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Deep-Hole Excitations in Solids. II. Plasmons and Surface Effects in X-Ra3 Photoemission ~
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The theory of x-ray photoemission (and related experiments) involving the excitation of a core state
interacting with plasmons is presented. Specifically, the effects of the solid surface have been calculated, thus
complementing the authors' previous calculation of the bulk effects. The strengths of the surface- and
bulk-plasmon satellites associated with (i) the sudden appearance of the deep hole, (ii) the escape of the
photoelectron, and (iii) interference between these have been calculated.

I. INTRODUCTION

X-ray photoemission' as well as other forms of
high-energy-electron spectroscopy have become
widespread tools for the investigation of the elec-
tronic structures of materials. Such experiments
however have always been difficult to interpret be-
cause of the presence of many-body and surface ef-
fects. In fact, the calculated inelastic mean free
path of a l. 5-keV electron is only about 15 A and
this has been recently confirmed by many experi-
ments. Thus, one might expect surface effects to
play a role even at these energies. To study this
problem we adopt a simple model ' which contains
plasmons as the most important many-body excita-
tions at high energies. Such a model provides
neither an extremely accurate description of the
many-body effects, nor of the surface, but is ex-
pected not only to provide a good estimate of the
magnitudes of the various effects involved, but
also to serve as a prototype for more sophisticated
calculations involving the accurate wave functions
of the surface excitations when these become well
known enough to make such a calculation worth-
while. The description which we give here is
couched in the language of x-ray photoemission,
alihough our calculation is easily adapted to other
types of experiments involving the excitation or
de-excitation of a core electron. The plasmon bulk
effects in such experiments have been investigated
in great detail in our previous work. There we
considered all the effects up to the order of e /Kv,
where v is the velocity of the fast electron. The
surface effects we consider here include the ex-
citation of surface plasmons, the modification of
the bulk-plasmon charge density, and the modifica-
tion of the coupling between electron and plasmon.

Throughout this work we will be specifically dis-
cussing x-ray photoemission and will have in mind

roughly the following situation: a l. 5-keV photon
imyinges on a solid, exciting a core electron which
then escapes; it will always be assumed that the
core electron was sufficiently tightly bound so as
to be regarded occupying a single level, but not
so deep as to have been lifetime broadened to a

significant degree. It is also assumed that the
escaping photoelectron is sufficiently energetic
that its coupling constant e~/Kv = (13.6 eV/E) '
can be treated as an expansion parameter. Even
in this simplest situation, the various many-body
effects are nontrivial and not small.

%'e will be interested in the various many-body
effects which add structures to the basic photo-
emission line and the effects of the surface on
these. One of these is the excitation of electron-
hole pairs, which are responsible for the Mahan-
Nozieres-De Dominicis singularity~' which has
been discussed in the context of the photoemission
problem by Doniach and SLInjic and implicitly by
Langreth. ' They are also responsible, on the
atomic level for the so called "shake-up" satellites
discussed for example by Rosenwaig" et al. Final-
ly, the excitation of multiple electron-hole pairs
subtracts spectral weight from the main line and
other sharp features, and displaces it to the back-
ground. ' Since this paper deals principally with
the effect of collective oscillations or plasmons,
this latter electron-hole effect is the only one dis-
cussed. Essentially we will be calculating the
weights of the various plasmon satellites to the
x-ray photoemission line up to order e /liv, al-
though the methods developed are suitable for ap-
plications to some of the electron-hole effects as
well.

Physically, the many-body effects arise in three
different ways: (a) modification of the spectral
density of the deep hole left behind when the pho-
toelectron is excited; (b) inelastic scattering of
the escaping photoelectron; and (c) interference be-
tween (a) and (b). We will also refer to (a) and
(c) as intnnsfc effects, while (b), the energy loss
of the fast electron, will often be termed an ex-
trinsic effect. In a previous work, ' one of us has
discussed these intrinsic many-body effects with
respect to different types of experiments. The
conclusion was that they tend to be 'Strong" (or
rather of the order of the electron-gas coupling
parameter - r, /6) in experiments where the num-
ber of "slow" electrons is not conserved —for the
purpose of this argument, nonrecoiling deep core elec-

8 4638



DEEP-HOLE EXCITATIONS IN SOLIDS. II. P LASMONS. . . 4639

where

(lb)

4' ), BE.{g, &)
I 7

Q ) BCO

where co, is the plasmon frequency which occurs at
the zero of the dielectric function e(q, &o). For a
simple "metal" P =r, /6 where r, is the radius of the
Wigner-Seitz sphere in units of the Bohr radius;
therefore P- ~ for Al, Si, and Ge but can be con-
siderably larger for the lower-density metals,
notably the alkalis. What is done in Sec. III of this
paper is to extend these results to the case where
the deep hole is created near the surface, which is
necessarily the case in a photoemission experi-
ment. We find there that with the hole sufficiently
close to the surface, the surface effect is quite
large: First, some of the spectral weight is re-
moved from the main peak and especially from the
bulk-plasmon peaks and displaced to surface-plas-
mon peaks which now appear in the deep hole's
spectral density. Second, the whole spectrum is
shifted by an amount which can be as large as
several electron volts for a deep hole very near
the surface; deep inside an insulator this shift has
a long range tail which has the classical image
potential form (e /4X) [(e —1)/c(e +1)]. Our dia-

(1c)

trons as well as electrons near the Fermi level
are considered "slow. " On the other hand, if the
number of "slow" electrons is conserved, then
these intrinsic many-body effects are expected to
be weak, as has long since been pointed out'4 in
the cases of x-ray emission and absorption. Un-
fortunately, the extrinsic effects are invariably
present in those experiments where the intrinsic
effects are strong, and this makes their identifica-
tion difficult. As discussed earlier, even though
the coupling of the fast electron to the many-body
excitations e /hv may be small, the extrinsic ef-
fects may not be small ' because of the repeated
nature of the interaction.

As pointed out for example by Hedin etal. ,
" the

most important intrinsic effect in x-ray photoemis-
sion is the renormalization of the spectral density
A(~) of the deep hole, or item (a) above. Within
the approximation (similar to that made in their
payer) that the plasmon is an elementary excita-
tion of the system, Langreth ' has provided the
exact solution for this spectral density and Hedin
et al. ' has made a numerical calculation of the
spectrum using this solution. One prediction is
that the strength of the nth plasmon satellite {due
to this intrinsic effect above) is

e-8 Pn/& (

grammatic procedure calls for averaging the deep-
hole spectral density in a manner which physically
represents accounting for the escape probability.
When this is done, the main peak, for example,
takes on an asymmetric (but narrow) form but
which in an incubator has a long tail, with the
spectral density of those electrons arising near the
surface being lost in the tail. These effects (after
averaging) turn out to be fairly small for a photo-
electron of 15-A inelastic escape depth, and hence
probably are not too significant unless the photo-
electron's energy is down around several hundred
eV, in which case the escape depth would be less
than this.

The second intrinsic effect, labeled a "fast-
slow" correction in Paper I is the interference
term between the photoelectron in the conduction
band and the deep hole left behind. In the absence
of a surface, this term was calculated in I to low-
est order in e /ifv which there as well as here is
a small parameter. The calculation there may be
taken over directly and applied to the photoemis-
sion experiment. The effect of the term is then to
weaken any plasmon satellite by transferring spec-
tral weight in the fractional amount (e /Kv)F (where
F is a. slowly varying function of order unity) from
a satellite to the next lower satellite (or to the
main peak in the case of the first satellite). Since
satellite strength from other sources tend to be
monotonically decreasing, this interference term
has the net effect of weakening the satellites from
other sources. At high electron energies this
weakening is relatively unimportant, but it be-
comes stronger as the electron's energy is lowered.
It is shown in this paper, that the presence of the
surface has no effect on this term, at least to the
order of this calculation.

