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A general theory of the effects of Coulomb excitation of a deep hole state in a solid on the

subsequent soft-x-ray emission line shape is given. For excitation energies well above threshold it is

shown that the emission corresponds to the decay of a nonrelaxed initial hole state which is suddenly

introduced into the solid. Using a weak-coupling approximation, a generalization of the
%eisskopf-Wigner formula for radiative line shapes is derived which includes the enhancement of the

high-energy tail of an efnission line or edge due to initial excitations. Comparison of the approximate
results with measurements of the K edge of I.i metal provides a reasonable explanation of the observed

discrepancy between absorption and emission line shapes.

I. INTRODUCTION

The development of a semiquantitative theory of
many-electron excitations associated with high-
energy transitions in solids (far uv, soft-x-ray,
etc. ) by Mahan, ' Nozieres and collaborators, ~

Hedin and Lundquist, Langreth, Doniach and
others, leads to a need for a closer examination
of the experimentally observed line and edge
shapes in a variety of experiments. A class of
experiments of considerable practical importance
is that of soft-x-ray emission. However, in con-
trast to a straightforward absorption-edge mea-
surement, such experiments embody an essential
physical complication: they involve the prepara-
tion of a highly excited state of the solid, usually
by Coulomb excitation through electron bombard-
ment of a target.

Empirically it has long been recognized that such
initial excitation processes will involve many-
electron excited states~ (often referred to as "dou-
ble excitation") with energies near threshold of

hole k Emany-ele ctron

where E„„,is the single electron energy of a deep-hole
state, Sk is a conduction-electron energy above the
Fermi level and &E ~ „„~„represents addition-
al electronic excitations of the solid (electron-hole
pairs, plasmons, etc. ).

The importance of these initially excited states
is that, if the lifetime of the high-energy excita-
tion is fairly short (experimentally typical core-
state hole lifetimes are of order 0.1-1 eV'), the
initial excitation can provide additional energy for
the soft-x-ray emission process, over and above
the minimum, E„„,+8~, which marks the high-
energy threshold for single-electro n-deep-hole
recombination, thus leading to an increased
strength in the high-energy tail of the emission
edge.

This is to be contrasted with the corresponding
absorption-edge data. In an absorption experiment

the transition is from the initial ground state of
the solid to a definite excited state; therefore it
will have a sharp threshold energy of Eh I + Sy'
and will not be expected to show any enhancement
on the tail of the edge.

The relevant time scale for the outward propaga-
tion of an excitation from the initially excited hole,
and hence of dissipation of the additional initial
energy, is determined by the conduction bandwidth
E for a simple metal. This is to be compared
with the half-width (or inverse lifetime) X for the
hole state. For simple metals such as the alkalis,
X/E is of order 10 ' and the initial hole excitation
leads to appreciable modification of the emission
spectrum only out in the tail of the edge.

For narrow-band systems such as transition
metals, X/E becomes much larger. This provides
a qualitative understanding of the fact that the ef-
fects of double excitation or emission-edge spectra
is known to be of importance in transition metals
and their compounds.

In this paper we give, for the first time, a quan-
titative theory of the effects of initial hole excita-
tion on soft-x-ray emission spectra. The original
approach to the calculation of emission spectra was
due to %igner and %eisskopf, s who assumed that,
at an initial time t= 0, an atom could be placed in
an excited state E, from which it decays to the
ground state by following the Schrodinger equation
of the coupled atom-radiation-field system. In the
present paper we follow the work of McMullen and
Bergersen in calculating instead the full scatter-
ing cross section for the fast exciting electron im-
pinging on a solid causing the subsequent emission
of a soft x-ray. This approach, which is based on
a generalization of the usual Feynman-Dyson $-
matrix theory due to Keldysh' avoids the need to
make assumptions about unstable initial states.

Our principal physical result is that, provided
the initial excitation process (by the fast electron)
is far from threshold, the initially excited state
can b thought of as the result of the instantaneous
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16& =d". . l4&, (2)

stripping of a core electron from the inner shell to
create an effective initial state

form:

f(cg, &u) = (u lim [P, (7 )/7] (6)

where I go& is the full ground state of the solid,
d~ „is the core-hole creation operator and I ))),& is
the effective initial wave function. Since the hole
introduces a sudden change in the system, I )t), &

will, in fact, be a complex linear combination of
excited hole states whose spectral density will
show up as a strengthening of the high-energy tail
of the subsequent soft-x-ray emission edge.

