude that our understanding of the temperature dependence of semiconductor band gaps is
somewhat weaker than many are claiming on the basis of moderate agreement with experiment.

INTRODUCTION

In recent years, a number of workers have pre-
sented calculations of the temperature dependence
of semiconductor band gaps using the Brooks-Yu'
theory. In this theory, the temperature depen-
dence is obtained through temperature-dependent
pseudopotentials. The effective strength of each
ionic pseudopotential is reduced by the appropriate
ionic Debye-Wailer factor, a measure of the am-
plitude of thermal vibration of that ion.

In the first such published calculation, Keffer,
Hayes, and Bienenstock'4 investigated PbTe.
They used a number of pseudopotentials, each of
which gave reasonable agreement with experi-,
mental results. Subsequently, Tsang and Cohen'
used their own local pseudopotential to produce
very good agreement between experiment and the
Brooks-Yu theory. Tsang and Cohen's calcula-
tion for SnTe and Tsay et al. 's calculations for a
number of zinc-blende structure compounds have
strengthened the conclusion that, with sufficiently
accurate pseudopotentials and Debye-Wailer fac-
tors, the Brooks-Yu theory can predict the tem-
perature dependence of the band gap. As Tsay
et al. stated, "Agreement of calculated values are
within 30/~ of the experimentally determined val-
ues. . . It is reasonable to expect that it can be
corrected by better zero-temperature pseudopo-
tential form factors as well as more accurate
Debye-Wailer factors. "

It is our belief that the understanding of band-

gap temperatures dependences is significantly
less complete than these calculations would in-
dicate. We support this belief with the historical
introduction which concludes this section of the
paper, and then with a detailed experiment and
calculations on HgTe. The experiment is the
measurement of the ionic Debye-Wailer factors
in HgTe. The calculations are of both the Brooks-

Yu terms and portions of the self-energy terms
which contribute to the band- gap tempe rature de-
pendence. Let us proceed, therefore, with the
historical survey, which is quite revealing in it-
self.

The first significant theory of the explicit tem-
perature dependence of the gap (i. e. , that due to
electron-phonon interaction at constant volume,
rather than that due to thermal expansion) was
presented by Fan. It is a self-energy theory
carried to second order in the mixing of electron
and phonon states. As a result of the mixing, the
Bloch vectors associated with the one-electron
states are no longer good quantum numbers. This,
of course, is a partial representation of the fact
that the instantaneous one-electron potential is not
periodic as a result of the thermal vibrations.
Using a simplified model of the band structures
and phonon dispersion relations, Fan obtained
good agreement with the temperature dependence
of Si, but less satisfactory agreement with that
of Ge.

Later, Cohen obtained extremely good agree-
ment for Ge using a more sophisticated band
structure and phonon dispersion relations within
the Fan theory. Although this good agreement
was obtained through adjustment of unknown de-
formation potentia, l parameters, the parameters
chosen appear quite reasonable. Hence, on the
basis of the Fan and Cohen calculations, one
might have concluded that the Fan theory is quite
valid and contains the dominant terms in the ex-
plicit band-gap temperature dependence.

It became apparent, however, with experi-
mental studies on PbS, PbSe, and PbTe that this
was not the case. In these materials, the direct,
fundamental band gaps increase with increasing
tempe rature. The Fan theory, on the other hand,
necessarily predicts a decrease. The discrep-
ancy could not. be explained through the effects of
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thermal expansion. Something was wrong.
With this in mind, Brooks and Yu undertook a

reexamination of the electron-phonon interaction
and showed that there is one more effect which
must be taken into account. This is the modifica-
tion of the pseudopotential by the Debye-Wailer
factors. That these two effects are quite different
can be seen without a detailed theoretical analysis.
The Brooks- Yu theory involves only temperature
dependences of the pseudopotentials at the recip-
rocal lattice points. Hence, if only this theory is
applied, the Bloch vectors of the one-electron
states remain good quantum numbers. This is in
distinct contrast to the situation in the Fan theory.
From Yu's more detailed theoretical analysis, it
appeared as if the two effects were additive.

Yu also calculated the contributions of the Fan
and Brooks-Yu effects in Ge and concluded that the
Fan contribution is quite smat. l compared to the
Brooks- Yu contribution and the experimentally ob-
served values. Since the calculation was never
published, though, there was no published analysis
of why the Yu estimate of the self-energy contri-
bution is so much smaller than those of Fan and
Cohen.

General acceptance of the Brooks-Yu theory
started when Keffer et al. 3' showed that it did
yield the increase of the PbTe band gap with in-
creasing temperature. They did find, however,
that the "best" calculation yielded twice the ob-
served magnitude. These workers might have
concluded the self-energy contribution is, there-
fore, of the opposite sign and one-half of the mag-
nitude, but they lacked sufficient confidence in
their pseudopotential. The subsequent Brooks- Yu
calculation of Tsang and Cohen, which yielded ex-
tremely good agreement with experiment, appeared
to negate the possibility that the self-energy terms
are appreciabte. This conclusion was reinforced
by the apparent success of other Brooks- Yu-type
calculations.

Nevertheless, in one more unpublished work,
Mostoller' reexamined the theory and the Ge cal-
culations. He concluded that the Fan and Brooks-
Yu effects are additive and are of the same order
of magnitude. He showed that Yu's calculation of
the self-energy terms was incorrect.

Then, there came our earlier report' that the
Brooks-Yu theory yielded the wrong sign for the
HgTe negative band-gap temperature dependence.
This result, too, should have been taken as justi-
fication for concern about the general applicability
of the theory.