Finally there is the extrinsic effect which is sim-
ply the energy loss of the escaping electron. This
is something which is common to a number of kinds
of experiments and which an experimentalist usually
wants to subtract out of his data, especially if he
is measuring, for example, a valence-band struc-
ture; it is of course incorrect to assume that "line
spectra" (as described in this paper) determines
this directly, because the intrinsic effects are al-
ways present as well. In our previous paper, the
extrinsic effects or fast-fast correction went under
the heading of "admittance function. " There it was
calculated for a different experiment, but in the
absence of any effects attributable directly to the
presence of the surface, we may take over the re-
sults there, although "escape function"' would be
a more reasonable name in a photoemission ex-
periment. The fact that we are primarily inter-
ested. here in calculating the strength of the various
plasmon satellites makes possible a simplified
point of view. This is because once the electron
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excites an electron-hole pair on its way toward
the surface its energy is smeared over a range of
20 eV or more, and is lost to the background so
far as producing any sharp structures such as
plasmon satellites is concerned. " If o. is the prob-
ability that in a given interaction the escaping elec-
tron emits a plasmon rather than an electron-hole
pair, then the strength of the nth satellite associ-
ated with this extrinsic effect was shown in I to be
equal to a". The most important surface cor-
rection to this result is the rather trivial possibili-
ty that the escaping electron emits a surface plas-
mon; this gives a surface-plasmon satellite with
strength of order e2/jfv in essential agreement with
earlier calculations. ' The other various effects,
such as the deviation of the photoelectron self-en-
ergy from a local step function and the modification
of the bulk plasmons charge density, combine to
give a correction of the same orders as the fast-
slow interference term mentioned earlier. Like
the latter correction, this term further weakens
the bulk-plasmon satellite.

In summary, then, surface effects are not very
important at the higher electron energies (&keV)
and are calculated quantitatively in our model as
this energy is lowered. Neglecting these, the
strength of the nth plasmon satellite (if the main
line is normalized to unit strength) is equal to the
coefficient of x" in the expansion of

e'* [(1 —o;x) '], (2)

where the exponential represents the intrinsic ef-
fect and the quantity in brackets is the extrinsic
effect. The fast-slow interference term can be
included in (2) simply as a velocity-dependent weak-

ening of p [p- p —(e /jfv)F], although as mentioned
earlier, the surface produces a weakening of a of
the same order of magnitude.

Aside from the theoretical interest in the in-
trinsic effect, it would be important to separate
experimentally the extrinsic and intrinsic effects,
because the extrinsic energy-loss effect occurs in
other types of experiments too. Note that (2) pre-
dicts" that the strength of each successive satel-
lite falls off faster than linearly (at least for P & 1)
while the extrinsic effect alone would cause a linear
falloff [that is, the strength of the (n+ 1)th satellite
would be u times the strength of the nth]; this may
provide a method for identifying the existence of the
intrinsic effect. " One might also be able to see the
velocity-dependent weakening effect by varying the
energy of the incident x-rays. Finally the ex-
trinsic (escape function) effect might be measured
directly by another experiment: As shown in I,
electron energy loss with core excitation in the
back scattering geometry measures the same ex-
trinsic effect (neglecting the surface) as photo-
emission, and in addition the intrinsic effects are

expected to be quite small in the energy-loss ex-
periment.

II. MODEL AND DIAGRAMMATIC METHOD

We assume in our model that the solid occupies
the whole space x ~ 0. For x &0 we have vacuum.
The surface is assumed smooth and not contami-
nated. Inside the solid we have uniformly dis-
tributed filled core state with binding energy b, .
The core states are assumed to be localized, that
is, they have b, -function-type wave functions. This
is a reasonable approximation even for photon with

energy as large as 5 keV. In this case the photon
wavelength is about 2. 5 A, which is still much
larger than the radius of the core electron.

Essentially we wish to calculate the dc current
a long way outside the surface. For simplicity we
assume that the measuring device has reasonable
collimation and measures only those electrons es-
caping approximately normally to the surface; our
method of course is easily generalized to an
arbitrary angle, or average over angles. As long
as for those angles the perpendicular velocity of
the photoelectron v~» &us/q, . This generalization
is described in Appendix E. This perpendicular
contribution to the photocurrent is expressible
simply in terms of the one-particle correlation
function

j(R, t, P) = f d~ r (- 2eP ) e '~'" (P~ (R+ ~ r, t)g(R —2r, t))

expanded to second order in the electromagnetic
field representing the photon, as pointed out by
Ashcroft and Schaich, ' Mahan, and others.
The systematics of a diagrammatic expansion for
G is standard. 4' '

The basic process can be illustrated by Fig. 1.
Since we do not have translational invariance in

the x direction, we will work in real space instead
of momentum space. Now we have photons with

energy Q incident normally~ to the surface of the
solid and excite a deep core electron at X = (X, X„) '
with the x component of X, X & 0. We record the
escaping fast electron at R= (R, R„=O) far from the
solid. The black squares are the matrix elements
of the photon-core-electron interaction and have the
form

where 5 is the skin depth of the solid and 8(X) is
the unit step function which vanishes for X&0. We

neglect the dependence of M on the energies of the
escaping electrons. Since the escaped electrons
to be interested in have energies much larger than
the plasmon energy, this clearly is a good ap-
proximation.

With all this, Fig. 1 gives for f (p, R; 0), the
electron number density distribution function at
point 8 with momentum p, the following expression:
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d&u A(x, x'; ~')
G(xy x ~ co kzQ) =

27K (d —Ca) + ZQ
(6)

X

r
2 where n is a infinitesimal positive number and

A(x, x'; &u ) is the spectral density of the fast elec-
tron with energy &u'. G(x, x;usiq) obeys the fol-
lowing equations:

[&usiq+ V + V(x)]G(x, x; craig)= 6(x —x )

+f dsx" Z, (x, x";&o+iq}G(x",x';(usig), (6a)

FIG. 1. Basic process for x-ray photoemission ex-
periment involving the excitation of a deep core electron.
The broken lines, the double line, and the single lines
represent, respectively, the propagators for photons,
deep core electron, and fast escaping electrons. The
black dot is the response function of the measuring appa-
ratus centered at 8,. The black squares are the matrix
elements for the photon-core-electron interaction.

f(p, R'&) = IMl'fd'rf d'Xe "8( X)A-O(»X)

x G (X, R +—,
' r; fI + v + iq)

&&G(R ——,'r, X; A+ &o —iq) e'"', (3a)

where 0 is the photon energy; Ao((d X) is the en-
sernble average of the deep-core-electron spectral
density at X; while G's are fast-electron Green's
functions to be defined later. We have let p= (p,
p„= 0), because it is those electrons coming out of
the solid approximately normal to the surface we
are interested in and those electrons have only
momentum in the & direction.

In real experimental situations, one measures
the photocurrent instead of the number density dis-
tribution function f(p, r, II). The photocurrent con-
tributed by the basic process is

j(p, r, 0) = —2epf(p, r, fI). (3b)

The effect of the solid on the fast electron is
partly taken care by an imaginary self-energy Z,
which is assumed to be a local step function in real
space;

Z, (x, x'; &u + irI} = wi(I/2T) 5(x —x')8(- x) . (4)

The quantity r= [(ea/Kv) 5 &@~ In(mv /Kur~)]
' is the

lifetime of the fast electron with velocity v = 2 v co.

In real cases, of course, the self-energy of the
fast electron is neither a local nor a step function.
Nevertheless, we will take this as a starting point
and show later that the corrections are small
(-e /Kv) by considering the lowest-order perturba-
tion expansion of the difference between the true
self-energy Z„and the approximate Z, .

The Green's functions of the fast electron are de-
fined as

[&u+irI+ V '+ V(x')]G(x, x'; &u airI) = 6(x —x')

+ f d x"G(x, x";usiq) Z, (x",x; maiq}, (6b)

where V(x) is the self-consistent potential of the
solid. Since the mean free path is assumed to be
much greater than the healing length of potential,
we can take V(x) to be a step function V(x) = V8(x)
for the purposes of this calculation. The magnitude
of V, in general, is about 10 eV, which is much
smaller than the energy of the photoelectron. It
is evident that G(x, x';~wig) can be written as

io(I', R; &) = —2eplM l' f'"d~ f'"dre""f d X

xe"i'8(-X)A(&u, X)

&& g (0;R —
~ r, X; II + (u + i'�)

&&g(0;X,R +2r; A+ v —iq).