Within a particular approximation scheme we
show that the resulting soft-x-ray spectrum will
be given by a generalization of the Weisskopf-
Wigner formula:

f(~) f,'=d~'
I
y(~') I'R. (~ —~ ), (3)

where Ro(~ —~ ) is the emission spectrum corre-
sponding to a hole in its initial ground state and

lQ(&u ) I' is a broadening function which takes the
form of a skew Lorentzian incorporating the natu-
ral lifetime of the hole state, but skewed by an in-
crease in the high-energy tail due to the persis-
tence of initial excitations. In the long-lifetime
limit, the excitations die out before the x ray is
emitted and I Q I reduces to the usual Weisskopf-
Wigner Lorentzian.

In order to test out these ideas against experi-
ment we apply our general results to an idealized
one-band model of a simple metal. The results
are compared to soft-x-ray absorption and emis-
sion experiments on Li metal. We argue that a
real experimental discrepancy between the line
shapes of the absorption and emission edges in Li
metal can be resolved as being due to initial hole
excitation effects.

II. FORMULATION FOR SCATTERING CROSS SECTION

H, = Z [Mg g~(k) d c~c~cq y h. c. )
~1 ~2

and radiation field energy

H, =Z(2w/~, Q)' p(jf a,„cg d+ h. c.)
0

(6)

and pick out the term corresponding to a process
in which the initial excitation leads to a final soft-
x-ray emission event. The operators c„-, a„, and
d~ are creation operators for conduction electrons,
a photon of energy ~, and the deep level, respec-
tively. The resulting transition probability, as-
suming constant matrix elements, is given by

p, ..(,)- z f dt;f dt f dt;

X «M(t2-t2)-«ej~g -t1)2 2 k 1 1

~&+.IPI;- (t') c; (t') d'(ti) d(t') c'-, (t, )

~c;,(t,)d(t, )c';,(t,)c';(t,))l+.& . (9)

where 7. is the duration of the scattering process,
and P(T) is the probability for observing a soft
x ray with energy & at time ~ after an incident elec-
tron with energy &.has penetrated the metal at
time -~. We now follow the approach of McMullen
and Bergersen9 and recast (6) in correlation func-
tion form using the generalized path-ordering
formalism of Keldysh. ' '

A principal assumption is that the fast-electron
excitation process may be treated in lowest Born
approximation. We therefore expand (6) to lowest
order in the Coulomb excitation energy

The general formula for the soft-x-ray emission
intensity is

f(~)=~~l &fl slt&l'6(E, -E, -~),
f (4)

where S is the usual 8 matrix, li) and I f ) are
the exact eigenstates of the system before and after
the interaction (R= 1) with eigenvalues E, and Et,
respectively, and ~ is the energy of the emitted
soft x ray. In the case of a Coulomb excitation
process,

I
i& = c)',-

I ii'„&, (6)

where c„- is the creation operator for the fast bom-
barding electron and I )))„& is the exa,ct ground state
of the N-electron solid, while I/& includes the out-
going x ray and is summed over all possible excited
states of the solid.

Equation (4) can be rewritten in the following

Here, P represents the Keldysh path-ordering op-
erator, the time dependence of the Heisenberg
representation is generated by the full Hamiltonian
of the solid, the minus sign denotes the forward
leg of the scattering process and the plus sign the
return leg. This formula thus represents a gen-
eralization of the Van Hove-Placzek' formula for
neutron scattering to classes of scattering pro-
cess in which additional particles (in this case the
photon) are measured in the final state.

Our main physical result now comes from the
assumption that provided the initial energy &g is
fa1 above the deep-hole creation threshold, then
in the intermediate state the fast electron and the
knocked-out core electron will both be going at a
relatively high energy (several hundred eV). We
therefore neglect the effects of their interaction
with the solid on the process we are interested in.
Equation (9) therefore may be rewritten as
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«40

dt + N+ 8k td(t2-t$)
2 1

T

xe f I f 1 y I~(tj) tj~ t2~ tg)
0 p

where

R;;.(t„t„t'„ t', ) =(+„lS'(d'(t;) d(t;)

(io)

x c',, (t', ) c„- (t,) d"(t,) d(tg)tl +„) . (11)

Finally, the neglect of matrix elements and as-
sumption that gk, gk»0 allows us to integrate
over e+ and s- )o give

T T «oo «eo

&II,„(v)~Z dt& dt's dt's dt's e'""& '2'
«a «a T T

FIG. 1. General diagram for initial hole-excitation
process.

