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The unified theory of lattice dynamics in the Wannier representation, presented in a previous paper, is here

used to calculate the phonon dispersion of the transition metals Pd and paramagnetic Ni. This application

represents the first microscopic phonon calculation in transition metals which takes into account the local

field effects in the d-electron response. Using a tight-binding model for the d electrons and a

nearly-free-electron description for the s electrons it is shown that these effects give contributions to the

longitudinal-phonon branches and to the elastic constants C» and C» of the same order of magnitude as

the Hubbard-exchange corrections (10—20%).

I. INTRODUCTION

Transition metals present, as an intermediate
case between simple metals and insulating crystals,
an interesting and appealing possibility for testing
the unified approach to lattice dynamics, developed
in the preceding paper' (hereafter referred to as I).
The main reason for this stems from the fact that
the conduction electrons of these metals are of
free-electron (s- and P-like) character as well as
of localized (d-like) character. Moreover, the d-
like electrons of the filled bands are not rigidly
bound to the core and therefore must be included
in a calculation of the dielectric response. As a
result, the dielectric matrix e contains a free-
electron contribution eo(q+G), which is diagonal in

the reciprocal lattice vectors 6 and 6', and also a
nondiagonal (G &0') part, which is due to the d-type
electronic states. The nondiagonal contribution
leads to the (G+ 6') terms in the dynamical matrix
of Paper I and corresponds to local-field or crystal
structure effects in the dielectric response.

The first microscopic phonon calculation which

properly took into account this mixed nature of the
electronic states in combination with the resulting
nondiagonality of the dielectric matrix was per-
formed on the transition metal Ni in the paramag-
netic phase. In this paper we shall discuss the
relationship between the res:. ,lts of our former
treatment of Ni (which was only briefly sketched in

Ref. 2) and those of our present calculation of Pd
where we investigate as well the influence of ex-
change effects on the phonon spectrum. The model
of the band structure which we introduce for Pd is
similar in its general features to the model em-
ployed in the case of Ni. The electronic energies
are assumed to be given in the effective mass ap-
proximation while for the corresponding wave func-
tions a tight-binding scheme is applied to the 4d
electrons and the free-electron approximation is
used for the electrons in the 5s band. It is found

that the contributions to E which are due to inter-

band transitions are of the order of,o smaller than

the intraband contributions of the unfilled s and d

conduction bands. Therefore we neglect all inter-
band transitions in the dielectric matrix and use a
noninteracting s-d two-band model for the band

structure. We shall see that too much emphasis
has been given in the basic formulation to the core
electrons which rigidly move with the nuclei. This
can be remedied by the use of an effective electron-
ion potential which we approximate by a local
pseudopotential. We give a careful treatment of the
screening of this effective potential by s as well as
d electrons, ' in contrast to previous work where
the d-electronic screening is neglected, or treated
in an inappropriate approximation. We then derive
the dynamical matrix in terms of the inverse di-
electric matrix and calculate the phonon frequen-
cies of the paramagnetic transition metal Pd. The
remainder of the paper is devoted to presenting the
results of this phonon calculation and discussing
them with our previous Ni results.

Because of the simplicity of the band-structure
model and the local pseudopotential, we do not
claim to calculate quantitatively the absolute mag-
nitude of the phonon frequencies in Pd and Ni. The
present calculations provide a first step in apply-
ing the formalism of Paper I. But the important
point to be emphasized is that we clearly show how

local-field corrections due to the d electrons, i.e. ,
nondiagonal elements of the dielectric matrix, enter
in an explicit calculation and that they are essential
for a satisfactory explanation of the phonon disper-
sion of the transition metals Pd and paramagnetic
Ni.