From Eq. (2b} of II, we have

g(x, x'; (o+iq) =g(0; x', x; &o —iq),

(6)

(9a)

G (x, x'; &u p ig) = P e'"""+ ' g(k„;x, x'; &u a iq) (7)

due to the translational invariance in the plane
parallel to the surface. Upon substitution of (7)
into Eq. (6), it can be shown that g(k„;x, x'; E+irI)
satisfies Eq. (6) with the first term replaced by

2v —k„. These one-dimensional equations have been
solved by Langreth [Eq. (26) of that paper. ] Since
we are interested in the contribution to the current
due to electrons escaping perpendicularly to the
surface, the summation on k„ is restricted to
[k„[-0; The more general case is discussed in
Appendix E. Therefore it is reasonable to negle "t
k„altogether. This is a good approximation even
for electrons exciting several plasmons before
they escape, because the plasmon wave vectors
are restricted by the condition [q) ~ (q, l «)k[,
where k is the momentum of the fast electron.
Anyway, ignoring k„means neglecting a correction
of order Iq ( /&u- ~~ /4e& ru- (ea/Kv)a. Since we are
interested in correction up to order e /Kv, this is
a correction beyond our consideration.

By using Eqs. (3a) and (7) and the fact that owing
to the symmetry of the model A(~, X) does not de-
pend on X~, , Eq. (3b) can be simplified as
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I~
~

z
g(x x qM —i')= ~ ( )gtg

&&exp -i v &ox+i

(d —v '/~ — — x 9b

where l = v~ is the mean free path of the fast pho-
toelectron. Since (1/2v &u) [W&u —(&u —v) ) - v/4&v
-(1 Ry)/&u and 1/(rul )'t -(e /ltv) (tom /&u) ln(2u/
K&@,) «ea/Kv, while e'//tv [(1-Ry)/&u]'t', Eq. (9b)
can be simplified to give

I Z

g(x, x; u —iq) =

I
I vx exp —i'm x —x —i x + —,

2 v'~ 2(t

c (q, (u, ) = 0; e (q, (u~) = —1 (14)

choosing the dielectric function to be of the form

(B) an. d surface (S) plasmons, respectively, while
t)t(x) and tfr(x) are electron field operators. Sum-
mation q is restricted to tqI &q . Also, we have

q, the x component of the wave vector q be posi-
tive. The surface-plasmon wave vectors q„have
only the component parallel to the surface survive.
The matrix elements for electron-plasmon inter-
action g,B and g,s are taken to be

4' 1 1/a
2

Bf (g, (0)/BM

4' 1 1/a (13)

I q„ I Be(q, (u)/B&u

where cu, and co~ are bulk- and surface-plasmon
frequencies which satisfy the conditions

x &0, x' &0. (10a)
e (q, (u) = 1 —(o,'/((o' —a2) (15)

The other components of the partial fast-electron
Green's function g(x, x', &u) can be written down
without further approximation as

Z

g(x, x'; ~ —iq) =

xexp i ~& —
I
x —i vcr — ~ x

will suffice for our purposes, where b,,~q for
metals for small q and, for insulators b,,- constant
which is about the gap energy between conduction
and valence bands. This dielectric function gives
correct values at ~-0, ~ limits. Upon the substi-
tution of Eq. (15) in (13) and neglecting the disper-
sions of the plasmon frequencies the matrix ele-
ments g, B and g,a become

x&0, x &0 (10b)

v Ig(x, x'; ~-iq)= exp —i War — (x —x )2V (d 2v'ur

x& 0, x'& 0 (10c)

I I

g(x x; ~ —tent)= exp -i v ~ ——~x —x
~

Z Z I

2 (d 2l

gqB =
g @(d 1 ——

a 1)- 1/2

where E is the static dielectric constant of the
solid and

B —cop 1—,cos—

(16)

x& 0, x' & 0. (10d)

Now, with the approximate Green's function, Eq.
(6) becomes

~0 „~~ e X(1/5+1/ l )

Jo(P, R, 0) = —2eP~M
~

dX dry
y aa y~a 4 A+to

xA(&u, X) 5(P —(0+(u —v))it~. (11)

From now on we set 6 = 0, since 5» E, the in-
elastic escape depth of the fast electron which has
energy - keV.

For the electron-plasrnon interaction, we take
our model Hamiltonian to-be '

H, »= Zg, e tP(x)t)(x) a;sinq, xe"'*"8(-x)

+ pg„4'(x) q(x)B; exp(ig„x„—~q„~ ~x~ )+c.c. ,

(12)
where a; and 5~ are destruction operators for bulk

are, respectively, the bulk and surface frequencies
without dispersion. For metals, E -~, ~B= co~,
and &us= &u~ /v 2, Eq. (16) reduces to the coupling
constants obtained by Gersten and others. "

III. SPECTRAL DENSITY OF THE DEEP HOLE

When we turn on the electron-plasmon interac-
tion H, » [Eq. (12)], aside from the modification
of the fast electron's mean free path which has
been partly taken care of by using an approximate
self-energy Z, [Eq. (4)], we have plasmon effects
associated with the three sources mentioned in
Sec. I. The typical processes for each are shown
in Fig. 2. We investigate here the plasrnon ef-
fects associated with the modification of the deep-
hole spectral density, i. e. , we use the renor-
maliz d deep-hole sprectral density instead of the
bare one in Fig. 1. The renormalized deep-hole
Green's function G„(t, X) is shown in Fig. 3. The
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i~X
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2
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By using the linked cluster theorem, G„(t, X) can
be written down immediately as

0 &0

G&(t, X) = te' ' exp —p g, e dz' dT
t

x e& B(x x& sin2q X Qga

Xe p(t (
' —t) ~ 8]e„]X]8(—X)8(-t)).

(20)

~ I I
8(8

+x

q

R+—2

R ——
2

Therefore the spectral density of the deep hole

A(~, X) is given by

1
A((d, X)= —Im dte&"'G„(t, X)= ZA „((d,X)

a ec) tÃt

c)

x X

t

X

+—
2

where

r(r&g Pe(X) Pe (X)
n ~0 n. m.1

X t&((d + &8&+n(t&»+ m(t& ~+ ~(X)), (21)

FIG. 2. Typical diagrams for plasmon effects asso-
ciated with three sources: (a) typical renormalization of
the deep-hole spectral density; (b) energy loss of the
escaping photoelectron by the emission of two plasmons;
(c) fast-slow interference or vortex correction. Here
and elsewhere the wavy lines are plasmon propagators.

wavy line usually represents the effective Coulomb
interaction (4»e'/qa)3S(q, (d), S(q, ar) is the dynamic
structure factor, but in our approximation it is the
plasmon propagator D(q, &I&) times the corresponding
coupling constant g, . We have in our model

D(q, (d) = 2»(&(u& —&os), (18)

and, owing to the local approximation of the deep
hole, the ensemble average of the bare deep-hole
Green's function is given by

P»(X) = Z 'a sin2q, Xe(-X),
(dg

2

p (X) = gg']& e "II're(-X)
S

(22)

~.(X)=-8 .(I- 8'(88.X))
1

C

0(X ) x

p~ g+ +0 ~ if ))q

—K(X)=P (X)+P (X), —~(X)=P (X)&I& +P (X)(d .
We discuss the energy shift ~(X) first and come

back to consider the effect of K(X) later The .en-
ergy shift can be separated into two parts. One,
which we call AEe(= —P»(d»}, is contributed by the
bulk plasmon and the other, which we call ~s
(= —

P(& &u») is contributed by the surface plasmon.
A straightforward calculation gives

g,(t, X)=te'"e(-X)e( t)- (19}
(23a)

X X

4)+cu8
l

X

X X X X

cu+~B, I x cvi~S l

tI, ~ + o» I, q + ru &(, q + &i +
X

X X X

FIG. 3. Diagrammatic
expansion of the real deep-
hole Green's function in
terms of the bare Green's
function. X is where the
deep hole is excited.
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2~ (X) = — (1 —e+' )4X &+1

where

fXi»q,-',

(23b)

St(X)= '

dy and P= ' 1- — . (24)
siny 8qc 1

~o 7TCO g

The very small oscillation in dEs(X) contributed
by Si(X) is due to the artificial cut-off plasmon
wave vector q, , and hence is unphysical. Adding

(23a) and (23b) up, we obtain the total energy shift
for the two limiting cases

8q~ 8

8 q~ E. —1 g ix i «q,-'.

