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The frequently quoted result that the Born approximation overestimates electron-electron scattering in

metals by a factor of 5 is found to be incorrect. We find for the screened Coulomb interaction

V = e "*'Ir that (i) the Born approximation overestimates the scattering cross section and the
electron-electron contribution to the thermal resistivity by about a factor of 2; (ii) the cross section and

the thermal resistivity are sensitive functions of the screening wave vector k, ; and (iii) neither the
Thomas-Fermi nor the Bohm-Pines screening wave vector yields a thermal resistivity that agrees with

recent experiments on the alkali metals. We conclude that knowledge of the appropriate interelectronic

potential is considerably more important for calculating transport coef6cients than the use of the Born
approximation instead of the exact partial wave method.

I. INTRODUCTION

The present paper summarizes the results of an
investigation of electron-electron scattering using
a screened Coulomb interaction. We have im-
proved upon the frequently quoted' result of
Abrahams' that the Born approximation overesti-
mates electron-electron scattering in metals by a
factor of 5. By including spin and exchange, and

calculating phase shifts for l'=0, 1, and 2, we find
that the appropriate factor (which depends some-
what on the Fermi energy and choice of screening
wave vector) is about 2. Since in fact solid-state
theory seldom does better than a, factor of 2, one
need have little reluctance in using the Born ap-
proximation in exploratory calculations on the ef-
fect of electron-electron scattering in metals.

We have also calculated the electron-electron
scattering contribution to the thermal resistivity
of free-electron-like metals starting from exact
solutions of the Boltzmann equation. The scatter-
ing cross section and the thermal resistivity are
found to be sensitive functions of the screening
wave vector. Neither the Thomas-Fermi nor the
Bohm-Pines screening wave vector yield a thermal
resistivity that agrees with recent experiments on
the alkali metals. For sodium the calculated re-
sistivity is 20%%u~ of the experimental values when

Thomas-Fermi screening is used, and three times
the experimental value for Bohm-Pines screening.
This ind. cates that the calculated resistivity is
very sensitive to the type of screening employed.
On this basis we suggest that high-temperature re-
sistivity measurements may serve as a critical
test of the appropriate interelectronic potential.

Since the transport coefficients are such sensi-
tive functions of the parameters of the potential

(in our case, the screening wave vector), we con-
clude that the question of the validity of the Born
approximation is secondary in importance to knowl-
edge of the interelectronic potential itself.

II. SCATTERING CROSS SECTIONS

We consider the scattering of one electron by
the repulsive screened Coulomb potential V(r) of
another, where

Here k, is the screening wave vector. We use
atomic units throughout (S= m, = e = 1).

The incident energy is the total kinetic energy in

the center-of-mass system, or, equivalently, it is
the kinetic energy of a particle with reduced mass

moving at the relative velocity of the two

electrons. ' The incident wave vector k is related
to the incident energy by e = k2/2 p = k'. In a free-
electron-Like metal with Fermi energy &F and

Fermi veloci. ty vF, the relative velocity ranges
between 0 and 2vF. Thus the ranges of incident
energy and wave vector are given by 0 ( E ( 2&F and
0 (k (k„, respectively.

The standard formula for the scattering ampli-
tude in the Born approximation is given in Ref. 7,
Eq. (38.1). With potential (1) it is

(2)

where f(8) is the amplitude for scattering through
an angle 9 in the center-of-mass system. The
momentum transf er is given by q = 2k sin ~9
=2@ & sinM. The scattering amplitude may on the
other hand be found exactly by the partial-wave
method [Ref. 7, Eq. (19.11)]. The differential
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scattering cross section for identical spin--,' par-
ticles is [Ref. 7, Eq. (41.2)]

o(»= [If(e)l']+ If(" e)-I'-«f(e)f*(~-e) .
(3)

The total scattering cross section o is obtained by
integrating (3) over solid angle. It is

4v v k'+ 4k
)P(y~ + 4)P) /P(jP + 2)P)

(4)

and
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o, = (2l + 1)(4v/k') sin'5, (6)

[The quantities in square brackets in Eqs. (3)-(5)
are the cross sections for the scattering of non-
identical particles that enter, for example, in cal-
culations of spin diffusion. ] The phase shifts 5,
must be calculated numerically by integrating the
radial Schrodinger equation. They depend only on
the incident energy e =)P and the screening wave
vector k, .