II. MODEL BAND STRUCTURE AND DIELECTRIC MATRIX

We begin by constructing a band model for the
transition metal Pd which is related in its general
features to the model introduced by Prakash and

Joshi in their calculation of the diagonal dielectric
function of Ni. Our model is based on recent aug-
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mented-plane-wave results of Mueller et al. but
it does not explicitly take into account the s-d
hybridization which splits s and d bands. Thus the
s bands are constructed by joining the energy point
r, to X4, I, to K„and l, to L,' in the symmetry
directions ~, Z, and ~, respectively. For d
bands, I » is joined to X, in the ~ direction, I »
and I,', are joined with upper and lower K„re-
spectively, in the p direction, and I'~, is joined
with L, in the A direction (see Fig. 1). The nonin-
teracting bands obtained in this manner are then
approximated by parabolic bands centered at the I'
point. The effective masses for the s and d sub-
bands which intersect the Fermi level EF are cal-
culated by means of the relations

@2kz g 2k2
Fzs Fzd

2[E —E(1',)]™2[E —E(I" ))

with k~, =(3z Z, /flo}'~ and k~~=(3v Z,/&o)'~,
where kF, and kF „are the Fermi radii of the sub-
bands. The numbers of s and d electrons per unit
cell of volume ~o, Z, and Z„= 2 -Z„are taken as
0. 4 and 1.6, respectively, in agreement with the
de Haas-van Alphen studies of Vuillemine and the
augmented-plane-wave (APW} results of Mueller
et al. The calculation of the average effective
masses for filled d subbands and the assignment of
these subbands with different magnetic quantum
numbers both proceed a1ong the lines given in Ref. 6.

The Bloch functions corresponding to our simpli-
fied band description are approximated by plane
waves in the 5s band

1;p.;
4s, z(r) =

(Nfl )
z /2 e

0
(2)

while a tight-binding ansatz of the form

|('u, ~(r) =
N i yz ~ e pe (r —R } (3)

4kF„—I q+ G l
' 2kF„+ l q+ G I

4k~, I q+ Cl 2k+, —I q+ G I

(4)

is used for the 4d wave functions, where the sum
runs over all lattice vectors R'. We take the
atomic orbitals cp~ (r) for the neutral Pd atom from
the Hartree-Fock calculations of Gombas and
Szondy. ' Integrating the square of these orbitals
over the unit cell yields a value of about 0. 95,
where the atomic orbitals are normalized over all
space. Thus the overlap matrix elements A, (q+G)
of Eq. (12) in Paper I may be expected to decrease
rapidly with increasing lattice vectors R'. Conse-
quently we take into account only the interactions
of orbitals situated on the same atom in evaluating
the dielectric matrix, Eq. (12) of I.

The model for the electronic structure of Pd we
have now constructed involves two types of transi-
tions for a readjustment of electrons in an external
field: (a) intraband transitions in the unfilled s and
d bands, and (b) interband transitions from filled d
subbands to s and d conduction bands, and interband
transitions between s and d conduction bands. The
calculation of the s-s intraband contribution to the
dielectric matrix is straightforward and gives the
well-known Lindhard formula (T = 0 'K)

- &~pm, kF„eo(q+G) =~a, o -~(q+G)
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This result shows the simplicity of the free-elec-
tron treatment of simple metals, as the matrix E

collapses into the scalar dielectric function eo for
a free-electron gas. But in our model off-diagonal
contributions to the dielectric matrix correspond-
ing to "local-field corrections" arise because of
the presence of tight-binding d electrons. The con-
tribution of the 4d intraband scattering processes
may be calculated by using Eqs. (12) of I and (3)
leading to the expression'

e«(q+G, q+G') = -v(q+G)A(q+G)N(q)A~(q+G'),

where

A(q+G) = f p~* (r) e """p~„(r)d x
NQp

FIG. 1. Model of the noninteracting band structure for
Pd. The solid lines give the results of the APW calcu-
lation of Mueller et al. , while the dashed lines describe
the noninteracting bands.

~ f(dm, k) f(dm, k+q) mz„—kz, gN&p

E(dm, k) —E(dm, k+q) 2m~ffz

4k' ~
—q 2kF ~+qx 1+ ?n

4kF ~- q 2k' q
—q



MICROSCOPIC THEORY OF DIE LE CTRIC . . ~ II. ~ . 4593

If we assign to the 4d conduction band the magnetic
quantum number m = 1, then the overlap matrix
element A(q+G) is given by the relation

A(q+G) =Xp —
~ (57i)'~ Yp*(8, q()Xp

In this formula Y„'(8, q() denotes the spherical
harmonic with quantum numbers l and m. The
integrals X, defined by

X, = f, A(lq+Glr)RP«(r)«,

where ji(l q+Gl r) is the spherical Bessel function
of order l, may be solved analytically' by using
the Gombas radial function for the 4d states of Pd

R«(r) = —301 4r'e '"'"+26.23r'e '""'" (8)

The final expressions are very lengthy, but are
otherwise easy to calculate and we shall not write
them down.