(25)
~(x), as well as bEe and nEe, is plotted in Fig.
4 by taking E = 2, 5. We point out here that when the
core hole is far from the surface, i.e. , for )X)
» q, ', both bulk and surface plasmons give energy
shifts with the form of the image charge potential.
For metals, E- ~ and the image charge potentials
due to these two sources cancel completely. How-

ever, for insulators this cancellation is not com-
plete. But, because of the factor (1/e) [(e —1)/
(& + 1)], the image charge potential energy is small.
Also worth noting is that Pe(X) vanishes at the sur-

e' 2
5K(X) = — 1 —— Si(2q, X)4X 'i mes~

(27)

+ — 1-8~~x)

face but restores its bulk value P [Eq. (2)] as X-—~, while P, (X) has its maximum value at the
surface and becomes smaller and smaller as &

The situations for AEs(X) and DIES(X) are
similar to that of Pe(x) and Pe(x). From Fig. 4,
it is clear that the broadening of the spectral line
can be described rough/y by the quantity

e2q, ' 1 m E-1
rhE(0 ) —~(- ) = ' 1 ——

2 6+1
(26)

which is the difference of the deep-hole energy
shifts at the surface and that deep inside the sam-
ple. This quantity is smaller than the plasmon
energy; therefore, this surface effect will not have
the plasmon satellites overlapped. For example,
for metal e - ~ and q, - &u~/v&, the difference of the
shifts is about (1 ——,'v) r, ku~/3v which is 4- 5 eV
at most.

Now we consider the modification of main peak
strength owing to the surface effects on the deep-
hole spectral density. It is obvious that so far
the strength of the peak is concerned we can neglect
the space dependence of the energy shift AE(X) be-
cause what it does is to redistribute the spectral
weight within the peak (we show this explicitly in
Appendix B). So, we use Aoo(~, X) for the deep-
hole spectral density, where AM(&u, X) is the term
in A(&u, X) [Eq. (21)] with n = 0 and m = 0, i.e. ,

Aoo(&u, x) =e '«'5(a&+h —Pve)8(-x),

K(X) = P + 5K(X),

I0

0.9

a' 0.8 0.8

0.7

Z 0$

z 05 0.5

0.4

&- 0.3

UJ
0.2

O.I

L
I x I (IN UNIT OF I/2qc)

FlG. 4. Energy shifts of the deep core state due to
bulk plasmon (~~), due to surface plasmon (bSs) and
their sum (~) are plotted as function of distance from
the surface by taking the static dielectric constant &

=2, 5.

where 5K(X) is the correction due to the presence
of solid surface. Although quite large close to
the surface, 5K(X) has small effect on the photo-
emission spectrum. This is because 5K(X) is
characterized by a distance q, '. For IX I »q, ',
5K(X)-0. While the inelastic escape depth of the
photoelectron l is as small as 15 A for a 15-keV
electron, it is still much larger than q, '.
Therefore, we expect the leading term of cor-
rection due to 5K(X) to be of order (fq, ) i- (e2/jgv)
&&(&ue /vq, ) ln(mv /ue), and hence it can be ne-
glected. The reader will find the detailed calcula-
tion in Appendix B.

Aside from affecting the strength of the peaks,
5K(X) and b,E{X)change the shape of the peaks al-
so. For example, to see the line shape of the main
peak we use Aoo(&u, X) for the deep-hole spectral
density; we substitute it into Eq. (11) and obtain
jo(P, R, A), the current density detected at R from
those electrons without exciting a plasmon on their
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g 4

03
!Z

(29)
The detailed calculation is given in Appendix C. It
is obvious that the correction to the bulk-plasmon
satellite due to the modification of the deep-hole
spectral density will be the same order as (29), and
we will not consider it.

0

Eth-k(h)

I

Eth 4$

FIG. 5. Line shape of the main peak plotted in units
of e /4l (which is about 4 eV for a 1.5-keV electron) for
material with static dielectric constants e= 2, 5.

way out. jo(R, 0) is plotted in Fig. 5 for e = 2, 5.
If there were no surface, the total weight would
pile up at E»= 0 —4+ Pro~. With the presence of
the surface, the peak of the main satellite will
shift to louver energy by an amount - (e /41)(1/E)
x [(e —1)/(e + 1)] which for l- 15 A, e = 5, is about

eV«1 eV. Also, we notice that the line shape
of the main peak is asymmetric, there is a long
tail, and it is those electrons originating close to
the surface get lost in the tail. Essentially, the
spectral line becomes flat when Erh —E ~ em/4l,
which for a 15-keV electron is about —,

' eV only.
We find the fractional weight of the main peak
falling outside this point is given by

1 —exp(- (1/e) [(e —1)/(e + 1)]}. (28)

Taking E = 5, this is about 13%. Therefore the
weight which gets lost in the tail is more than 13%
and even larger if we consider electron escaped
with a finite angle to the normal of the surface.
But, in real experimental situations, because the
resolution of the linewidth is larger (usually the

resolution is ~ 1 eV) than em/4l-1/4 eV, the asym-
metry of the peak and the loss of the weight may
not be as significant as we calculated here.

Before we turn to the extrinsic effects and in-
terference corrections we consider the first sur-
face-plasmon satellite due to the normalization of
the deep-hole spectral density. Since the elec-
trons which contribute to the satellite do not ex-
cite any bulk plasmons, they originate, in aver-
age, at a distance l deeper inside the surface;
while the surface-plasmon charge density decays
exponentially away from the surface, we expect
the surzace-plasmon satellite due to this effect to
be small. In fact, the strength ratio of this and
the main peak is given by the expression

X

I

r+—
2

r
2

I IE

~x
b)

R+—
2

rR-—
2

X

c.)

2

FIG. 6. Typical diagrams contributing to the lowest-
order correction to the strength of the main peak by con-
sidering the real and nonlocal part of the fast-electron
self-energy: (a) .Correction to the self-energy due to
surface plasmons; (b) is the bulk-plasmon self-energy
correction, part of which has already been included by
using a Green's function with a local imaginary self-
energy; this double counted part is subtracted off by (c)
where the circle represents the approximate self-energy
z, [Eq. (4)].

IV. EXTRINSIC EFFECTS: FAST ELECTRON-PLASMON
CORRECTIONS

Before we consider any extrinsic effects, let us
calculate the main peak whose strength is given in-
correctly by Eq. (B3) in Appendix B because we
used the approximate Z, (x, x'; td + iII) [Eq. (4)] for the
self-energy of the fast electron. The lowest-order
corrections are shown in Fig. 6. The wavy lines
in diagrams 6(a) and 6(b) are surface- and bulk-
plasmon propagators, respectively, while the circle
in diagram 6(c) represents the negative of the ap-
proximate self-energy Z, (r, r'; td). Therefore,
diagrams 6(b) and 6(c) together give the correction
to the strength of the main peak due to the consider-
ation of the real part and the nonlocal part of the
fast-electron self-energy contributed by the bulk
plasmon, and diagram 6(a) takes care of that by
the surface plasmon. Of course there should be
corrections due to the electron-hole pair excita-
tions; however, we expect them to be small and
shall not consider them here.

The contributions of diagram 6(a) and its com-
plex conjugate to the strength of the main peak are
given by the expression
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Iq((l l "el~ADO(&u X)G(X, x, ; A+re+i&) G(x, , xz, A+&0 - tu, +fp) 8(x, —x,)G(R —~r, X; Q+(d -ip)

xG(xa, R+ 2r; Q+&d +i')8(x, -X)+c.c.

