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The microscopic quantum-mechanical expressions for the dielectric screening matrix and for the electronic
contribution to lattice dynamics are derived in terms of generalized Wannier functions. The Wannier
representation makes practical an inversion of the dielectric matrix within the random-phase approximation
and thus allows for an explicit calculation of local field effects in the dielectric response. This result leads,
with the help of the dynamical matrix of an electron-nucleus system, to a multipole model of lattice
dynamics. The formalism can be applied to conducting as well as to nonconducting crystals, and in this way
provides a possibility to examine the relationship between the various methods and models used to describe

lattice vibrations in all these solids.

I. INTRODUCTION

The general lattice-dynamical formulations
focus on the problem of expressing the phonon
self-energy in terms of the response of the crystal
electrons to an external probe. This so-called
microscopic dielectric approach permits the com-
plete solution of the lattice vibrational problem
within the harmonic approximation once the charge
of the nuclei and a properly defined inverse dielec-
tric matrix for the electrons, €(G+G,q+G"), are
known.'™® From this it follows that the dielectric
matrix and its inverse reveal the basic difference
between the commonly used thecry of lattice dy-
namics of metals and the corresponding theory of
nonmetallic crystals.

A particularly noteworthy feature of the dielec-
tric matrix of an insulating crystal is that the
G#G’ elements of €™ have to be nonzero—indeed,
these elements are necessary for the satisfaction
of an exact sum rule which ensures that all acous-
tic-mode frequencies approach zero as the wave
vector of the mode goes to zero.!® Since the non-
diagonal elements of €' are, as well, a manifes-
tation of local-field effects, one might also expect
the importance of G#G’ elements in insulators
from the local character of the wave functions.

In a simple metal, on the other hand, the com-
mon approach to the lattice dynamics is afforded
by means of the free-electron approximation for
the conduction electrons, which renders t_l)e I_-I_artree
dielectric-screening function diagonal (G=G’). But
in transition metals the requirement of G%G’ ele-
ments follows again from band-structure argu-
ments: in these metals the conduction-band states
are of free-electron (s and p) character as well
as of local (d) character. Moreover the d-like
electrons of the filled bands are not rigidly bound
to the core and therefore must be included in the
dynamical screening process.

It follows that, with the exception of simple

metals, a practical microscopic treatment of the
lattice dynamics of solids is not possible unless
the problem of inversion of the nondiagonal di-
electric matrix has been solved.

In two previous papers*® a formalism was de-
veloped whereby an exact inversion of the random-
phase-approximation (RPA) dielectric matrix
could be achieved in terms of localized or Wannier
functions. As a result, the dynamical matrix
leads to a generalized multipole model of lattice
dynamics. The formalism can be applied to nor-
mal and transition metals as well as to covalent
and ionic crystals and thus provides a unified
treatment of the theory of lattice vibrations in all
these solids. An application of this unified ap-
proach was performed on the transition metal Ni
in the paramagnetic phase.® This application rep-
resents the first microscopic phonon calculation
in a metal which takes into account the nondiago-
nality of the dielectric matrix, i.e., local-field
effects in the dielectric response.

In the first paper (I) in this series we consider
explicitly the theory of dielectric screening for a
crystal the relevant energy bands of which overlap
with other bands [in Ref. 5 the case of isolated,
simple (noncomposite) bands was treated in detail,
but for composite (hybridizing, crossing, touching)
bands only the final results were stated]. This
analysis is of importance because in many, if not
most, calculations of the dielectric matrix € the
condition of isolated bands entering does not hold.
For example in all of the transition metals the s
and d bands are split by the s-d hybridization and
overlap with other bands. The Wannier functions
corresponding to these single s and d bands do not
converge exponentially but only with 1/7* and this
poor convergence renders the inversion procedure
of € in practice rather unmanageable. The 1/7*
convergence can be improved to an exponential de-
cay if one takes into account the whole “complex”
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of bands which are connected to each other but are

disconnected from the rest of the energy spectrum.