In fact, when viewed in this historical m armer,
one cannot help but conclude that the view that
only better pseudopotentials and better Debye-
Waller factors are needed to obtain complete
agreement with experiment through the Brooks-

II. DETERMINATION OF DEBYE-i%ALLER FACTORS

The determination of Debye-Wailer factors
from x-ray experiments relies on the reduction
of atomic scattering factors by Debye-Wailer fac-
tors. The integrated intensity of a Bragg peak of
wave vector k from a mosaic crystal is given by

I(k)=D(k) ~Z f, (k)e'~'~ e " '"'~', (1)

where f is the x-ray scattering factor, 7. the
position vector of the e-type atom, and e "~'"' is
the atomic Debye-Wailer factor. D(k) is a slowly
varying geometric factor.

The symmetry of a zinc-blende structure im-
plies that the thermal motion is isotropic, so
that

M (k)=~Au (2)

where u' is the time averaged mean square dis-
placement of the n atom along an arbitrary axis.

Yu theory is completely unjustified when previous
calculations have shown that the self-energy terms
are so large.

Since the previously reported' calculation on
HgTe becomes rather important in this context,
it is presented in more detail, and with more
analysis here, so that its limitations and strengths
are apparent.

Section I describes our method of measuring the
Debye-Wailer factors. The resultant Debye tem-
peratures agree fairly welt. with other recent work.
We feel the method described is capable of ac-
curately measuring temperature- independent
Debye temperatures.

With the experimental Debye-Wailer factors we
then calculate the Brooks-Yu temperature coeffi-
cient. The coefficient is of half the right magni-
tude and of the wrong sign. In the hope of under-
standing this discrepancy, we give further results
that generalize upon the simple temperature co-
efficient. We also give a critique of the available
Hg Te pseudopotential.

Since the Brooks- Yu theory has not provided a
coefficient agreeing with experiment, we have
further developed the self-energy theory for band-
gap changes with temperature. While little orig-
inality is claimed for the general result, we have
put the terms into a much more tractable form.
The resultant expression needs more parameters
than available for HgTe, but by making some
normal process approximations, we can make a
rough calculation of the sign. of this self-energy
terms for HgTe. The sign of this calculation is
that of the experiment, though the magnitude of the
coefficient is unknown. The calculation also
shows the importance of including all states in the
self-energy theory.
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Thermal diffuse scattering (TDS) has been ne-
glected in these equations. Approximate TDS cor-
rections were applied directly to the data.

For a zinc-blende structure, the position vec-
tors can be defined such that the phase factor is
unity for the Hg atom and some power of i for Te.
However, in order to more easily separate the ef-
fects of the two Debye-Wailer factors, only those
reflections were used for which the Te phase
factor was + 1; so the general form for peak in-
tensity is

I(k) = D(k)
~
f~(k)e "s~"'+fr.(k) e """'~' . (3)

If the wave vectors corresponding to the various
reflections are represented as vector multiples of
the basic reciprocal-lattice spacing (fmn)2v/a,
where the l's, m's, and n's are integers, then the
sum reflections correspond to wave vectors
(4l, 4m, 4n), while the difference reflections cor-
respond to the wave vectors (2l, 2m, 2n), with

the sum wave vectors excluded.
To determine the effect of the Debye-Wailer

factors upon intensity, the temperature dependence
of integrated intensity was measured for several
reflections from a single crystal of

Hgo. 968Cdo. osa Te. " The work of Bublik et al. '

indicates that the small degree of Cd alloying
should have little effect upon the Debye-Wailer
factors. A 0, 6x1.0x1.2-mm chip was cut ap-

proximately on the (001) face and then chemically
etched. The sample was then glued to the cooling
finger of an Electronics and Alloys x-ray camera
in which the flow of liquid nitrogen provided cool-
ing.

Mo K, radiation was used so that the (006),
(008), a.nd (0012) Bragg peaks with relatively
large k values could be studied. The sample was
realigned at each temperature and adjusted so
that the peak profile was symmetric during the
angular scanning. The peak was then scanned in

co; that is, the crystal was rotated about the axis
of the diffractometer while the detector was held
at the Bragg angle.

The resulting temperature dependence of the in-

tegrated intensities is shown by the circles in

Fig. 1. TDS corrections were applied with the
xTDs2 program of Walker and Chipman. ' Elastic
constants were taken from Alper and Saunders. '

The resulting corrections ranged from 0. 15 to
1.4%, and altered the final effective Debye tem-
peratures used to describe the mean square dis-
placements by less than 1%.

To eliminate the dependence of the intensity on
the angular factor D(k) of Eq. (1), the data reduc-
tion was performed on the ratio of intensities of
peaks measured at two temperatures. That is,
analysis was performed on the quantity R(k, T„T2)
given by the equation

I(k, T, ) f„,exp[- ~~ 's, (T,)k']+fr, [- —,'ur, (T,)k ]
(4)

To obtain ionic mean square displacements from
the experimentally determined R values, it was
assumed that the temperature dependence of these
displacements is well described by a Debye rela-
tion,

{5)

with a separate temperature- independent Debye
temperature 8 for each ionic species. Here,
M is the ionic mass, 5 is Planck's constant, k~
is Boltzmann's constant, and C (z) is a Debye in-

tegral of order one. For T greater than or of the
order of 8, the expression in brackets is quite
close to unity. While this expression rests upon

the Debye approximation, we note that mean
square displacements obtained from sophisticated
normal mode eigenvector and eigenvalue calcula-
tions are well described by Eq. (5) above low-

temperature extremes. "
Equation (4) shows that R(k, T„T2) is dependent,

when coupled with Eq. {5), on the two Debye tem-
peratures since known atomic scattering factors

and the structure determine all other variables.
Hence, the Debye temperatures were determined
by iterative solutions of pairs of transcendental
equations resulting from the combination of Eqs.
(4) and (5) with intensity ratios between two tem-
peratures for two peaks. Appendix A gives an
analysis indicating that derived parameter errors
are minimized by using a sum and a difference
peak and by using reflections of large scattering
vector.