Our object is to compare the cross sections (4)
and (5) for various choices of incident energy and
screening length. For def initeness and ready
comparison with Ref. 5, we consider electron-
electron scattering in Na, which, in atomic units,
has a mean interelectronic distance z, = 3.96 and
a Fermi energy &~ = 0. 117.

Apart from the question of the adequacy of an
interelectronic potential of the form (1), there re-
mains a considerable arbitrariness in the choice
of screening wave vector. ' Abrahams used the
screening wave vector determined by Pines —the
cutoff wave vector of the long-wavelength collec-
tive oscillations in the Bohm-Pines theory of the
electron gas. For Na, Abrahams used (k, )s~
=0.330. This screening wave vector is about 2-,'
times smaller than the one obtained by the Thomas-
Zermi method .

(u,}„=0.735 .

0
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FIG. 1. Electron-electron scattering cross section
for a screened Coulomb interaction V= e ~s"/r plotted vs
the screening wavevector k, at a fixed incident energy ~

= &+ of sodium. The curves labeled clap, a, and cr& give the
s-wave contribution, the total scattering cross section,
and the result of the Born approximation. The values
of k~, r„and e& are in atomic units.

when the range of the potential decreases. The
result of varying the screening wave vector and
keeping the incident energy fixed (at the Fermi en-
ergy) is shown in Fig. 1. Both os and o depend
strongly on k, and change by more than a factor of
10, when the screening wave vector varies between
the Bohm-Pines and Thomas-Fermi values. Also
shown is the s-wave contribution cro.

'
In Table I we list cro, o& and cr& together with 0,

o~ and their ratio as/o for three different values
of the incident energy using the Thomas-Fermi
screening wave vector (7). The ratio os/o is also
plotted versus energy & in Fig. 2. The smaller
screening wave vector used by Abrahams gives a
ratio that drops rather sharply from its large value
at & =0 when & increases from zero.

Abrahams calculated only the s-wave scattering
cross section vo with the Bohm-Pines screening
wave vector at two values of the incident energy,
0 and &F, and concluded that the Born approxima-
tion overestimates the scattering by a factor of 5.
We have included the contribution of p and d waves
(higher waves are completely negligible). With
Abrahams's choice of screening wave vector and
at the energy z= &~, the contribution of p-wave
scattering was found to be even greater than that of
s-wave scattering. ' At larger screening wave
vectors the s-wave contribution becomes more
dominant for fixed incident energy, as it should be

Incident
energy harp

Cross sections (in units of 7r ap)

cr~ cr~/0

0.001 a.u. . 4. 15
&F 2. 71
2&p- 2. 00

10
0. 389
0.671

0. 003
0. 014

4. 15
3.10
2.69

10.49 2. 53
6.27 2. 02
4. 70 1.75

TABLE I. Calculated cross section for electron-elec-
tron scattering in sodium using a Thomas-Fermi screened
Coulomb interaction Qr, }T+=0.786. The cr, are the con-
tributions of the 1th partial wave, 0 is the total cross
section, and crt is calculated by the Born approximation.
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rs = 3.96

scattering particles are all on the Fermi surface,
a simple construction'~ leads to the result that Q

is identical with the center-of-mass scattering
angle e between the incoming and outgoing relative
momenta:

y=e .
Furthermore, a simple calculation of the incident
energy in terms of the two incoming momenta
leads to the identification

0 I

1

CF

FIG. 2. Ratio of the Born approximation cross section

cd to the exact cross section 0 plotted vs the incident

energy. The values of r~ and && are those of sodium
(atomic units). The curve T-F was obtained with the
Thomas-Fermi screening wave vector gr )TF=O. 786,
whereas the curve BP used the Bohm-Pines value (k~)pp
= 0. 330.

III. TRANSPORT COEFFICIENTS

sin8 d8
To 871 8 27K go p COS p8

where 8 is the angle between the two incoming
particles and Q is the angle between the plane of
incoming particles and that of the outgoing parti-
cles. For the degenerate electron gas, where the

Given the dependence of the cross section on the
incident energy, what clearly matters in a discus-
sion of the reliability of the Born approximation is
what average (over the scattering angle and inci-
dent energy) occurs in any physical quantity. For
example, in a discussion of particle-particle scat-
tering in degenerate Fermi systems, all transport
coefficients are proportional to a characteristic
time To which is related to an angular average
over a collision probability iv(8, Q). Specifically, "

cos8 = 1 —e/e~ (lo)

K-'=1.41 [I -(~/V. V -O. 3a)] .
For thermal conductivity 0, is defined by

(12)

(13)

where the brackets denote the same angular inte-
grals as in Eq. (8).