The set of Wannier functions corresponding to this
“band complex” is related to the original set by a
unitary transformation, and we shall see that this
generalized Wannier representation allows in a
completely analogue manner for an exact inversion
of the dielectric matrix as was outlined in Refs. 4
and 5. For practical purposes one may introduce
instead of these pseudo-Wannier functions, linear-
combination-of-atomic-orbitals (LCAO) functions
based on the Slater-Koster interpolation scheme.®
Because from the group-theoretical point of view
the arrangement of the atomic orbitals in the
LCAO treatment is equivalent to that of the pseu-
do-Wannier-functions in the exact treatment,

the general results stated in this paper are

J

€G+G,3+8) =058 -0(d+8) X O, K[e @O |,
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where G and G’ are reciprocal-lattice vectors,
f(n,K) is the occupation number of a Bloch elec-
tron with wave vector kK, band index », and energy
E(n,K). The electron-electron interaction v(q +G)
may include corrections for exchange and correla-
tion in the Hubbard approximation.® Extension of
our inversion result to apply to the frequency-
dependent RPA dielectric matrix requires just the
introduction of the frequency w in the energy de-
nominator of Eq. (1).

We now choose for the Bloch functions ¢, ;(T) a
description in terms of Wannier functions of the
“band complex.” For this we consider the set of
eigenfunctions zp,,';(F), satisfying the crystal
Schrddinger equation

Hp, ;(T)=Em, k), :(T), n=1,...,7 (2)

whose eigenvalues E(n, k) are disconnected from
all other sets of bands (band complexes). The
E(n,K) may all be connected to each other, or they
may be partly or wholly disconnected from each
other. Then it is possible to construct a set of
Wannier functions (In order to keep the notation
from becoming too cumbersome we assume only
one atom per unit cell. The generalization to
crystals with more than one atom per unit cell is
straightforward. )

o, F-RY, v=1,...,7 (3)

which have the following properties'®"'?: They
decay exponentially at infinity, are orthonormal,

((pu(-f—ﬁ’) l(pu'(i:_ﬁl')):éw’éll' ) (4)
|

f,®) —fn',k+q)
anti E0,K) —EMm’,kK+q)

Ny (a) =

+q)

|oo

also applicable in the tight-binding limit. A
similar lattice-dynamics approach in terms
of localized Wannier functions was independently
derived by Sham,” while for ideal insulators Pick
has given a corresponding treatment. 8

In the second paper (II) in this series we exam-
ine the problems raised by the application of our
formalism to the transition metals Pd and Ni. It
is shown how local-field corrections due to the d
electrons, i.e., off-diagonal elements of the di-
electric matrix, enter into an explicit calculation;
it is also shown that they are important for a sat-
isfactory explanation of the experimental phonon
results.

II. ELECTRONIC SCREENING
The dielectric matrix in the RPA is given by

f,R)-fn',kK+q)
En,k)-Ex',k+q)

n',k+q Ie"(a*a"r In,E) ,

(1)

r

and the Bloch waves can be obtained from them by
a unitary transformation:

i@ =N e, 0, DT e o, (F - RY) . (5)
v 1

Here N is the number of lattice vectors R’, and
&(n, k) are the so-called vectors of the band com-
plex satisfying the following relations:

2 ern,Ke, ' ,K) =5, .,
v

. (6)
E e:(n, E)eu’.(n, E) = GW' ;

n=1
i.e., e, &) is a unitary matrix in the indices »
and v. The general construction of the Wannier
functions ¢, (f - R*) for composite bands in terms
of the Bloch waves has been described in detail by
Des Cloizeaux'? and requires elaborate group-

theoretic considerations. Here we need only the
result in that these functions have exponential de-

cay at infinity, that their number per unit cell is
equal to the number of connected bands and that
they are related to the Bloch functions by the uni-
tary transformation of Eq. (5). Using this rela-
tion, the dielectric matrix can be written in the
form

€d+C,3+GN =055 -v@d+6) 2 AG+0)

s 8’
XN (@A%@G+G) , (7
where
A@+0)= [ or@e " Oy, (F+R) a¥r

and

—ilk+a) (RI-RI’ - - -
e i TV RR ox (4 R)ek. (!, K+ Qle, (0, K+ Qe,s (0, K) .
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The index s stands for the lattice vector index !
and for the indices v and p of the band complex.
The separable form of the susceptibility matrix
ANA' in Eq. (7) enables us to calculate the inverse
dielectric matrix

€'@+G,q+GN =055 +v@+8O2 AG+T)

s s’

XSL(@A%@G+G), (8)
where

Sss'(a) =N;.ls'(a) _Q'A:(a"' 6”)

XAq(G+GNw@+G") .