"t1(t& —t&)Rg ft(tq, t2, tl, tq)

Thus. it may be seen that for zk far above thresh-
old, the x-ray emission at (tm, t2) is the response
to sudden creation of a "bare" (i.e. , unrelaxed)
hole at t& = t& = t&.

III. APPROXIMATE EVALUATION

In order to evaluate the cross section we will
consider the model of a single parabolic conduc-
tion band with a deep core level. To emphasize
the many-electron nature of the x-ray threshold
process, we will use the usual simplified core-hole
conduction-electron model

H= Hp+H,

Hp =w (+C«Ck
k

k

Hz= —V ~c-ck.dd ukuk.t
kk'

where

Then the deep-hole x-ray emission correlation
function R [Eq. (11)]may be written in the interac-
tion representation as

R„~.(t, t, t', t') =(4 lP('u(-, — ') d (t')d(t')

xc~f(tl) ~ (t.) d'(t ) «ti6l~e) (14)

where 14((() is the Schrodinger ground state of the
metal with a filled deep level and a filled Fermi
sea, and

'u (t, t ) = T(exp [-i g, dTH, ( ~))

For the present case of a static hole with no in-
ternal degrees of freedom it is convenient to factor
out the initial and final parts of the hole propaga-
tor:

Roof'(tfq tIq t2q t1) g(t2 t1)g (t2 t1)

X Rg~ ~(t gtgt gt g)

g(t) =e "g(t), (i7)

where g(t) contains all many-body dressing effects
and A. is the mean-width parameter for the deep-
hole state. In simple metals Bergersen and Car-
botte' have shown that phonon-induced broadening
of the hole state may also produce important, pos-
sibly even dominant, contributions to A.

A typical diagram in R(t &, tz, ta, t &) is shown in
Fig. 2.

%e now proceed to evaluate R in a weak-coupling,
asymptotic large-time limit. This limits the validity
of our results to energy shifts 4$ relative to the
threshold energy which are small compared to the
conduction band width E. In our analysis we will
closely follow the approach of Nozieres and de
Dominicis. 2 The hole propagators can be erased
since they give an over-all damping factor 8 "' in
Eq. (14) which already has been included via Eq.
(17). We first considered the contribution from
the electron lines such as A in Fig. 2 then those
from the cross bubble such as B.

The diagrams of the conduction-electron propa-
gators involved with the x-ray emission vertex can
be summed up with the help of the Muskhelishvili
solution of a singular integral equation'5' for two
nonintersecting time intervals. If we take the
asymptotic limit of the Keldysh Green's functions'

where R represents all many-electron diagrams
without hole seU-energy insertions as in Fig. 1.

In Eq. (16), g represents the dressed hole propa. -
gator. The Hamiltonian of the model does not con-
tain broadening effects such as Auger decay pro-
cesses. So we include the effects of these and
other broadening processes in an ad hoc way by
writing
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t
2

t+
2

where g= v0V. Using the bubble as the proper self-
energy in a linked-cluster summation, we get

1 t2 2 (22)

FIG. 2. A typical diagram used to calculate R(t&, t2,

(G, G', G, G ) involved in Fig. 2, then they
will all reduce to the same form after momentum

sums, i.e. , —i))RP(1/f). Denoting this form by

G(t) the relevant integral equation becomes

p(r, T ) = G(T —T ) iVf -G(T —T ) V)(r, T )dT
1

—i V f.a G(r-r") 9)(r", r')dr", (16)

4 (T) T') =G(r r') iv-f, 'G-(r T")q(r-", r') dr".
'2 (ls)

This is exactly the same as Eq. (17a) of Nozieres
and de Dominicis, 2 which in the asymptotic limit
has the solution

where p is a sum of all lines such as line A in Fig.
2. For t1= t&, the two integrals simply add so,

as the sum of all cross bubbles through second
order.

The important observation to make is that Eqs.
(20), (22), and (23) show that R can be written as
a product of functions of time differences in

(ta —tj), (ta —tj), and (ta —ta), Hence

ft(f jt fat ~at ~l)=—+(fa —fi) (fa f j)&c(fa ~a)

(24)
where

+ 2+

a(f a
—ti) = exP -g dr dr

0 0
T'

(26)

t2-t 1
«i +pa

& (fa-tj)=exp -g dr dr'
J, 0 T

and R~ is the Nozieres-de Dominicis emission
probability correlation function in which the hole

is considered to be born in its fully relaxed ground

state, i.e. , does not depend on t1, t'1.
Thus the final form for the cross section may be

written as
v)(r, r') — v)(f;, &,) P(1/(~, —f',)) l

(~', —f,)izl "'
~

'2' '2 (2o)
I(ea, (d)= J d(c le((e —~ )I'&c(~ )&((d ) (26)

is the phase shift involved in the conduction-elec-
tron core-hole scattering process.