In these calculations, the real parts of the
atomic scattering factors were obtained from the
calculations of Cromer and Mann' for the neutral
free Hg, Cd, and Te atoms. Since the reflections
considered involve large values of k, the differ-
ences between the scattering factors of the neutral
and ionized species are negligible. The factors
of Hg and Cd were combined to reflect the alloying.
The complex parts of the scattering factors were
obtained from the International Tables for X-Ray
Crystallography. " In the iteration process as-
sociated with each pair of equations, a number of
initial solutions were attempted to determine the
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FIG. 1. X-ray diffraction intensities for the (006),
(008), and (0012) reflections of HgTe as a function of
temperature. All intensities normalized to 104 K inten-
sities. The circles represent experimental values. The
solid lines represent values calculated with derived
Debye temperatures.

uniqueness of the solutions. In each case, the
iteration process led to the solutions presented
in Table I or diverged.

Table I gives the derived parameters for various
combinations of peaks and temperatures. 8„,
varies from 70. 5 to 76. 6 K while eT, varies
from 112 to 136 'K.

Average values are taken of

6„,= (75 s 1.5) 'K and er, = (130+ 5) K . (6)

The errors in the temperatures correspond to a
3' error in any experimental intensity.

Figure 1 compares the experimental intensities
with those calculated with the Debye temperatures
presented above. It is seen that satisfactory
agreement is obtained. Figure 2 presents the
mean square displacements of Hg and Te, as cal-
culated with Eq. (5), using the parameters pre-
sented in Eq. (6).

Much work has been published recently on de-
termination of the separate Debye temperatures
for HgTe. Our previous published results' are
superceded by those presented here.

Skelton, Radoff, Bolsaitis, and Verbalis' per-
formed an x-ray experiment which required a
complete knowledge of the angular dependence,
the D(k) of Eq. (1), but yielded temperature-de-
pendent Debye temperatures. For mercury, the

Debye temperature shifts from 63.4 to 86 'K as
the sample temperature changes from 32 to 296 'K.
The corresponding tellurium values are 89. 5 and

127.6 'K. These results are in fairly good agree-
ment with those presented here.

Bublik et al. ' '9 used a similar procedure to
arrive at values of 75 and 109 'K for the Hg and

Te, respectively. Their Debye temperatures are
relatively temperature insensitive.

Ivanov-Omskii et al. ~0 have measured a single
average Debye temperature by a method similar
to ours. For a pure sample, they determined a
Debye temperature of 130'K. However for a
sample with acceptor concentration of 3x 10'
cm ', they claim a drop in Debye temperature to
110 'K. This strong impurity dependence may
cause some of the disparity in published results.

Vetelino, Gaur, and Mitra ' have done a the-
oretical lattice dynamics calculation for Hg Te.
Their temperature-dependent amplitudes can be
well represented by Debye temperatures of
106.4 K for the Hg and 97. 5 K for the Te. Given
the simplicity of their model, the disagreement
between their calculation and this experiment, as
well as that of Skelton et al. ,

' cannot be taken as
serious cause for concern about the validity of the

experimental conclusions.
Given the reasonable good agreement between

the measurements presented here and those of
Skelton et a/. , we tend to believe that the mea-
sured Debye-Wailer factors are reliable.

III. BROOKS-YU TEMPERATURE DEPENDENCE

The Brooks- Yu' theory provides a straight-
forward method of calculating temperature-de-
pendent eigenenergies. If the zero-temperature
electronic energies are calculated as a function
of a weak potential or pseudopotential

E(k) =E(k, (w (G)/)

267-170 'K
(oo6)-(oos)

170-104 'K
(oo6) -(oos)

267-104 'K
(006)—(008)

70.5

75.7

72. 5

112.2

131.9

118.9

267-170 'K
(006)—(0012)

170-104 'K
(006)—(0012)

267-104 'K
(oo6)-(oo12)

267-170-104 'K
(006)

74. 7

76.6

75.5

71.5

127.4

136.1

130.6

114.O

TABLE I. Debye temperatures (in 'K) for Hg and Te
ions in HgTe derived from x-ray experiment. Two Bragg
reflections at two temperatures were used for each set
of values. These pairs are given on the left-hand side.
The bottom line gives Debye temperatures derived from
a single reflection at three temperatures.
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where fw (4)) represents the complete set of
Fourier components of the ionic potentials or
pseudopotentials, then the Brooks- Yu temperature
dependence is calculated by reducing each Fourier
component by the Debye-Wailer factors associated
with the respective ion,

E(k, T)=E(k, (w (G) e "~'o')) (6)

The Debye-Wailer factor is the same factor used
in x-ray scattering theory,

M, (C)=-,'(~u (T) ~ G~')

where a time average is taken of the temperature-
dependent vibration.