In Table II we summarize the results for the
characteristic time 7O and the thermal resistivity
W= I/a at the Thomas-Fermi and Bohm-Pines
screening wave vectors in Na and Cu (we treat Cu

as a free-electron-like metal, which only differs
from Na with respect to the value of r,). We ob-
serve that for Na, even using a screening wave
vector as small as Abrahams did, the use of the
Born approximation does not produce a larger dis-
crepancy than a factor of 2. 3 in the transport co-
efficient. The Thomas-Fermi screening wave vec-

The connection between the collision probability
iv(8, Q) and the scattering amplitude f(e) is made
explicit in the Appendix.

The electron-electron thermal conductivity ~ is"

tc= 3 Ci,vz~ vo(3/2m )K,
where C~ is the specific heat, v~ is the Fermi ve-
locity, and K is a dimensionless quantity, which

depends only on the quantity z defined below. In
Ref. 11, K was expressed in terms of a rapidly
converging series, the sum of which is well ap-
proximated by

TABLE II. Comparison of the exact phase-shift result with the Born approximation
for the electron-electron scattering time Tp and the thermal resistivity. The screen-
ing wave vectors and Fermi energies are those appropriate to sodium (r8= 3. 96) and

copper (r =2, 67).

Screening
length Metal Born Exact Ratio

T Tp (10 sec 'K )

Born Exact Ratio

W/T(10 6 cm/W)

Thomas-
Fermi

Bohm-
Pines

Na
Cu

Na
Cu

1.1
2. 7

0. 057
0.14

2. 1
4, 5

0. 14
0. 32

1.9
1.7
2, 5
2. 3

38.0
4. 7

710.0
86. 0

21.0
3.0

310.0
40. 0

1.8
1.6
2. 3
2. 1
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TABLE III. Electron-electron scattering contribution
to the thermal resistivity. Comparison of experiment is
made with calculations using a Thomas-Fermi screened
Coulomb interaction.

(W/T) (10 6 cm/Wj

Expt.

Born

Exact

Cu
r =2. 67

4. 4

3b

Au

r =3. 01

7.3

5c

Ag

rs 3 02

4.2

5c

Na
r =3.96

100

38

21b

r =4. S6

-200a

60'

preliminary estimate; see Ref. 15.
"Phase shifts calculated.
Using interpolation formula (23).

A measurement of the thermal conductivity of
sodium has been recently made by Cook, Van der
Meer, and Laubitz. At high temperatures, they
observe a small contribution to the thermal resis-
tivity with a linear temperature dependence. They
attribute this to electron-electron scattering and
estimate that W/T =100&10 ' cm/W. This is about
5% of the total thermal resistivity at T= 300 K.
We have repeated their procedure for extracting
the electron-electron contribution using the data
provided in their paper. Using their estimated
errors we find that the measured W/T is accurate
to + 50%.

Our exact calculations in Table II show that nei-
ther the Thomas-Fermi nor the Bohm-Pines
screened Coulomb potentials yield a W/T that
compares well with experiment. We find that a
screening wave vector k, =0. 5 will reproduce the
experimental result for Na.

We have estimated the contribution to the thermal
resistivity due to electron-electron umklapp pro-
cesses in sodium using the results of Lawrence
and Wilkins' and found it to be negligible. The
umklapp processes only affect a slightly, and do

tor results in discrepancies less than a factor of 2 ~

It is also apparent (see Fig. 1) that the magnitude
of the cross section (and hence the thermal resis-
tivity), whether calculated exactly or by the Born
approximation, depends sensitively oa the choice
of screening wave vector. Generally we conclude
that knowledge of the appropriate screened poten-
tial, a problem which we have modelized with our
discussion of proper screening wave vectors, is
seen to be considerably more important for obtain-
ing the electron-electron cross section in metals
and the associated transport coefficients, than the
use of the Born approximation instead of the exact
partial-wave method. In the Appendix we give an
interpolation formula for the thermal resistivity
based on our phase-shift analysis.

IV. COMPARISON WITH EXPERIMENT
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APPEN DIX

The transition rate u for the collision

klo 1 +kzaz - kl. o». +kz' 0'z (14)

is given by the Golden Rule of perturbation theory,

w(ktcs, k2023 k1'o1'q kR'02')

not enter the characteristic time T0 ~ Cook and
Laubitz' have made high-temperature measure-
ments on potassium and have reported an electron-
electron contribution to the thermal resistivity.
Similar contributions have been observed in the
noble metals and are analyzed by Laubitz. ' The
experimental values in Table GI are taken from
Laubitz and compared with our estimates .