There are other terms corresponding to cases of
ordering X, x„and x~ differently. Since the
escaped electrons are assumed to have high en-
ergy (-1 keV), these terms are small. Upon the

(3o)

l

substitution of the fast-electron Green's functions
from Eqs. (7) and (10), we integrate over r and all
the parallel components of X, x, , and xz, and ob-
tain the expression for aj&s(P, R, Q). We have

dEjgg(P, R;Q)= 2eplM l' I, d~ dX8(-X) d~& «28(~2-~&) 8(~&-X)

«e "«t«(~, x)e«g(-i '„,(«, -«)'Ir(! «)&-Ie»l I"
I

—I«»II* I)(Q+ (d)

5(P —(Q+ ~ —v)'/3)
16(Q+ &d)' (31)

In the denominator we have made the approximation
0+ co —(ds- 0+~. Also, in the phase factors we

have taken (Q+(d —v —(ua)'/ - (Q+(u)' —(V+ ~,)/
2(Q+(d)& 3. These approximations together with
the ignoring of Iq„ le in the fast-electron Green's
function are equivalent to that of taking a classical
path for the fast electron as Sunjic and Lucas~
did with the problem of the energy loss for a fast
electron passing through a thin film. The error

involved represents a small correction to a small
correction. Since we are interested in the strength
of the main peak, we use Ao((d) = e ~5(&() —6+(8(da) for
A~(&u, X). By using this bulk deep-hole spectral den-
sity, wehaveneglectedtheeffectof |)K(X) which is a
correction to P in the exponent, but it has small ef-
fect on the strength of the satellites due to the con-
siderations in Sec. III. Working out the rest of the in-
tegrations, we simplify Eq. (31), which becomes

86(P —(Q —a+ P(d e —v) '/')
4(Q —6+ P&ds)

q„', +(« /«)' +0„',~ (t« /v)' ( „&q)( fe,'„(',/«)']I(, /vl', (q,„,(-')']) (32)

with & -=-8 IM I'e 'f/v defined by Eq. (B3), where &/= 2(Q —6 —V+ p(da)'/2 is the velocity of the fast elec-
tron. The most important contributions come from the first term in the large parentheses which gives

m e~ & —1 2, 2 es
hj z, (P, R; Q) = B5(P- (Q+ p&d s —6 —V)'/ }) 2 &—

m j+es (33)

with 8«=&d&]/vq, . All other terms have contributions of order (e /g&)) or higher. Therefore the modifica-
tion of the fast-electron self-energy due to the surface plamson will reduce the strength of the main peak
by a fraction of order e2/Kv.

Now, we turn to calculate diagram 6(b). Its contribution to the strength of the main peak is given by the
expression

jo&»(P, R; Q) = —2eplM l
der d re'""

I d X8(-X) d'x, dsxa Kg~ac""'*& *2' sin&f, x, sinq, x2

&&A (&(), X)8(-x )8(-x )G(X, x„' Q + i&&())G(x, , x;Q+ &&d()—ig)8(x —x, )8(x, —x)+c.c. (34)

This equation is similar to Eq. (31) except for three points: First, the coupling constants are different.
Second, we have the excitation energy (d~ instead of ws. Third, the bulk-plasmon excitations are re-
stricted within the solid, whereas the excitations of the surface plasmon are symmetric with respect to
the surface Followin. g the same method of calculating diagram 6(a) and without making any further ap-
proximation, we find
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~ 1
jp(b)(P, R; Q) = ——B5(P—(Q —b'+ Pap —v) ) Zg, s (~ /v ~quip ~ (1). p. +

(& /v q )p+ 1 p
—

(~ /v)p

~l (u&s/v+q~)P(l) P lP (ms/v —q~)P+1 P ~l 4q~P+1

After summing over q, Eq. (35) can be simplified further as

(35)

j/p 1 e 1 1+8 1 e 1, ea
jap~(P, R, Q) =B5(P —(Q —&+p&p —v)' ) —& ———1 —— ln + ——1 ——F(8 ')+0 — (36)rhv E 1 —~ 2 kv E Sv

with 8 = &us/vq, . Again, o'. is the probability for the fast electron in a bulk sample to excite a bulk plasmon
during a collision, i. e. , n is the ratio of the total lifetime and the lifetime due to the excitation of the bulk
plasmon. The function F(8 ') is defined as (1/w)fp (dy/y)ln l(1+y)/(1 —y) I which is a smooth function of
8 ' varying from —,'m' for 8 = 1 to ~w for 8

To obtain the net correction by the modification of the electron self-energy due to bulk-plasmon excita-
tion, we have to combine diagram 6(b) with 6(c) which can be worked out easily due to the local character
of the self-energy Z, :

jp&, &(P, R; Q) = —ep ~M ~p ~ d&u dpre "&" dpX8(-X) J(dpxAM(&u, X)G(X, x; Q+ur+iq)

x —G(x, R+-,'r; Q+ ~+iq) G(R —Pr, X; Q+ ~ —iq)8(x —X)+c.c

=B5(P —(Q —4+P~s —v)' P){o]. (37)

hj ps(P, R; Q) = B5(P —(Q —d+ Pup —v) ) ———1 —— ln ——F(8 )
1 e 1 1+8
m lv e 1 —8 2

The total strength of the main peakj p(P, R, Q) can be obtained by adding cps and ape [Eq. (33)] to jpp [Eq.
(Bl)]. We have

(38)

j,(P R'Q) =jpp(P R Q)+ &&ps(P R'Q)+5,happ(P R Q)

Therefore, summing up Eqs. (36) and (37), we find that the correction due to the bulk plasmon will enhance
the strength of the main satellite by an amount of

= B5(P —(Q —6+ Prus —v) ) 1+ ——1 —— F(8 ) ———1e 1, we a —1
2 Sv E 2 hv &+1

(39)

It is clear that the modifications of the strength
of the peaks in the spectrum due to the higher-or-
der corrections of the electron self-energy are of
order (e /Kv) or higher; therefore, we will not

consider them.
We now consider the plasmon effects associated

with the escape of the fast electron. We are going
to calculate diagrams shown in Fig. V. Again the
wavy lines with wave vector q„are surface-plas-
mon propagators and those with wave vector q are
bulk-plasmon propagators. So diagram 7(a) con-
tributes to the first surface-plasmon satellite;
diagram 7(b) contributes to the first bulk-plasmon
satellite, while diagrams 7(c)-7(i) give correc-
tions to the strength of the first bulk-plasmon satel-
lite up to order ep/Kv. First, we calculate the
strength of the first surface-plasmon satellite
jp(P, R, Q). Using the same method which we used
to calculate diagrams in Fig. 6, we find that dia-
gram 7(a,) gives for the strength of the first sur-

l

face-plasrnon satellite

j z(P, R; Q) = B5(P —(Q —& + Pup —v —mp))UP

with

x 1 ——tan 'es- —
2 +0

(41)

2 g' E 1 8 1 eg

(40)
This is the same as 4jpp [Eq. (33)] except the dif-
ferences jn signs and the momentum shifts. We
obtain the expression for the strength ratio of the
first surface-plasmon satellite and the main peak
by dividing Eq. (40) by Eq. (39) and ignoring the
difference in energy shifts. We have

jp(R, Q) w e e —1
jp(R, Q) 2 Kv a+1
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perim ents.
For the strength of the first bulk-plasmon satel-

lite we consider first diagram 7(b) which gives

j&(&»(P, R, 0) = B5(P —(0 —6+ P&ue —v —~e) '~3)

1e~ ]x o. ———P(8-') l
2 hp

gX

R+—
2

2

c.)

III
I ~ I

rx

X

~ ~ I

X( X2

(I &

gX X4

d.)

R+-
2
f'R-—
2

R+—
2

rR-—
2

R+ —'
2

R r
2

Px

gx

/x

)(.4
i.)

e.)