The Brooks-Yu theory does not describe all
temperature effects. The thermal expansion ef-
fects are accounted for below. The self-energy
terms of coupling of electron-phonon states are
described in Sec. IV. The Brooks-Yu theory rep-
resents a time average of energies in a distorted
lattice. To obtain the simple result, multiple
scattering terms and terms corresponding to x-
ray thermal diffuse scattering are neglected, The
condition of small potential necessitates working
within the pseudopotential formalism.

Let us briefly describe the band structure of
HgTe before pursuing its temperature dependence.
HgTe has a zinc-blende crystal structure common
to many group-IV, -III-V, and -II-VI semicon-
ductors. However, its electronic band structure
differs from almost all of these in that its I'6 level
is depressed to an energy between the spin-split
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FIG. 3. Electronic band structure for HgTe near the
zone center. The intrinsic zero-temperature Fermi
level lies at &8.

r, and I., levels as indicated in Fig. 3. At zero
temperature, the intrinsic Fermi level lies at the
double (quadruply including all spin states) de-
generate I', . Thus the true band gap is zero by
symmetry considerations, and HgTe is a semi-
metal.

The I',-I, separation is referred to as the
negative band gap in analogy to the positive gap
between these two bands in many zinc-blende
semiconductors;

E (Hg Te ) = E( I' ) —E( I'~) = —
~ E~

~

Recent work ' ha, s determined the band gap to
be near the value

(10)

E~= —0. 28 eV

The temperature coefficient of this negative gap
is more uncertain, with estimates for d1E~[/dT
ranging from —3.6 x10 ' to —6. 5 x 10 eV/'K.
The most reliable result is probably that of
Pidgeon and Groves which, in the temperature
range 60-77 K, is

0
0

I

IOO 200
TEMPERATURE ( K)

I

500

= —6. 1x10»eV/'K .dT

The effect of thermal expansion can be accounted
for explicitly using the relation

FIG. 2. Temperature-dependent mean square displace-
ments for the two atomic species in HgTe calculated ac-
cording to Debye formula with derived Debye tempera-
tures. The error bars represent a 3'fo error in any in-
tensity.

dE, aE, aE, dV
(13)dT BT v BV r dT

The second set of terms can be expressed in
terms of the lattice temperature coefficient e, the
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bulk modulus B, and the experimentally observed
pressure dependence of the band gap;

9E, dV
(14)

Measured'4' 4' values of these parameters yield
a maximum dilatational effect of +7x10 ' eV/'K,
which is an order of magnitude smaller than the
observed temperature dependence.

The temperature coefficient for the band gap is
obtained by calculating the temperature-dependent
band energies according to Eq. (8). The Debye
temperatures given in Eq. (6) are used to calculate
the ionic mean square displacements according to
Eq. (5). However the second term in Eq. (5), the
zero point motion term, was excluded in order to
force agreement at zero temperature with the
non-temperature-dependent band structure cal-
culations. As long as we consider only high-tem-
perature behavior, i.e. , above the Debye tempera-
ture, the difference is small.

To obtain ionic pseudopotentials, we started
with the sum (u„+ we) and difference (w„—us)
pseudopotentials obtained for HgTe by Bloom and
Bergstresser (BB).27 Their calculated band
structure agrees qualitatively with the relativistic
Korringa Koh-n Ros-toker (KKR) calculation of
Overhof, "although some calculated gaps differ
by up to factors of two. Ambiguities associated
with the atomic species to be associated with A
and 8 and loss of data owing to sums or differ-
ences rendered unnecessary by symmetry were
resolved by a rederivation of BB's initial estimates
of the pseudopotentials from data for each of the
two species.

Calculation of the relevant aspects of the band
structure at each temperature from the ionic
pseudopotentials and the Debye-Wailer factors
was accomplished through a computer program
prepared by us. This program is essentially
identical, in its mathematical and numerical
analysis, to that used by BB. It does, however,
allow for automatic treatment of the Debye-Wailer
effects on all terms, including the appropriate
spin-orbit parameters, given the effective ionic
Debye temperatures and the temperatures at
which the band structure is to be calculated.

The resultant calculated temperature coeffi-
cient of the HgTe negative gap, in the tempera-
ture range 0-300'K, is

on the calculated temperature dependence. The
temperature coefficient of the band gap is deduced
from the variations of the I' point energies with
temperature. The temperature-dependent band
energies are shown in Fig. 4.

An informative result possible with the Brooks-
Yu approach is to calculate the bands as a func-
tion of arbitrary mean square displacement. We
define two variables: One, $, is the sum of
mean square displacements of the two species,

2 2S QHg+MTe (16)

while the other is the fraction of this sum arising
from Te motion,

&Te/( Hg+ Te)

5.0

~ 4.5-C9

4J

LIJ

4.0

This decomposition is made because S is more
accurately determined than &. The levels's de-
pendences upon arbitrary amplitude are given in
Fig. 5. Q is the amplitude sum at 104 'K de-
termined by the x-ray experiments. The experi-
mentally determined fraction is &=0.32. The
horizontal lines are the zero temperature bands,
i. e. , S=O.

We see a strong linear dependence, which can
be shown to be equivalent to a linear dependence
upon n«and uT„. that is, the Brooks- Yu tempera-
ture effect is, to a good approximation, a first-
order expansion about the zero-temperature
bands. Also, the independence of I", and I'8 from
Hg motion, and the relatively strong dependence
upon Te motion is in agreement with the associa-
tion of these levels with Te atomic states. This
is a general association in the III-V and II-VI
compounds and does not depend on the fine struc-
ture of the potential. It does not, therefore, prove
the validity of the potential.

=+ 2. 7 x 10 eV/'K .9T (15) l00 200
TEMPERATURE ('K)

I

300

This result is about half the right magnitude but
of the wrong sign.