This result can be proved immediately with the
help of the following matrix expansion for

€1G+G, 3+G):
€'=(1-vANA")"' =1+ vANA" + WANAT)2 +
=1+vAN{1 +A"WAN + (ATAN)? 4+ - - -} AT
=1+vA{NT - ATA}lAT . (9)

It follows that by changing to a localized descrip-
tion, the inversion problem of the infinite-dimen-
sional matrix € has been reduced to that of an in-
version of the matrix S defined above. As my be
seen from Eq. (7), the dimension of this matrix is
greatly reduced, provided the functions ¢,(f — R’)
are well localized. Because we presumed to use
the best localized set of Wannier functions {¢,} of
the band complex, we now have the important re-
sult that even in crystals with hybridized and
crossing energy bands as transition metals an ex-
plicit solution of the inversion problem becomes
possible.

In practice, difficulties arise from the fact that,
while the existence of well-localized and ortho-
normal Wannier functions has often been involved
in theoretical discussions, only first steps in the
direction of a quantitative construction of these
functions have been taken.'*'® However, we can
suggest a certain simplification which makes the
approach just considered practical. This is the
LCAO approximation. !* In this method we take
a finite set of atomic orbitals {(p,,,m} on each of the
atoms of the unit cell, considering only the atomic
orbitals whose energy is somewhere near that of
the energy bands in which we are interested. From
each of these atomic orbitals, we construct a
Bloch sum

Z)e B um(F - RY) (10)

and set up a wave function consisting of a linear
combination of all these Bloch sums of the form
given in Eq. (5). There will be matrix components
of energy between all these Bloch sums, so that
we have a secular problem whose order equals that

of the total number of atomic orbitals concerned.
In practice, one replaces the matrix components
by disposable constants which are chosen to fit ac-
curate determination of energies at highly sym-
metric k values and reduces the number of these
constants by symmetry arguments. The resulting
eigenvectors (eigenvectors of the band complex)
€(n, K) of the secular equation form the wave func-
tions of Eq. (5), while the eigenvalues give a use-
ful approximation of the energy spectrum. In this
way we get an interpolation scheme for the energies
and wave functions throughout the whole Brillouin
zone,® which allows for a practical solution of our
inversion problem of Eq. (8). To determine the
electron-phonon matrix element within this tight-
binding treatment the electron-ion potential is re-
placed by the self-consistent potential of the actual
band-structure calculation.

In the case of a metal, specifically in the case
of a noble or transition metal, it is necessary for
practical purposes to combine the LCAO descrip-
tion applied to the localized d electronic states with
the nonlocalized orthogonal-plane-wave (OPW)
scheme for the s- and p-conduction-band states.
This combined band-structure scheme!® !¢ is based
on the fact that except for hybridization effects, the
d bands closely resemble those obtained in the
tight-binding approximation, whereas the conduc-
tion bands are similar to those resulting from
nearly-free-electron calculations. Accordingly,
the unhybridized d bands are represented in terms
of linear combinations of the atomic d orbitals, and
the conduction bands in terms of linear combina-
tions of OPW’s.'” Effects from the hybridization
of the conduction and d basis functions are included
in this approach in the eigenvector coefficients
€(n, K) of the corresponding energy eigenvalue prob-
lem.