R+-
2

R- —"

rR+—
2

R-—
2

R+—
2

R-—
2

+ ——1 —— ln (42)

Again, this is the same as E(i. (36) except the dif-
ferences of the signs and the momentum shifts.

Diagrams 7(c), 7(d), 7(f), . and 7(g) give correc-
tions to the strength of the first bulk-plasmon satel-
l te due to the modification of the localized fast-
electron self-energy Z, by the bulk plasmons, while
diagram 7(e) gives corrections to the strength due
to the electron-plasmon vertex correction. It is
easier for us to calculate diagrams 7(c)-7(e) to-
gether instead of calculating them separately.
We find that the contribution to the first bulk-plas-
mon satellite due to these three diagrams and
their complex conjugate is

hjs(, ~,)(P, R; 0) =B5(P —(0 —6+ P(de —v —(de)(~2)

FIG. 7. All the diagrams which contribute to the
strength of the first surface/bulk-plasmon satellite up to
order e /hv due to the plasmon excitation by the escap-
ing photoelectron. Diagrams (a) and (b) contribute re-
spectively to the strength of the first surface- and bulk-
plasmon satellite whereas (c)-(i) give correction to the
strength of the first bulk-plasmon satellite by modifying
the photoelectron's self-energy and by vertex correction,

j(R, 0) =—dQ (8- 0, ()) J P~dP j(P, R, 0).
For metal, we have E - ~, this is the same result
obtained by Stern and Ferrell'7 for energy loss of

a high-energy electron incident normally on a semi
infinite metal. In their case the fast electron is
sent in from outside and goes on and on to excite
a surface plasmon, while in our case the electron
is created somewhere inside the solid {for those
electrons escaping without doing other things such

as exciting a bulk plasmon or electron-hole pairs,
the average position at which they are created is
about a distance l inside the surface) and is de-

tected outside the sample. In case the skin depth

of the sample 5 and the inelastic escape depth l

are infinitely large, the results for the two cases
should be the same. However, for finite 5 and l

one expects a difference of order

O(lq, ) '+O(5q, ) '-O(fq, ) '-O(e'/hv)'.

This is a correction of order higher than that we

are interested, and this explains why we get the

same result at order e2/hv for the strength of the

first surface-plasmon satellite for these two ex-

es
m

s
n 1+8,' {45)

Therefore the total strength of the first bulk-
plasmon satellite due to the extrinsic effect j s(P,
R, 0) can be obtained by summing up E(ls. (42)-
(45). We have

1e~ 1x(- u) o. ———l ——E(8 )2 kp

1 e2 1 1+~
ln ; (43)

1 —e

whereas diagrams 7(g) and V(f) and their complex
conjugate give for the strength of the first plasmon
satellite a correction of

hjs(~ f)(P, R; 0) =B5(P —(0 —6+P(dn —v —(vs)' )

1 en 1x(~) ~ ——1- — Z(e-~)
2 Sp

1 e2 1 1+8
+ ——1 —— ln (44)

mhp e 1 —8

This cancels r&j ((&, „,~ exactly up to order of e2/hv.

The corrections to the first bulk-plasmon sa.tel-
lite by modifying the fast-electron self-energy due
to the surface-plasmon excitations are given by
diagrams 7(h) and 7(i) and their complex conjugates.
They give

&js(. (& =B5{P- {fl- &+P~e - P - ~e)"')
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jB(»Ri II) =—jB&b)(» R II) + r&j B& &-)(» R' fl)

1/2 1 e2 1 1+8
= B5(P —(A —b, + p(uw —v —&vs)' ) c&+ ——1 —— ln

m hv E, 1 —8

1 e 1, &e ~j'& 1
~&

2 g 21- — F(8 ') —&w
——I I 1 —— tan '8w-—

2 hv E 2 hviIE+1 '& m & 1+8
(46)

From Eqs. (46) and (89) the strength ratio of this
first bulk-plasmon satellite and the main peak
(due to the "extrinsic" terms alone) can be shown

to be

js(R, II) I+o& e' 1 1+8
jo(R, 0) w Rv e 1 —8

1+
i

1
2 hvL,

(47)

ja/jw=o& for bulk sample, (48)

We recall that 8= &us/vq, « I and F(8 ') is a smooth
function which varies from —,'& for 8 =0 to —,'m for
8=1.

Before we compare this result with that obtained
in I, we notice that the second term on the right-
hand side of Eq. (47) is small, although formally
it is of order e /Kv, because &ve/vq, -vf/v
- [(1 Ry)/E]'Iw- ew/Kv, making the logarithm small
and the factor 1/w in front makes the term even
smaller. Therefore we neglect it in making the

comparison. In I, we found that, for a bulk sam-
ple the strength ratio of the first plasmon satel-
lite and the main peak [Eq. (10) of I] is

[

and all corrections to this are either of form (1/
w)(e w/h'v) ln I (1+8)/(1 —8) I [Eqs. (20)-(24) of I] or
of higher order, and thus negligible in the same
spirit as above. Therefore the surface effect on
the strength ratio of the first bulk-plasmon satel-
lite to the main peak due to theplasmon excitations
by the escaping photoelectrons is to reduce the
strength ratio by an amount of

1+ac
1

1 I vqc (49)

In this section we show that the interference
terms and vertex corrections correlated in I are
unchanged by the surface to the order of our cal-
culation. Refer now to Fig. 8; diagram 8(a) can
be considered as either an interference term or
a vertex correction depending on whether the final
state has a plasmon excited or not. Taking both
cases into consideration, we have for diagram 8(a)

This is of the same order as that of the first sur-
face-plasmon satellite [Eq. (41)] although, for
larger e, (49) is smaller.

V. INTERFERENCETERMS

fe

—2ep~M~, &f&v ~, &f re'w&' &f x d'X8(x-X)8(-x)

x E gwe sinq~x sinq~X e &~"'" *'G (X, x; 0+ &v + iS) G (x, R + —,'r; 0+ &v + u&s +i@)G (R ——,'r, X; 0+ &v —ig)

x [A (&v + &v s, X)g„(&v —iq; X) +A (&u, X)g„(&v + ~0 —iq, X)], (50)

where g«(&v, X) is the Fourier transform of the
deep-hole Green's function g„(t,X) [Eq. (19)],

g„(&v, X)= 8(-X)/(&v+ d, —i7)). (51)

l

By using the same approximation for calculating
the extrinsic effects (50) reduces to

2

B —1 —— F(8 ') [5(P —(0 —6+P&ve —v)'~w)
Sv

+ X

PI
I I'

2
+

2

—5(P —(A —d, + Prus —v —&vs)'~w)] . (52)

Thus, as in bulk case this enhances the main peak
by a fraction of

Fx &g'x x3
(e2/ilv)(1 —I/e) F (8 ') (58)

FIG. 8. Interference diagrams which contribute to the
strengths of the main and first bulk-plasmon satellites
by an amount of order e /Iv.

and reduces the strength of the first bulk-plasmon
satellite by the same amount. This result is the
same as that obtained in I [Eq. (29) of I]. The
other interference diagram which modifies the
first bulk-plasmon satellite is diagram 8(b). This
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process involves the excitation of a real bulk plas-
mon by the escaping fast electron; therefore, the
average position thai the photoelectrons are ex-
cited is a distance of / further inside the solid
surface compared to that of diagram 8(a). So we
expect the surface corrections to diagram 8(b) are
smaller than that to diagram 8(a) and hence have
no correction up to order e /Kv at all. Thus dia-
gram 8(b) and its complex conjugate reduce the
strength of the second bulk-plasmon satellite by
an amount of &(e~/Kv) E(& ~) and add them to the
strength of the first bulk-plasmon satellite. We
conclude that the presence of the surface has no
effect on the interference corrections.

We will not consider the surface effect on the
strength of the second or higher plasmon satellites.
Again this is because those photoelectrons which
contribute to these satellites are originated at
positions deeper inside the solid than those of the
main and first plasmon satellite. Therefore the
surface on these satellites will not be larger than
that of the first two. We discuss the case of
detecting the photoelectrons at an angle of e with
respect to the normal of the solid surface in Ap-
pendix E.