In a similar way the remaining interband contri-
butions to the dielectric matrix, &~, +E, ~, may be
calculated. We found that in the symmetry direc-
tions 4, Z, and A the magnitude of these contribu-
tions is small (with a maximum value of about 10%%

at the Brillouin zone faces) in comparison to the
magnitude of the intraband contributions, Eo+ &~ ~.
We therefore neglect E„,and &, „ in our explicit
phonon calculation and retain only the conduction-
band contributions given by Eqs. (4) and (5). '

In this effective s-d two-band model the inverse
dielectric matrix is given by [see formula (13) of
Paper I]

1 v(q+ G)(q+G, q+G')=
( GI) 5Q 5 ~ +

(

A(q + G)A*(q+ G')
"N '(i() -g„-(A(i( H-(l' (i( ~ p)/a, (i( ~ H()

Because of the choice of the polar axis and the use of
spherical harmonics, the dielectric matrix con-
structed does not exhibit the symmetry of the crys-
tal. To satisfy these symmetry requirements we
calculate the matrix element A(q+ G) by averaging
with equa, l weighting over all five quantum numbers
m. This leads to the substitution A(q+G) =Xp in

Eq. (6). An average of this form has independently
been introduced by Brown in his calculation of the
dielectric matrix of Pd using a similar s-d two-
band model. In the Prakash and Joshi calculation
of the phonon dispersion in paramagnetic Ni, in
which only diagonal s- and d-electron screening
was taken into account (we shall discuss this paper
in more detail subsequently), the approximation

A(q, 8, (p) =A(q, 0, 0) compensates for the errone-
ous choice m = 1 for the magnetic quantum number
of the d band.

III, LATTICE DYNAMICS

We have now assumed a rigid-ion core of con-
figuration (4d)' which does not deform in the per-
turbing phonon field, whereas in Paper I the dy-
namical matrix was derived treating all electrons
equivalently. From the excitation spectrum of the
crystal it is clear that only a certain part of the
electrons can be responsible for the "dynamical"
interatomic forces while all the remaining electrons
do move bodily with the nuclei. This splitting be-
comes apparent in our dielectric formalism from
the fact that the contribution of the dynamical elec-
trons, or valence electrons, to the dielectric
matrix & is large compared to the remaining con-
tributions.

A theory which emphasizes the special role of
the valence electrons is the pseudopotential theory.
Here one neglects completely the distortion of the
core-electron wave functions arising from the
nuclear displacements and the effect on the valence
electrons which results from this distortion. But
one takes into account the Pauli principle in that
the wave functions of the dynamical electrons must
be orthogonal to the core-electron wave functions.
The effect of the orthogonalization in the core re-
gion is simulated by a, repulsive potential which
largely cancels the attractive core potential. In
general this repulsive potential is of nonlocal char-
acter' and thus leads to a very complicated expres-
sion for the dynamical matrix. ' In our explicit
phonon calculation we replace the nonlocal pseudo-
potential by a parametrized local model potential.
This is a good approximation for the free-electron-
like s states. However, for the d-type states of
our band scheme, the repulsive part vanishes be-
cause the tight-binding wave functions are already
orthogonal to the core wave functions. Consequent-
ly, the potential seen by the d-like electrons should
be replaced within the framework of the s-d two-
band model by the bare ionic potential (4(iZe /
N&pq') Taking into. account this difference be-
tween s- and d-repulsive potentials in our actual
phonon calculation introduces no significant devia-
tion (less than 5%) from the results presented in
Figs. 2 and 3. Therefore, and also in view of the
parametrized character of the pseudopotential, we
do not think it worthwhile to keep the different be-
havior of the s and d pseudopotentials in our fol-
lowing work. Within this local pseudopotential ap-
proach the electronic contribution to the phonon
self-energy may be calculated by means of a Gold-
stone expansion including electron-phonon interac-
tions. " Neglecting core-core overlap and approxi-
mating the corresponding interaction potential by a
simple Coulomb potential with effective charge
Z =2 (see above for comments on the number of s
and d electrons per s and d conduction bands) re-
sults finally in the following expression for the
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TABLE I. Parameters for Pd (in atomic units).