Using this combined LCAO-OPW description,
the dielectric matrix Eq. (1) can be split into two
parts*®

€d+G,q+G)=¢€)q+8)og,5 -v@+Bx'G+G,q+G) ,

(11)
where eo(ﬁ+§) contains the free-electron part

f(n ,K) =f(ny,kK+3Q)
—U(Q+§)Z 0 E) E(ng,k+q)

of the 1ntraband transition in the s-type conduction
band 7, (corresponding to the plane wave e*®&®F
with reciprocal lattice vector K= (0, 0, 0) of the
OPW basis set). We now assume the combined
band-structure scheme takes a simplified form
which approximately corresponds to the band de-
scription of Hodges, Ehrenreich, and Lang and
which consists of treating the OPW conduction-
band states in a one-plane-wave approximation
[with K=(0, 0, 0)] and the remaining d states in the
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LCAO approximation with all hybridization ne-
glected. In this band model (which will be dis-
cussed in detail in Paper II in the special case of
the transition metal Pd) the susceptibility matrix
x' of Eq. (11) contains only the tight-binding d
transitions which can again be written in the fac-
torized form of Eq. (7). We finally obtain for the
dielectric matrix

€d+G,4+G) =€+ sg,a
-v(@+8) 20 AG+0G)N,. @

893

JA%( q+G", (12)

where in this case the index s denotes the lattice
vector index ! and the indices v and p of the tight-
binding band complex. The idea behind this split-
ting (which is not necessary in the exact Wannier
function treatment above) is to pick out the smooth
part of the conduction-band wave function in a
metal and treat it separately. If we would include
this part in the factorization procedure, then the
number of lattice vectors R’ and R’ needed in the
summation of Eq. (12) would be very large, and
therefore a practical solution of the inversion
problem within the framework of the tight-binding
approximation would be difficult. Using a similar
matrix expansion as in Eq. (9), we get for the in-
verse dielectric matrix

-1/ > n_ 1
@+G,q+G)= G
v({+8)

X(Ga,an ﬁ— EA q+§
x STL@A% q+G)) (13)

where the matrix S is now defined by

@ =NL@-T AXG+T 4, G+ 8 24E)
Sss (q) ss' (q) %Z s(q+a )As (Q."‘a )_'?_

There exist several possibilities of going beyond
the simplified one-plane-wave LCAO band descrip-
tion and still retaining the separable form of the
dielectric matrix in Eq. (12). It is not the pur-
pose of this paper to discuss all these possibili-
ties, because here we are mainly interested in the
factorization and inversion of the dielectric matrix
in a localized or Wannier representation. But

we would like to point out that by employing the
combined OPW-LCAQO scheme in the form proposed
by Mueller, !¢ a separable dielectric matrix can

be established by assuming all OPW and OPW-
tight-binding interactions to be given in the di-
agonal (in G and G’) form and to be incorporated

in the diagonal matrix €,(+G)5g,g:. Then the main
contributions to off-diagonal screening which are
due to d-d tight-binding interactions can again be
calculated in using Eq. (13). It should be men-
tioned that a similar inversion result for the di-

|

electric matrix has been given by Sinha, Gupta,
and Price.!® But in their paper the factorization
of the susceptibility matrix is an ansatz and there-
fore cannot be discussed in terms of Wannier or
LCAO functions.

In conclusion we note that the above inversion
formalism enables us to calculate explicitly local-
field corrections in the dielectric response, i.e.,
the induced electric fields which fluctuate on the
scale of the atoms involved rather than with the
wavelength of the applied field. The applicability
of this important result is not limited to a calcu-
lation of phonon spectra where we specifically con-
sider the electronic response to the external field
of the nuclei or ions.

III. DYNAMICAL MATRIX

We suppose the adiabatic and harmonic approxi-
mation to be valid for the crystal considered.
Then, for a system of interacting electrons and
nuclei, the dynamical matrix is determined com-
pletely by the inverse dielectric matrix
€(d+G,q+G") of the electrons™3

Das(a) = D—aa(a) - D-aB(O)
with
— . 4TnZ%e2 @+G).q+3G"
D = c3 & 8
i T VAN T %
Xelg+G,q+G)
4717%* @+G)o(d+8)s
= > Ll .
Q G 1q+G |
+Naz<;‘i @+B)Vd+8)x({+G,5+8)
V@+G@G+a8"s, (14)
where

_5G GI+EG Ge

AT S

denotes the density response matrix. The struc-
ture of this formula is exactly preserved if we in-
troduce, instead of the Coulomb potential V(q + 3
= —41Ze?/NQ,|q +G |2 of the nucleus, a local pseu-
dopotential W(J +G) of an ion.!® In this local de-
scription as well as in the general nonlocal pseu-
dopotential formulation, the main problem in con-
nection with phonon calculations is associated with
finding the inverse of € in order to correctly ac-
count for local-field effects.