APPENDIX A

In Refs. 6 and 10 only one form of multiplasmon
interaction with the deep hole was considered, al-
though the methods for handling the general prob-
lem were discussed. Specifically the only multi-
ple plasmon interaction worked out there, and in-
deed the only one included in our model Hamiltonian
in this paper, is in the form of a repeated one plas-
mon interaction. The purpose of this appendix is
to justify this approximation by explicitly calculat-
ing the lowest-order two plasmon vertex for long
wavelengths and showing that it is small.

The diagrams to be calculated are of the form
in Figs. 9(a) and 9(b); the sum of 9(a) and S(b) is to
be multiplied by 2 to account for the two similar
diagrams with the triangular vertex on the right;
note that in each case we will ultimately consider
that part of the diagram which contributes weight
to the second plasmon satellite, and this is indi-
cated by the dotted line across the diagram. We
first calculate the triangular three prong vertex
composed of the three electronic Green's func-
tions. This is most easily done at finite tempera-
tures by performing the Matsubara sum and then
taking the T =0 limit; these steps are done by in-
spection with the result

@ma

n, s (~i+ &a+ewea co+a,)(~&+e~a

+
( ~s &a+ey+cq et e2)( ~x ewe

(A1)+
(&&+ n n~~) s 2 o.e

where e~ =I' /2m, v~, &oz, q, , and qa are defined2

as in Fig. 9. Since q& and q2 are plasmon wave
vectors, and hence limited in magnitude, we may
obtain a reasonable approximation to (Al) by ex-
panding in powers of q& and q2, with the result
that (Al) is approximately given by

(A4)

q, tqz
2 q2

a}

FIG. 9. Contributions to the second plasmon satellite
which are not included in the basic approximations in
this paper. As shown in Appendix A their contribution is
small. The double dashed line represents the full dy-
namically shielded Coulomb interaction, which may be
approximated by the bare Coulomb interaction when the
imaginary part is taken (as indicated by the dotted line)
when two plasmons are present.

,~2 4 lRi+q2)'-2(«+q2)1&8 (dp

+(q, +q2) (q, +qz)+4q, qz]—= o. . . (A2)

where n is the number of electrons per unit volume
and where we have set ~~= co2=co~, in anticipation
of insisting on the two plasmon "final" state.
Actually there is aterm of lower order of the form

q&
—q2, but this will be exactly canceled by a term

of opposite sign when we eventually sum the con-
tributions from 9(a) and 9(b) [note that 9(b) may be
obtained from 9(a) by interchanging (q, , ~&) with

(qz, &uz)]. The contribution to the weight of the
second plasmon satellite of 9(a) is

1 1 ~ 4ve2

(2~ )& ( + )2 lqe~ I I qep I c~,a~ ~ (A8)
P &P q&q2 qc+ %2

where we have replaced the wavy line on the left
of 9(a) by the bare Coulomb interaction, because
the screening or antiscreening effect at twice the
plasma frequency and small q must necessarily be
small. Upon performing the straightforward but
tedious integrations, and multiplying by 4 to account
for 9(b), plus the fact that in either 9(a) or 9(b)
the imaginary part may be taken with the triangular
vertex either to the right or the left of the two
plasmon states, we find that the total contribution
of this kind to the weight of the second plasmon
satellite is
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However, the strength of the second plasmon satel-
lite due to Fig. 3 for bulk case is just —,'p~-note
that these are the contributions included in the ap-
proximations of the main body of the paper. Tak-
ing q, = ur))/vf, we find that the ratio of (A4) to 2p
is approximately

o. 06(-,'r )'" (A5)

where r, is the usual electron gas spacing parame-
ter in atomic units. Thus (A5) represents a very
small percentage correction r, in the range of nor-
mal metals 2- r, 5. A further point to notice is
that (A4) is proportional to q4 while —,'P2 is pro-
portional only to q, . This means that on the aver-
age the plasmons contributing to (A4} have larger
wave vectors than those contributing to —,'P~, so that
they will be more highly damped. Therefore we

expect terms of this type to make a small and high-
ly smeared out contribution to the satellite.

APPENDIX 8: EFFECT ON 5E(X) ON THE STRENGTH OF
THE MAIN PEAK

To obtain the strength of the main peak, we use
A(2)((d, X) [Eq. (27)j for the deep-hole spectral den-

sity A((v, X) in Eq. (11), which after being inte-
grated over (d gives for the photocurrent from the
electrons contributing to the main peak the ex-
pression

where

5B/B = —,( dXe()K(x)+x/1 (84)

Although the integral in (83) cannot be worked out
analytically, it can be shown to be smal. l. We
divide the domain of the integration into two parts,
i. e. ,

f.=f," f. 1 (86)
c

In each part we use for 5K(X) its appropriate
asymptotic forms. From Eqs. (22), (23), and (27)
we have

5K(X) =- &qc & —1 (1+q,X)+P 1 ——1
2cos &+ 1

if IKI »q, '. (86)
By using (85), it is easy to show that the leading
terms for the integrals at the right-hand side of
(84) are

c 1/ ) g 1 1 1 a —1c + —(lnq l) 1
4l v~ E co& &+1

v0

joo(»»n)=-2ePIM I'
'I dx

~ aN

- 1+0 (87)

jm(R, n) = dn(e -0, ({)) P2dP j ()0(P, R, n)

~0
dX

~aN

eK(x)+X/) [n a ~(x) y]2/2

~( )]
dn(e-o, g)

M (.0e W I v dn((} 0 ~) ~ dX K&x)ix/)
4

(82)
To obtain Eq. (82) we have neglected the position
dependence of the energy shift and the constant
potential energy V which we have shown to lead to
a correction of order (1 Ry)/E or higher, where
E is the energy of the photoelectron.

If we neglect 5K(X} completely Eq. (82) becomes

j (R n 5K(X)=0)=,'Bv dn(e-o, (})),—

M I" 'I/' (83)

Taking 5K(X} into consideration, instead of B we
obtain B+6B for the strength of the main peak,

eK(x)+x/) 5(P (n r ~(X) I/)1/2)
X

4(n -~ - m(x))
(81)

This gives for the strength of the main peak

APPENDIX C: SURFACE-PLASMON SATELLITE DUE TO
THE INTRINSIC EFFECT

To obtain the strength of the first surface-plas-
mon satellite due to the readjustment of the Fermi
gas to the deep-hole potential we use in Eq. (11)
for the deep-hole spectral density

eK(X) Q q&2 e 2lg) l)XI
ox y

LOS

X e(- X)5(~ —g —~2 —/2E(X)) (Cl).
After being integrated over ()), Eq. (11) gives

0 eK(x)
p (X)ex/)

f(P, R, n)= 2epIMI' —
~

dx

x 5(P - [n - ~ -~, - m(x)]1/2). (C2)

So, the total strength of the satellite in question,

~0 1 „0 1dx~B(i-1/Il 0
l „~ 1 /qcc C

Therefore the effect of 5K(X} on the strength of the
main peak, from Eq. (83), is of order (fq~)- (e /Rv)(~e /vq, ) In(mv /(de ). since &u /vsq, vf /-
v- [(1 Ry)/E]1/2 e2/ffv, thi-s correction, although
has form of order e2/Kv, is actually of order (e2/
Kv)2 and hence can be neglected.
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j(R, A), is given by
.0

j(R, A)= ——,'e!M! vdA(8-0, |(') J „dXe" " "P, (X).
(C3)

Again, as in Appendix B, we separate the domain
of the integration into two parts and in eac h part
we use for Z(X) and Po (X) their appropriate asymp-
toti c expressions which can be obtained from Eq s.
(22), (23) and (25). We have

-1
e t m ~

2 +C
dA(8 0 i()) dX»&»&0»l & (X)4

ln(/q. ) dA(8- 0, g )4 4l e~,

d(l(8-0, 8) 0(—) I

e jM /
2V

dA(8-0, g) dXe»&»' ~'P (X)-1
C

JP 2

dA(8 - 0, &))(eo»p, )
q, l

dll(8- 0, 8) {0(
—)