Lattice parameter

Volume of unit cell

Mass of an atom

Fermi radius

Fermi radius

ao 7. 3515

~o g9 3272

M 1g. 385 x 10'

kp ~ 0.4920

kg ~ 0. 7812

Effective mass

Effective mass

Strength of
pseudopotential

Decay radius

0. 5731

3.2053

23.4

0. 1

dynamical matrix

4» e g(q+G), (q+G)~
Iq+GI'

+N Z (q+6) V(q+G)
G~ G~

x X(q+G, @+6')V(q+6')(q+6')e. (10)

We note that this formula is identical in structure
to the result given in Eq. (14) of Paper I for the
dynamical matrix of an electron-nucleus system.
But in Eq. (10) the density response matrix

X(q+G, q+G') = v '(q+G)[-Std o, + e '(q+6, q+6')]

corresponds only to electron-hole polarizations of
s- and d-type electrons which are not included in a
formation of the "ions. " The inverse dielectric
matrix c ' can be taken from Eqs. (4)-(9). Like-
wise the potential V(q) in Eq. (10) is the Fourier
transform of the local pseudopotential

4mZe2 P
(~I NQ qm NQ (1 + p2q2)2

where the first term represents the Coulomb po-
tential due to the ionic charge Se (Z = 2), while the
second part describes in a phenomenological way
the repulsive part of the potential. In our phonon
calculation the parameters P and p are adjusted to
obtain best agreement with the measured elastic
constants Cii and C44. The resulting values of P
and p and the band structure and crystallographical
data we used for Pd are in Table I. Results of our
phonon calculations in Pd along the symmetry di-
rections 4(100), Z(110), and A(111) are shown in

Fig. 2 and compared with the experimental results
of Miller and Brockhouse. ' The solid lines repre-
sent a calculation in which exchange effects among
the s and d conduction electrons are included in
the Hubbard approximation; i.e. , the bare elec-
tron-electron interaction v(q) =4me /N&oq in Eqs.
(9) and (10) is replaced by

v(q)[1 -f (q)) (12)
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FIG. 2. Phonon dispersion curves for Pd (296 K). Circles denote the experimental phonon frequencies. The solid
curves represent the results obtained with the help of the dynamical matrix, Eq. (10), including local-field and Hubbard-

exchange corrections. The dash-dotted curves give the results of the same calculation but without exchange correction,
and finally the dashed lines represent the free-electron results [& = &o(q+ G)J.
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The function f(q) accounts approximately for the
e-change processes between electrons of parallel
spin and according to Hubbard' is chosen to be

q'/2(q'+ k2~, ,}. (13)

For s-electron exchange [i.e. , for the electron-
electron interaction v(q) occurring in the scalar
function eo(q) and in the corresponding free-electron
dynamical matrix] kz, ~ is taken to be kz „ the
Fermi radius of the 5s band, while for d-electron
exchange k~, ~ is replaced by the Fermi radius k„„
of the 4d band. In the tight-binding approximation
for the d electrons, the most important exchange
effect in the d-electronic system is the exclusion
of two electrons with the same spin from occupying
the same orbital on the same site. Thus, an al-
ternative way of including the d-d exchange is to
remove such a contribution from the d-electron
screening (this local exchange approximation is
equivalent to the q- ~ limit of the Hubbard correc-
tion). Results of a corresponding phonon calcula-
tion, which we do not present here, agree to within

5% with the results of the Hubbard treatment shown

in Fig. 2. The agreement between these Hubbard
results and the measured phonon frequencies is
better than 5% with the exception of high q values
in the transverse branches of 4(100) and A(ill} di-
rection. If the adjusted pseudopotential parameters
P and p, given in Table I are again used in a new

calculation where exchange effects are neglected

ff(q) -=0], we get the dash-dotted results of Fig. 2.
If we finally treat the lattice dynamics of Pd in the
free-electron model of simple metals, i.e. , take
into account only the scalar Lindhard function