Armed with the knowledge of the RPA inversion
result, we are now in a position to construct an
explicit expression for the dynamical matrix in
terms of generalized Wannier functions. From
Egs. (8), (13), and (14) we have

l_)aﬂ(a) = CaB(q) + EaB(q)
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+N2Z W, @SL@W, @ , (15)

Sy s
where

- S - V@ +3G)
W, s@) —? G+8),A,G+0) G0 -

This formula is the same as that given in Ref. 5
for the dynamical matrix, the only difference being
that the localized functions involved in Eq. (15) are
constructed from the band complexes rather than
from single energy bands. In Eq. (15), C.s(q) de-
notes the Coulomb matrix and corresponds to the
electrostatic coupling between the nuclei, while
Eaﬂ(a) is the expression used for the dynamical
matrix of simple metals with a scalar screening
function €,(q +G). In the case of such a simple
metal €, is usually approximated by the free-elec-
tron dielectric function and the terms

A(q+GIN,y (A% (G +G) of the dielectrix matrix,
Eq. (12), are neglected. This corresponds to the
free-electron model of lattice dynamics. Putting
eo(§+§) =1 for ideal insulators leads to vanishing
E 5(Q) and to dipole models, where the dipole dis-
tributions are not necessarily centered on the lat-
tice sites.®® For noble and transition metals both
the €,(d +G) and A ({+G)N,4(@A%@G+G") are im-
portant ingredients of €({+G,q+G’). Here the
electron-electron interactions v(J +G) are screened
by the scalar function €,(g+ G) and we get a kind of
“screened multipole model”.® In this way, Eq.
(15) for the dynamical matrix enables us to ex-
amine the validity of the various methods and mod-
els used to describe lattice vibrations in all these
solids and to study their explicit relationship to
each other. In this context it should be mentioned
that one can derive from this general model a
“shell model” where the dipole distributions are
centered at the atom sites.??! This microscopic
shell model is not only valid in ionic crystals and
here provides a quantum-mechanical justification
for the commonly used macroscopic shell-model
treatments of phonons in these crystals. It is al-
so applicable as a kind of “screened shell model”
to metals.?”?! 1t is interesting to note that corre-
sponding macroscopic shell-model calculations
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in the noble and transition metals Cu, Ag, Au, Ni,
and Pd yielded excellent agreement with experi-
ment.?? In the application of our lattice-dynamics
formalism to Pd and paramagnetic Ni in the fol-
lowing paper II we introduce approximations which
are equivalent to the assumptions necessary for a
microscopic shell model to hold.

IV. SUMMARY

We have examined in this paper the harmonic
and adiabatic theory of lattice dynamics in terms
of generalized Wannier functions. The Wannier
representation allows for an exact inversion of the
infinite-dimensional dielectric matrix within the
RPA and thus makes possible an explicit calcula-
tion of local-field effects in the dielectric re-
sponse. This result leads, with the help of the
dynamical matrix of an electron-nucleus system,
to a screened dipole model of lattice dynamics.
Because we have considered the general case of a
crystal the relevant energy bands of which may
overlap or touch each other, the formalism can be
applied to simple and transition metals as well as
to semiconducting and ionic crystals. Thus our
approach provides a unified treatment of the the-
ory of lattice dynamics in all these solids, show-
ing for example, that the equations of motion of
simple metals and ionic crystals are in a way two
limiting cases of the same formalism. It is pos-
sible to analyze the results of this microscopic
formalism so that the connection to the familiar
phenomenological theories (shell model) can be
made.
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