The bubble in Fig. 2 can be written in the follow-
ing form:

pt+

Jg+
1 2

where
+ ttta

(t)((d) = dr '"e' ( g)&r(r)
« to

(27)

and D(u) is an appropriate transition density. (De-
tails of this step are given in the Appendix. )

IV. CALCULATION OF THE EMISSION EDGE SHAPE

With

xE Ga a(r', r ) G=', a(r, r')
K'

iGa, o(++ T } e s t(tat' )

iG .~ R(r, T')=(1 —Tt;,) e "f"

(21)

To determine the skewed Lorentzian function

(t)((d), we calculate

()))((u —D)= dtet" "e "' g (t)&(t).
0

Using a linked cluster expansion in the second-
order bubble, g is given by

(26)

Eq. (20) becomes

t2 t+
y 8 iE(v t') 2

C' (ti& tit tat tat tj) =+g dr dr
tl t2

—(i- f )
C (ta ti) ta

where
2 t2 t

C (ia —f))=— dr dr ZG„= '(T, r')

(2S)

and

x Ga, '(T', r)
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tG2='(T, r ) =((1 —n„.) e(r —r) - n2 e(r —T )) e "2 ' ' '.
Working out the 0 summations and the possible
time orderings, we get

t2 t T g
-4E~' 3

C (t2 —t1) =+2g dT d&
0 0 7

O.I =

OQI .—

E =3.2eV
X=OQ5eV
a=0.33

0 I .—

O.OI—

(so)
while for C one finds the complex-conjugate ex-
pression. Using Eq. (25) one has, to second order
ing y

g ( t 2- t)1&( t, - t,) &(t', - t, )g"(t; - t, )

OOOI—

~ LORENT 2 I AN—INITIALLY EXCITED
I I I I I

-2 -I 0 I 2 3
CLI (eV)

--- LORENTZIAN—INITIALLY EXCITED
I I I I I I

-2 -I 0 I 2 3
t2t (eV)

=exp [2c (t2 —t1)+c' (t1, t2, t2, t1)

+-,' C (t', —t )]
It turns out after careful calculation that

Re[2 C (t2 tl)+ C (t1 t2 t2 t1)

(31)
FIG. 3. (a) I Q I used to find the Li K-emission inten-

sity spectrum; coupling strength is o. = 0.33 and &/E
=0.05/3. 3. (b) I PI for 2, larger X/E=gt and a larger
coupling strength e = 0.5.

+2 d Et Ci E7 — d 2Et Ci 2ET
(34)

Si and Ci are the sine and cosine integrals. Thus
we finally have

y( fl) g dt t((a-0)-1t etg Ftt) (35)

V. APPLICATION TO Li SOFT-X-RAY EMISSION SPECTRUM

Using our basic expression, Eq. (3), the soft-x-
ray emission spectrum is given by convolving the
Nozieres-de Dominicis emission edge, given
asymptotically by

Ro(t2, —t2)-& ~ -
I t2 t21 1

t2 —tz
(36)

with the skewed excitation function I (le) I .
To make semiquantitative contact with the above

strong-coupling limit, we make the arbitrary sub-
stitution

+ 2 C (t2 —t, )] = 0 (32)
so that only the imaginary parts of the bubbles con-
tribute. After much tedious work we get

(33)

where

F(t) = (2 ln2) Et —2 Si(Et) + Si(2Et)

modification that the initial excitations can intro-
duce in the Lorentzian only broadened I P I~, shown
in dashed lines in Fig. 3. For l1/E«1 (a case
satisfied by simple metals), the difference from a
Lorentzian is small, but a.s X/E approaches unity
(e.g. , in transition metals), the difference be-
comes large.

For illustrative purposes, we have plotted I Q I
~

for X/E=o. 5/32 with 12=0. 33 and I1/E=f~ with

~ = 0. 5 in Fig. 3. Notice that the high-energy
side of the spectrum is always enhanced over the
Lorentzian tail, denoted by the dashed lines. This
behavior will always result in the enhancement of
the emission tail over the Lorentzian broadened
tail. To calculate the spectral intensity we must
know the appropriate Ro(&u) in Eq. (36). Here t2,
is given by

Qt = 251 /tf —tr (s6)

where 51 is the p-wave phase shift appropriate to
the s-state core hole of the Li K shell.