(C4)

One may be interested to see how important is
the correction of the fast- electron self -energy to
the spectral line. If we take the localized self-
energy Z,(r, r; &u aiq) [Eq. (4)] as the true self-
energy for the photoe 1ectrons, we have, for the

strength of the main peak jo(R, A) only joo(R A) [Eq.
(B3)]; and for the strength of the first bulk-plas-
mon satellite due to the extrinsic effects js(R, A),
we have only js &»(R, A) [Eq. (42)] and j»&«&(R8 A)

We obtain js &,& (R, A) by calculating diagram 7(e)
and its complex conjugate. We find

js(«& (P, R; A) = B5(P —(A —4 + P&u» —V- ~») )

n e 1 1+8 1
x ——1 - — 1n

~m hv

Therefore the new strength rati o be com es

is(&, A) is&«&(R, A) +is( )(R, A)

jo(» A) ioo(R A)

n ——1 ——-E(8 )
1 e 2

2 Ie

(D1)

where (e p, ) ((« is the maximum value of e "' 'I o(X)
for —q, ~ x~ 0. It is of order [e ' 'Po(X)]-e'q. /K&uo ) .

APPEN Dl X D

(local self-energy approximation) . (D2)

The difference between this and (47) is

Q e ]. g Q e 1
1 —— E(8 &) & ——1 ——

2 hp E 2 @v E 2
(D 3)

We consider the case of detecting the photo el ec-
trons at angles 8, t(t) away from the normal of the
surface . Of course, the deep-hole spectral density
does not change . Foll owing the same way as for
the normal case (i. e. , 8 = 0) we find the corre-
sponding value for j oo(P, R, &u) to be

epJM) oe ol cos8

&«(Pd —(A —& —~+ P~e p«)' ')-
(E1)

and the strength of main peak becomes

joo(R, A, 8) = dA(8, 8) f PodP joo(P, R, A, 8)

,'8 cos8 vod—A(8, g), (E2)

where dA(8, g) is the small solid angle around 8, g.
This is smal ler than that of the normal case by a
factor of cos8 (if M is independent on 8). The
reason for this is that for the normal case, the
escaping electrons, on the average, originate at a
distance l inside the surf ace, while for electrons
escaping with an angle 8 to the surface normal, the
positions they originate from are, on the ave rage,
only leos 8 inside the surface . Since the total num-

ber of core electron states in volume Sl is larger
by a factor of cos8 than those in volume Sl and,

where S is the surface area, there are a factor of
cos |II more electrons to be abl e to escape in the
former case than that in the latter case .

Now we consider the diagrams involving only
one pl asm on propagator . %'e calculated diagram
6(a) and found it to be given by

which, for metal with OI = —,', is smaller than
—«'o(e /Kv) & 5% for 15-keV photoelectrons. Since
the surface-plasmon effects are of order e/Kv and
the corrections due to the modifi cation of the fast-
electron self-energy are of order e /Kv also, the
effect of the latter on the surf ace-pl asm on satel-

(eo/hv)o and therefore can be neglected.
Thus, the local self - energy approximation seems
not bad at al 1 for high- energy photoe 1ec tron s .

APPENDIX E

ep~ IM I
oe ~Id ~ g~o 5(Pd (A —6 + p&uo —v -p—)o)))(. . . )=

$q) + [(o&o —v q„)/v, ] ] q„+ [((d, —v q„)/v, ] 2 Iq« I +Id'
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4qll(q((+la') +4q ( [(&()s —v q(()/vJ; l

(q'„+((,-v„ i)/, (')'(I(~.-%, t()i .(' ~ ((a, ( ~ ( )')) (E3)

with v&= v cose and l, =l cosa. The quantity in the
large parentheses is the same as that in (32) ex-
cept the replacement of sos by (da —v„q„and v by
v» if we let, in the denominator„v —v„-v„q„-VJ. This approximation neglects a correction
to the strength of the satellite by a fraction of
v„q„ /vt- q, /v, - e /Kv (for v„~vt). Since the

strength of the surface-plasmon satellite itself is
of order ea/Kv and we are interested in quantities
of this order, it is reasonable to make this ap-
proximation. Again the important contribution
comes from the first term in the large parentheses
which can be shown by a straightforward but tedious
calculation to give the contribution toj &s(P, R, 0, 8):

epalM lac sl cos85(P, —(0 —4+po)s —V-p„)' )
&a&It (1(vsc&)sa8)a

4 +1 4$ evJ v &s —&vJQ

i-(-1+[v„q,/(o)sa+vaq, )](&oas —vaaq', ) —2i v, v„q', (d, /(o)s+vaqa) }~
i +{-1+[v„q, /(&os+ vaq,')](&ds —vt. q.') —» viv((q,' &()s /((de+ vt. q()'} (E4)

(E5)

with —v & argument & w. 1f in (E4) we neglect terms which correct the strength of the satellite by a frac-
tion of &ss/vq„Eq. (E4) can be simplified as

ep, lM I'e sf cos85(P, (9 —n, +—I3&ds —V-p'„) ) e v~ 8 1
j&s(P, R, 0, 8)= ~ a a8 a

—2'
jv cos ej 4&t eVg VJ &+1

which gives for the total strength of the surface-plasmon satellite

j&a&(R, 0; 8) = — cos8 d Q(8, ()()
SvJ 2 6+1

Now, for diagram 6(b), we have

jo&b)(P, R, 0, 8) = PJ I~ [ e ~l cos~ gasZ a
a-- - - 6(P.-(f1-&+»s- V-p() )

2 S/S
2(v cos'8) o v v(( v(( '

q((

(E6)

([(o)s-v„q„)/va] + lq, l}'+1', ] [(o)s —v„q„)/v, ] —Iq). l }'+l,.' [(&ds —vll q(()/vt. ]'-q J

lpga ([(&os v( 'q(()/vg]+q&} +f,a l~ f[(&os —v„q„)/vt. ]q)} +fJ fJ 4q), +il

x 5(P, —(0 —n+ p(ds —V-p„)' ), (E6)

Again if we take the approximation va —v~1 —v„.q„
-vt, this is the same expression as Eq. (35) ex-
cept for the replacement v by VJ, l by l cose,
and v~ by (d& -v„q„. The important contribu-
tion comes from the first three terms. Taking the
approximation just mentioned the first two terms
can be easily eva'uated to give a contribution which

is a factor of cos8 smaller than the first term of
Eq. (36) which is contributed by the correspond-
ing terms for the case of normally escaping and
hence small. The third term can be rewritten as

ePalM lae sl cos8 p gas
2(v cos8 (~B v

I q ()' —v't. q).

which after the integration on d p =dA(8, (l()fp dp

gives for the strength of the satellite a contribution

Bv cos8 ("' 1 e 1 q, V(y)+u&s
4 ., y 2s nV(y) s

'"
q, V(y) ~s '

(E9)

where v(y)= [v y +(1-y) v((+2y(1 y)v'vo]'
=[v,y +v„] . We note that when v=0 and v=v„
(E9) reduces to the value we obtained for the normal-
ly escaping electrons. For the interference dia-
grams, again the expressions are complicated, but
there are no corrections due to the finite angle with
respect to the normal of the surface up to order
ea/Kv (of course again 8 ~ 45', i. e. , to assume
Iv, I

~ Iv, l), except a factor of cos8 which modifies
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the quantity 8 and has no effect on the strength
ratio. The other one plasmon line diagrams are
diagrams 7(a) and 7(b). As before, they have the
same contributions, respectively, as diagram 6(a)
and 6(b) but with opposite signs. We will not exam-
ine higher-order terms because from the previous
case of normally escaping me knower that the most

important contributions to the strength ratio come
from these lour-order terms, and taking the finite
angle into account, those higher-order diagrams
give contributions of the same form as that for
normally escaping case except to replace l by

~1l cosa, v by vi s, B by s, B vll''q)l or S, B vli qll

and it mill be even harder to evaluate them.
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