It will help in discussions of the validity of this
result to consider some results that generalize

FIG. 4. Temperature-dependent band energies of HgTe
at the zone center calculated according to the Brooks- Yu
theory. The zero of energy scale results from a zero
V(A = 0).
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~~ 4.6
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LLJ

S=2S
I'8

0
S =So
S=O

their pseudopotential at a wave vector less than
that corresponding to the positive maxima of
Animalu and Heine's results. This neglect is es-
pecially serious in a Debye-Wailer-type form
factor reduction since, as pointed out by Shay, '
the large wave vector components suffer a much
stronger temperature reduction.

A more general criticism of this band structure
calculation is the local approximation for the
non-spin-orbit pseudopotential, i.e. ,

(18)

Iq

S,=.OI95 A

FIG. 5. Dependence of HgTe zone center on arbitrary
mean square amplitudes of the ions. Calculated with
Brooks- Yu theory. S represents the sum of Hg and Te
mean squared amplitudes. P is fraction of this sum aris-
ing from Te motion. So is our x-ray determined value at
104'K. g =0.32 is our experimental fraction.

The disagreement between the experimental and
calculated values of the temperature coefficient
is very serious. There are three possible causes
for the discrepancy: (a) inaccuracies of the
Debye-Wailer factors; (b) inaccuracies in the
pseudopotential; (c) inadequacy of the Brooks-Yu
theory. The first two of these are discussed im-
mediately below, and the third in Sec. VI.

To determine the sensitivity of the calculation
to the Debye-Wailer factors, the data in Fig. 5

have been used to determine the values which
would give the correct change of the gap between
0 and 100 'K for S equal to So and 2SO ~ These are
g= 0. 19 and 0. 12, respectively. These correspond
to values of u'„, /ur, equal to 4. 3 and "I.3, re-
spectively, at 100 K. Since the value of So is
considered to be quite reliable, it would appear
as if the ratio must be significantly larger than
4. 3, and close to 7.3, to obtain agreement with
experiment through alteration of the Debye-Wailer
factors. Such a ratio seems unlikely on physical
grounds and disagrees strongly with all estimates
presented thus far. Hence we do not feel that the
Debye-Wailer factors are the source of the dis-
crepancy.

The zero- temperature pseudopotential calcula-
tion which we use as a base for our calculation
has serious shortcomings. Bloom and Bergstres-
ser ' have used a truncated local pseudopotential
in their calculation. Examination of their ionic
pseudopotentials show a good correspondence with
Animalu and Heine's~9 ionic pseudopotentials for
those form factors used. However BB truncate

If we use a Slater-type approximation for the core
states, R„,~ x" 'e '", the core partition is ex-
pressible in analytic form. It can then be shown
that the pseudopotential is local in the sense of
Eq. (18) only for small values of Ik, l and Ikzl.
To determine the meaning of small, we used an
optimized pseudopotential with zero conduction
level energy. Herman and Skillman's" tables
were used for the radii and energies of the core
states. It was found that if the matrix elements
were required for only small wave vectors,
k & 2. 5 A ', then the partition of core s states
dominates, and in this region the s partition is
mostly local. However, for large wave vectors,
the P, d, and f partitions dominate. These par-
titions have significant nonlocal contributions,
with the nonlocality increasing with wave vector.

Thus only for small wave vectors is the local
approximation valid. Selection of a nonoptimized
pseudopotential to emphasize the s partition
would not solve the problem since such a pseudo-
potential would need more basis states, i. e. ,
larger wave vectors, and the s partition goes non-
local for large wave vectors, approximately cor-
responding to the core state radius.

In the HgTe pseudopotential band gap calcula-
tion, the states of interest arise mainly from the
(111)pseudo-plane waves for which k = 1.7 g '.
Therefore the interaction among these states, and

also with the (002) states, is reasonably local,
but matrix elements involving any other basis
state are not properly local. BB's calculation in-
cludes basis states extending out to k = 4. 8 A '.
The extension of the basis set beyond that of a
very simple calculation is valid only if the pseudo-
potential is made nonloc31.

Hence, it is possible that the source of the dis-
crepancy between theory and experiment is due to
inaccuracies of the pseudopotential. In the
course of this research, we learned that other
pseudopotentials were being derived by another
group and that these pseudopotentials would be
used with the Brooks-Yu theory. Rather than
duplicate their efforts, we turned our attention
to the self-energy terms.
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IV. SELF-ENERGY CONTRIBUTIONS

We have already noted that some electronic
temperature effects have been neglected in the
Brooks- Yu' theory. One of these is the self-en-
ergy of an electron in phonon field. This effect
was the basis of Fan's attempt to explain the
temperature dependences of band gaps. However,
Fan's results have not been rigorously calculated,
and the approximations used limit the theory's
applicability.

In this section, we will give a more general ex-
pression for the self-energy term than previously
used. The resulting expression is involved, but

by using the result from Appendix 8 for evalua-
tion of deformation potential matrix elements and
by restricting the interaction to normal phonon
processes, one can calculate the self-energy con-
tribution for a well characterized material. We
also show that by calculating only the electronic
band structure of a material we can determine the
sign of this contribution. For HgTe, the sign is
shown to be such that the magnitude of the gap de-
creases, i. e. , opposite to the Brooks-Yu effect
as calculated in Sec. III.