For the purposes of illustration we use a den-
sity-of- states- mat" ix- element factor

D(A) 02~2 (se)

This will be only very roughly correct for Li where
it is known that the wave functions are distorted
very considerably away from plane-wave-like be-
havior. We use

2g'- a =22(2t+1)(5, /tt)2, R, (n) 11/n
I

1 (4o)

where 5, are the phase shifts for conduction-elec-
tron-deep-hole scattering, in the second-order
calculations of Sec. IV. We find that I Q I depends
critically on the parameter l1/E, where X is the
lifetime of the x-ray hole and E is the width of the
filled conduction band. The dependence of I P Ia on
the hole-electron coupling strength g is weak. The
spectrum of I fI5 I gives a measure of the degree of

and assume It/E = 0. 5/32 with tr = 0. 33. The com-
parison with Li metal K-emission spectrum of
Sagawa 7 is given in Fig. 4. The inhibition behav-
ior, which is characteristic of l = 1 transitions,
is fitted by taking ott = —0. 3 in Eq. (36). We find
that for ~=0. 05 eV and E=3.2 eV, which is ap-
proximately the width of the Fermi band for Li,
the Li K-emission threshold tail is weil fitted by
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FIG. 4. Computed Li
emission and absorption
threshold tails compared
with Li K spectra due to
Sagawa (Ref. 17) and Kunz
et al. (Ref. 19).

this choice of parameters. The values of Qt and

are to be compared with the set given by Aus-
man and Glick for Li (~ = 0. 2, ~~ = —0. 104). The
va lue 0.05 eV is consistent with the value found

recently by Berger s en et al. ,
' for the lattice-

re laxation- induced core -hole width. Since the

Auger width and self -radiative width are small for

Li, ~o this is the dominant contribution to X for this
metal. To see if our predicted enhancement over
the absorption process is reasonable, we have

plotted on the same graph the absorption data taken
recently by C . Kunz et a/. ' The agreement is
satisfactory up to uncertainties in the background
for both emission and absorption data .

Because experimental data for both emission
and absorption in transition metals are inherent-
ly more complex, we have not attempted to
make a detailed fit for X/E = 1, although Fig.
3(b) gives an indication of the considerable
amount of enhancement expected in the erni ssion
tail for narrow -band materials .

VI. CONCLUDING REMARKS

The above results show that the initial hole ex-
citation effects are rather weak for simple metals
such as Li for which A/E «1. They are expected
to become increasingly important for transition
metals or other narrow -band systems. However
in these materials the internal degrees of freedom

of the deep hole become exchange- coupled to the
d bands, and the above treatment, although qual-
itatively useful, would require appropriate gener-
al ization to include such effects.

It should be pointed out that the general approach
of this paper based on the Ke ldysh for malism ap-
plies not only to the soft-x- ray emission process,
but to many other classes of experiment invol v-
ing measurement of one or more particles in the
final state, such as photoemission and Auguer
spectroscopy .

APPENDIX

After substituting Eqs. (16) and (24) into Eq.
(12), letting ~- ~, and doing one time integral to
get rid of the Dirac 6 function 6(t j —t &), we get

p(c; ) dc dt ' ' g(c —c )d(c —c ))
m g) a lg

x dt;e "' g*(t —c)d (c; —c,))'
w IO

x Ro(tz —t, ) . (Al)
Now f „dt~ is undefined but in a finite-time scatter-
ing theory we actually have f;&a dt's, and this is
divided out by 1/7 in Eq. (6) ~ With

RG(t p t2) = f.' « """2"2' (R) flc
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we multiply both sides of Eq. (Al) by

e 1
-i (~-& ) t +5 (od-&) t ]

to get

f(~„;~) J dQR, (Q)(f d(t;-t, )

x ei(~-o) (t& t&)-(t- t ) n (t-

d(t' —t )
'" '" '"g (t; —4)& (I; —4)}.

(A2)

Since the Nozieres x-ray function RG(Q) has a cut-
off 8(-Q)e(Q+ p), we finally get

I(t„(d)~ f' d&R, (Q) [@((()—Q)][&((()—Q)]*, (A3)

where

(t)((d —Q) = f, dt e""-""g(t) ~(t)

The density-of-states and matrix-element-squared
term D(Q) has been inserted in Eq. (AS) to make
contact with the one-electron theory.
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