We might add that interference effects between
the several scattering mechanism present are not
able to account for the discrepancy exhibited in
Table III. The dominance of the phonon scattering
would cause deviations from additivity which are
about 2 5'70 of the calculated electron-electron ther-
mal resistivity and have the same temperature de-
pendence. This (maximum) deviation from additiv-
ity would be accounted for by using the standard
var iational trial solution, which is linear in the
energy variable, rather than the, exact one for
electron-electron scattering only. '

We observe that the Thomas-Fer mi screening
wave vector considerably underestimates the elec-
tron-electron scattering in the alkali metals,
where we expect free-electron theory to be quite
accurate. However, it does give reasonable
agreement with the noble metals, where the use
of free-electron theory is at best questionable.
We note that choosing a new screening wave vector
to agree with experiment for the alkalis w ill spoil
the agreement for the noble metals.

We conclude thai measurements of the electron-
electron contribution to the thermal resistivity
constitute a rather severe test of the appropriate
interelectronic potential. With that in mind we
are currently investigating other models for the
interelectronic potential which have vertex correc-
tions built in them and more complicated screen-
ing effects than the simple model considered in
this paper.
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where o(6) is given by (3). Using this we find

1 2(k T)~ 1 a(8, Q)
mh'(e'/a, ) aao cos-,'8'

where

(17)

(leaving out 5 functions of momentum and energy).
Here

i'(I ql ) = 1'dr e"'" i'(I r
I ) = (-2&I'/g)f(6), (16)

with f(6) being the scattering amplitude in the cen-
ter-of-mass system in the Born approximation.

The natural generalization of the golden-rule
result is to use an exact final state in the matrix
element rather than plane waves. Schiff [Ref. 7,
Eqs. (37.3) and (37. 5)] shows that this gives the
correct result. We compare the exact result cal-
culated by phase-shift analysis with the Born ap-
proximation.

The transition probability needed in Eqs. (8) and
(13) is given by —,

' of (15) summed over oa, v, . and
oa, . The factor of —,

' is needed because (8) and (13)
implicitly include the sum over final spins. This
yields

Z (n) = op +f og

+ II oz + (10m/2cz p) sin5o sin53 cos(5o 5g).

The exact formula must be integrated numerically.
Note that phase shifts higher than l = 2 are ne-
glected. To calculate the thermal conductivity one
needs to know the value of ~ which determines
1/K through Eq. (12).

In the Born approximation 0, is given by a formu-
la only slightly more complicated than (19). The
important thing to notice is that 0, does not change
very much as one varies P. For Na the exact val-
ues of ~ for Bohm-Pines and Thomas-Fermi
screening are 0.97 and 0.84, respectively, as
compared to 1.30 and 1.09 in the Born approxima-
tion. Over this range of variation 1/K varies with
only a few percent [cf. Eq. (12)].

The thermal resistivity W= 1/v may be written
as

(21)

We write k, =Ax, ' ~&~, which yields the Thomas-
Fermi value for A=(4/9w) ~ (4/w) ~ =0.815. An
examination of the expression for W in the Born
approximation shows that (k,ao) (o(8, Q)/cos~8 )
and K are only weakly dependent on p, and A. We
have estimated this dependence and constructed
the following interpolation formula,

Ws„, = 1.22 X10 (r; /A3 +)T cm 'K'/W, (22)

and

2vP ao WP
n f 1 g/P Pcos '[P/(1+P)]

(19)

p = (&,/»F)

which is good to+ 5% for 1.5&r, &6 and A~ p&A
&AT F.

The simple power dependence of. Won r, and A
in the Born approximation leads us to write an in-
terpolation formula for the exact phase shift result.
We interpolate between y, = 2. 67 and 3.96 and be-
tween the Bohm-Pines and Thomas-Fermi values
of A. This yields

The exact result is

'c(8', 0) a~
"'

du
cos-,'8' „, 4~ ., (1 —u)'~~

where u =a/2&~, and

(20)

W,«« = l. 10&&10 (r; /A ) T cm 'K/W, (23)

which reproduces our four exact points to + 3%.
We believe this formula can be used in the range
1.5& x, & 6 to about 10% accuracy.
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