Fan wrote the second-order perturbation en-
ergy of all electrons in a crystal with the elec-
tron-phonon interaction, b, V, as
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g(k, o) is the one-electron state with wave vector k in band cr. It(n, } is the phonon state of n, quanta of en-
ergy K&u, . e(k, o) is the zero-temperature electronic energy. The summation (k, o) is over occupied elec-
tron states. The summation (q, o') is over unoccupied states.

Fan identified the thermal band-gap change with the change of energy of Eq. (19) by promoting an elec-
tron across the band gap, i. e. , by reevaluating Eq (18). with a different occupation set. If the valence
maximum and conduction minimum states are denoted by (k„,v) and (k„c), respectively, the self-energy
contribution to thermal change of band gap is
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We will avoid Fan's approximation of elim-
inating all interband terms, cr, c a~. As Keffer,
Hayes, and Bienenstock' pointed out, the effect
of the energy denominator for interband terms for
narrow gap semiconductors is not necessarily
larger than for intraband terms. In evaluating
Eq. (20) for HgTe, we believe four bands a min-
imum for the set of interacting states.

The light 18 band is the conduction band while
the F6 band is the valence band of this discussion.
The heavy Fe band is a necessary addition arising
from the semimetal character of HgTe. The re-
maining band F, is split from I", at the zone cen-

ter only by spin-orbit interaction and is close to
the valence band. We will use this four-band ap-
proximation and the approximation that the F7, F6,
and 1 8 „„band are full while the Fa, f bt band is
empty. This occupation set is inaccurate for an
undoped sample only where the F, bands are with-
in k T of each other. We will suppress the labeling
of phonon states and the distinction between addi-
tion and subtraction of phonon momentum. Bands
will be denoted by simple digits: F7 = 1, 1 6= 2,
F,,„„,„=3, and Fs, ,«„,=4. The result for the
change in magnitude of the HgTe band gap is given
by
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If the curvatures are simply given by Fig. 3, if the phonon energy is negligible, and if band energies are
not degenerate aside from I'„ then the signs of the contributions are as given. We can identify the first
two terms as Fan's intraband terms; the second pair, as Keffer, Hayes, and Bienenstock's positive inter-
band contribution {KHB term). The third pair give a positive contribution from the semimetal band. The
last pair arise from the extra band and has both positive and negative parts as will any other band far re-
removed from the band gap, whether above or below.

If we use the result from Appendix 8 for normal phonon processes, the matrix element of the deforma-
tion potential is
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where v (k) is the Fourier component of the potential of the a-type ion, 5R, (k, s) is the Fourier component
of the thermal displacement of the n-type ion in the s mode, 5R describes the phonon system, and

a&&(k) is the projection of the Bloch function u&(k, r) upon the zone center, k =0, Bloch function u, (r)
Then in the normal process approximation, the self-energy contribution to thermal band change is

Z 5R (k, s) ~ kv (k) ~ H(k),
0 ~ S

where H(k) is the eightfold sum corresponding to the terms in Eq. (21);
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The quantities 5R and v are often available
for well characterized materials. For HgTe, the
phonon modes have never been measured and the
factor between the bars in Eq. (23) must remain
unknown. However, since the magnitude squared
is always positive, the sign of each term in the
summation over k is determined by the sign of
H(k).

H(k) is determined by the electronic eigen-
states and their eigenenergies and can thus be de-
termined by any band structure and associated
eigenvector calculation. If the calculation is done

by the k p method, the expansion coefficients are
immediately available from the solution of equa-
tions for the energies e(k, o).

We have attempted such a k-p calculation for
HgTe. The four-band model of Kane'~ yields a
very poor band structure. Gorzkowski's" model
has seven bands but contains more atomic param-
eters than are experimentally available. We were
guided by Bloom and Bergstresser's~ band ener-
gies at the zone center and found that interband
atomic matrix elements needed to be as large as
intraband elements to assure sufficient interaction
yielding the usual type of curvature. Around the
zone center k ~ p energies compare favorably with
those calculated by BB and by Overhof. ' How-

ever, owing to the severely truncated basis set
of seven states, away from the zone center the
quality rapidly deteriorates, and the bands are
much too wide.

Nonetheless we used this calculation to evaluate

the separate parts of H(k) as defined in Eq. (24).
The phonon energy was set at a constant 0.01 eV.
The calculation was made along the I"-X symmetry
axis. The results are given in Fig. 6 and are
weighted by k' to simulate the contributions from
the entire Brillouin zone. The labeling is as in
the description of the generalized Fan theory.
The semimetal term has an integrable singularity
and change of sign owing to degeneracy with the
valence band maximum.

We note that the KHB term in Eq. (24) is
larger than the original Fan term. Also, the ex-
tra term is larger than the sum of the Fan and
KHB terms.

The sum of these eight terms is negative ex-
cept at the unimportant semimetal singularity.
We have been calculating the thermal change in the
magnitude of the gap so this result yields an ef-
fect opposite in sign to that calculated for the
Brooks-Yu theory, and with the same sign mea-
sured experimentally.

We must emphasize that we have not calculated
the magnitude of this effect and so have no idea if
it would balance off the Brooks-Yu terms. In ad-
dition, the Umklapp terms, which could be im-
portant, have been neglected. Nonetheless, this
agreement in sign makes the self-energy contri-
bution worthy of a more detailed calculation. For
reasons discussed immediately below, however,
that calculation will not be without difficulties.

The significant contribution of the interband
matrix elements calls to question the limitation
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of the summations to the bands close to the gap.
We show that it is probably necessary to include
all bands in the self-energy summation.