&o(q) in Eq. (9), we obtain the dashed lines. Com-
bining these Pd results and comparing them with

our former Ni results shown in Fig. 3, we can
state the following:

(a) Transverse branches are not renormalized by
d-type contributions to the dynamical matrix be-
cause in fcc (Ni and Pd} and bcc crystals the diag-
onal contribution (G= G'} cancels the nondiagonal
contribution in the T branches by symmetry. Con-
sequently the renormalization of the transverse
branches and of the dielectric constant C4~ is com-
pletely due to the s-type electrons. This fact pri-
marily accounts for the difficulty of the Prakash
and Joshi calculation in Ni (given by the dashed
lines in Fig. 3) to agree well with experiment, es-
pecially in the transverse branches. These authors
used a similar s-d two-band model, as we did in Ni
and Pd, and also the local pseudopotential approach.
But they neglected completely off-diagonal elements
of the dielectric matrix, i.e. , local-field effects
due to the d-electronic response. As a result their
T branches are renormalized by diagonal d contri-
butions and are lowered by as much as 20%%u(). In the
longitudinal branches diagonal and nondiagonal @-

type elements in the dynamical matrix sum up to a
maximum of 20%. They are important for the de-
scription of the elastic constants C» and C&& as well
as for the dispersion at q values in the middle of
the Brillouin zone.

(b) Taking into account exchange effects in the
Hubbard approximation results in a lowering of the
longitudinal branches in Pd by about 15%, while the
transverse branches are again not influenced by
these effects.
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FIG. 3. Phonon dispersion curves for Ni (296 'K). Open circles are the phonon energies measured by Birgeneau
et al. (Ref. 18). Solid lines give the results of our microscopic phonon calculation, including local-field effects in the

electronic screening [& =&(q+6, q+G')]. Dashed lines represent the Prakash and Joshi results [& =&(q+G)5g g.].
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IV. SUMMARY AND DISCUSSION

In the application of the theory developed in Paper
I to the transition metals Pd and paramagnetic Ni
(the Ni results have already been presented in Ref.
2) we had to introduce a number of approximations
in order to reduce the enormous computational
work necessary in a phonon calculation with a non-
diagonal dielectric matrix.

We started in Sec. II by constructing a noninter-
acting band model for Pd in which the s-d hybrid-
ization which splits the s and d bands was ne-
glected. For the energy dispersion of this simpli-
fied band model we assumed an isotropic effective-
mass description. From the band-structure cal-
culations this parabolic band model may be seen to
be a good approximation for the s-type energy
band, but it gives only a rough picture of the non-
isotropic behavior of the d-bands. We then calcu-
lated within this band-structure model the various
contributions to the dielectric matrix and found that
the interband contributions are small (less than
10%%uo) compared to the intraband contributions.
Therefore our final phonon calculations were based
on an s-d two-band model with only intraband tran-
sitions retained. For the corresponding wave
functions the free-electron approximation was used
for the s-type Bloch waves while a tight-binding
scheme was applied to the d states. We neglected
the mutual orthogonalization of these wave functions
which reduces the perfect localization of the d func-
tions, because this delocalization should again be
of the order of the interband coupling. But the
orthogonalization of the s and d wave functions to

the core states was taken into account within a local
pseudopotential approach which gives a qualitatively
correct description for the s electrons, whereas
for the d-type pseudopotential this local approach
is a crude approximation. Exchange effects among
s and d conduction electrons were included within
the Hubbard approximation commonly used for
simple metals.

Results of the corresponding phonon calculations
were presented and discussed in Sec. III. The cal-
culated phonon frequencies in Pd and Ni differ from
experiment not more than 5% with the exception of
the T branches of 4 and A direction in Pd. The d-
type elements of the dynamical matrix give con-
tributions in the L branches up to 2(P/g and are im-
portant for a description of the elastic constants
C» and C» as mell as for the phonon dispersion in
the middle of the Brillouin zone. Unlike the L
branches, the T branches and the elastic constant
C44 are renormalized only by s-electron screening
because in these branches the diagonal (6 = 6') and
nondiagonal d contributions cancel exactly by sym-
metry. Also the exchange effects in the Hubbard
approximation enter only the L branches and here
give corrections which are of the same order of
magnitude as the d-type contributions.
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