Consider a typical matrix element in Eq. (19):

l(g(k + q, o') I b, Vll(1(k, o)) I

e (k, o)- s (k + q, 0') T SQ)q
(25)

For longitudinal acoustic mode scattering, the
numerator varies roughly with q as"

1(0(k ~ q, o')
~

& VI 0(k, o))
~

' q'n, /~, . (26)

Taking ar, ~q, this means

)(g(k+q, o') ~d, V)t/t(k, o))
~ qn, q

Now, switching to an extended zone scheme for
simplicity, it is easily seen that the denominator
varies, for large q, as q . It should be noted
however, that the number of final st;ates in a
spherical shell of radius q around the initial state
also varies as q . Hence, each such spherical
shell will yield roughly the same contribution to
the interband summation of Eq. (20). Hence, it
would appear as if there is no justification for
neglecting bands, which are quite separated in
energy from the gap in the summation of Eq.
(20).

On the other hand, it should be noted that any
such spherical shell interacts with both the con-
duction and valence bands in Eq. (20). Moreover,
the contributions of the corresponding terms are
of opposite sign. Hence, these terms tend to
cancel. Nevertheless, the completeness of the
cancellation remains to be determined.

This analysis indicates that a complete study
of the self-energy terms would involve a great
deal more effort than any published so far.

SUMMARY AND CONCLUSIONS

In this work, we have measured the ionic
Debye-Wailer factors in HgTe and combined them

FIG. 6. Temperature coefficient for magnitude of HgTe
band gap of the form of Eq. (24) weighted by (ka/2x) .
Calculated along the &-X symmetry axis. Units for tem-
perature coefficient are (eV) '.

with the BB pseudopotential to calculate the tem-
perature dependence of the band gap within the
Brooks-Yu theory. That calculation yielded a
temperature dependence which is approximately
one-half the magnitude and of the opposite sign of
the experimental result.

In an effort to understand this discrepancy, we
have examined the sensitivity of the calculation
to the Debye-Wailer factors and find they are not
the cause. Our measured values are sufficiently
close to others obtained recently by different ex-
periments or calculation so that they are not suf-
ficiently in doubt to be considered a cause of the
discrepancy.

Our examination of the pseudopotential, on the
other hand, leads to some concern about its valid-
ity, especially for this type of calculation in which
the large reciprocal lattice vector components are
most changed with temperature. Hence, the in-
adequacy of the pseudopotential may be a cause of
the failure.

We note after some calculation, though, that the
discrepancy may be due to inadequacies of the
Brooks- Yu theory, both in its approximations and
in the neglect of the self-energy terms. Our sim-
ple calculation, which includes only normal pro-
cesses and considers only the valence and lowest
conduction bands explicitly, yields a sign agreeing
with experiment. Unfortunately, we have not been
able to determine the magnitude of these terms.

Finally, we note that all published self-energy-
type calculations have neglected interband terms
which, our calculations and analysis show, must
be included.

We conclude, therefore, that our understanding
of the temperature dependence of semiconductor
band gaps is somewhat weaker than many are
claiming on the ba,sis of moderate agreement with
experiment.

We end this paper with the feeling that the
pseudopotential problem should have been further
explored, leading to a more valid potential and
that the self-energy term should have been cal-
culated more completely. In the end, it seemed
best to leave these problems to those who are more
prepared for the extensive calculations required.

APPENDIX A: OPTIMIZATION OF DEBYE-%ALLER
EXPERIMENT

We wish to establish which experimental condi-
tions will minimize the effect of intensity inaccu-
racies upon derived Debye-Wailer factors in the
x-ray experiment in which the intensities of Bragg
reflections are measured at two temperatures and
then the Debye-Wailer factors are numerically fit
to a series of ratios of intensities at the two tem-
peratures. For our sum and difference reflec-
tions in a zinc-blende structure, the intensity ra-
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tio depends on the Debye-Wailer factors as in Eq.
(A1. 1);

I(e T ) fe '4( (-4, T() 4 f e )44-4,

f(e T ) f e-4( (4, TB& 4f e-((„, 4
~ (Al)

8 and T denote the Bragg angle and temperature,
respectively. The f 's are angle-dependent x-ray
scattering factors. The M's are the ionic Debye-
Waller factors, depending on both angle and tem-
perature. The choice of sign depends on type of
reflection. The two atomic types are represented
by x a,nd y.

The variables in the Debye-Wailer factor are
scpa.rable;

M, (e, T) =~'„(T),
where we have defined the angular variable g,

$ = 8(( sin'())/XB

(A2)
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Now define variables describing the fraction of
scattering amplitude arising from each species:

(A6)

f e BzT4
Sz( ' T) +g BzT4 4 B T4 (A6)

where S„has included an over-all sign depending
on type of reflection. The square root of the in-
tensity ratio equals the sum of S„and S„.

Now introduce small variations b and b„ in the
proportionality constants B„and B„. These varia, -
tions correspond to a fractional increase g in the
left-hand side of Eqv (A4). If the right-hand side
of Eq. (A4) is then expanded to first order in the
parameter variations, these error quantities are
related by

'() = b. [T4 4S.((I), T4) —T(4S.(()) Ti)1

+ bz [TBJS„((1),Tp) —T((C)S„(f,T,)] . (A7)

We will restrict ourselves to the high temperature
limit (of the order of the Debye temperature or
above) so the mean squared amplitude u' is pro-
portional to temperature. The temperature-re-
duced scattering factor is given by f,((1))e BzT4.

The experiment thus determines the temperature
coefficient B for each atomic type.

If we restrict the experiment to temperatures
for which the scattering amplitude does not change
sign, that is, we avoid regions in which the tem-
perature- reduced scattering factors cancel for a
difference peak, then the intensity ratio equations
can be expressed as

Equation (A7) could be used directly to relate in-

tensity errors to parameter errors, but inter-
pretation is eased if we make the approximation
that the S's are temperature independent, i.e. ,
each species contributes a constant fraction of the
scattering amplitude. Two equations of this type
for reflections at g, and g~ can be easily solved
to yield

1 1

TB —T, Sz( () z)S„( () 4)
—S,(f, )Sz($4)

x „z.(4.) z.(4.))Ib

with an analogous equation for b„.
If we accept the intensity errors g as given,

then variation in the derived parameter is mini-
mized by using a large temperature difference and

a large t|) which corresponds to high-order reflec-
tions.

The S's are larger for a difference reflection.
The S denominators can be made larger by making
one S„positive and the other negative, that is, one
sum and one difference reflection.

APPENDIX B: DEFORMATION POTENTIAL MATRIX
ELEMENTS

In this appendix, we will derive an expression
for the deformation potential matrix element be-
tween one-electron states. The final result will be
in terms of Bloch functions, phonon eigenstates,
and atomic potentials. If the normal phonon pro-
cess approximation is made, the result greatly
simplifies. Detailed knowledge of the Bloch func-
tions is not then needed.

The deformation potential is the increase in the
local potential caused by the displacement of the
ions from their equilibrium positions. The rigid
ion, one-electron deformation potential is a sum of
displaced ionic potentials with the equilibrium po-
tential subtracted out. Let vector notation be
understood in this appendix. To first order in
displacements, the deformation potential &V is
given by

rzV(r)= —p 5R& Vv (r —R& —T ) . (Bl)
fo

This includes a summation over the lattice sites
R& and a summation over the atoms located at v'

within the unit cell. v is the atomic potential of
that atom or ion. 5g& is the displacement of the

()), o() ion.
We immediately take Fourier transforms. The

transform of the potential is continuous and nor-
malized by the unit cell volume 00. For a crystal,
the transform of the displacement is a discrete
sum over reduced wave vector q and phonon branch
s a.nd is normalized by the number of lattice sites
N. The spatial differentiation is easily performed
on the Fourier transform
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rzV(r)=i o Z Z 5R, (q, s)e "'sz"e'
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&V(r)= —Z ZZ 5R (q, s) ~ (q+G)

The sum over lattice sites is sharply peaked at
values of the reciprocal lattice vectors (G). As

long as the rest of the integrand varies slowly on a
scale of k = 2zz(AzQo) ~ we may make the substitu-
tion,

2m
3

ikzz -( ) P 5(k G)
~o c

where 5 is the three-dimensional Dirac 6 function.
The integral is thus transformed to a summation,
and the final form of the deformation potential is

suits in a 6 function of kt k2 Q if ky k~ is as-
sumed reduced to the first zone. The matrix ele-
ment becomes

&i)'o, ool+Vlkz. oz&= i L d rug (ko, r)uz(k„r)e' "
Q UoC

x Z 5R (k, —ko, s) ~ ('kz —ko+G)v
S CR

iG (B8)

(B9)

The final rigorous result becomes

X(kz —ko+G)e 'a .
Let us now specialize to the case for which kq

is zero and then expand the other electronic Bloch
function in terms of the zone center, k= 0, Bloch
functions;

zing(k, r) g=az„(k) u„(r)

G )
asv i(c+G )r- (B4)

5'io I
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n 0 U C

&0o,o, I
~V Ikz. oz&= 2 d rug (ko, r)u, (k„r)

R) Ue Ce

xr V(r+R, )e'"z 'o '"'si' (Bq)

The extra R& term has dropped from the u, be-
cause of the Bloch function's periodicity. The
form for dV(r+R, ) is available from Eq. (B4).
There result factors of the form e ' ~ t ~2 ' ~s. The
phonon wave vector, q, has been restricted to the
first Brillouin zone. k, —kz can have values in the
second Brillouin zone, but this exponential term is
simply summed over lattice sites R& and thus re-

The general matrix element of the deformation
potential is

&i('o, o, l «Ilz, az&, (B5)

where g, „ is a one-electron eigenfunction of re-
duced wave vector k, located in energy band 1. Now

express the electronic state in terms of a Bloch
function,

4z.a, = u z(k z, r) e"'" (B8)

The integral implied by the matrix element of
(B5) is over all space, but let us split it into a sum

of integrals over unit cells (u. c. );

xZ 5R (k, s)'(4+G)v (k+G)e' 'u . (B10)

If we restrict the result to norma' phonon pro-
cesses, i.e. , G=0, the spatial integral of the
Bloch functions becomes an overlap integral, aside
from a factor of X, between the zone center Bloch
functions, which are identical to the orthogonal
electronic eigenstates. The normal approximation
for the deformation potential matrix element be-
comes

0;olnV.. Il,r& i'~ =+ 5R.(k, s) kv. (k).
(B11)

The electronic eigenstate part a;;(k) is separated
from the lattice dynamic parts and is calculated
from a k ~ «p band structure calculation at k expand-

ed about the zone center. The vibrational ampli-
tude 5R (k, s) is a product of the normalized pho-
non eigenstate for that ion and the Bose-Einstein
occupation function, which depends on temperature
and phonon energy. It is insufficient to use sim-

ply the free atomic potentials since the electrons
are reacting to the movements of atoms distant by
the interatomic spacing or more. The potential
required is related to crystal binding potentials.
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