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An energy-band calculation has been performed on a 13-layer film of (001) aluminum. Surface states are
found at I,N, and X in the two-dimensional Brillouin zone, and along the lines connecting these
points. Wave functions are plotted and decay constants tabulated for some of these surface states. The
charge density in the [001] direction has also been plotted for various positions in the planar unit cell, and
for an average over the unit cell. Finally, the 13-layer energy bands are compared to a (001) projection of
the three-dimensional energy bands, and effects of film thickness as well as the surface perturbation are
shown.

INTRODUCTION

A new method of performing band calculations
on thin films has recently been developed and ap-
plied to lithium. Since the surface states found in
lithium lie above the Fermi energy, and are not
easily verified experimentally, interest turned to
other simple metals where there was some indica-
tion of occupied surface states. A calculation by
Boudreaux indicated that there should be states
below the Fermi energy localized on the (001) and
(111)surfaces of aluminum. Our preliminary in-
vestigation indicated that there should be surface
states at I', M, and X on the (001) face, though
Boudreaux reported no surface state at X. It also
seemed that the constant-width band gap which
Boudreaux shows extending all the way from 1 to
N is impossible. Because of this, a new calcula-
tion of the energy bands of (001) Al has been per-
formed. In the course of analyzing our results we
have found that aluminum is a particularly nice ma-
terial in which to show the ways in which film thick-
ness and the intrinsic properties of a surface affect
bulk energy bands.

II. PRELIMINARY INVESTIGATIONS

It is possible to find the general features of the
thin-film energy bands by projecting the three-
dimensional bands onto a two-dimensional surface.
The actual bands for a thin film will differ from the
projection because of the presence of surfaces, and
because of the finite thickness of the film. By com-
paring the projection with bands for films of var-
ious thicknesses, it is possible to infer the band
structure of very thick films or semi-infinite crys-
tals. Completely surface-localized electronic
surface states can exist only within energy gaps in
the two-dimensional projection. This method has
been used for the surface-phonon problem but as
far as we know the method has never previously
been applied to electronic levels at a surface.

To perform this projection it is necessary to
calculate the three-dimensional eigenvalues along

TABLE I. Comparison of the Heine-Animalu local
pseudopotential to Ashcroft's results.

Ashcroft
Heine-Animalu

0. 0179 Ry
0. 0147 Ry

~2oo

0. 0562 Ry
0. 0581 Ry

the lines of high symmetry in the two-dimensional
Brillouin zone, and at points above (i. e. , in the
[001]direction from) these symmetry lines. We
have done this with a local-pseudopotential cal-
culation, starting with the tabulated Heine-Animalu
(II-A) potential. ' This gives good agreement with
the values of the two matrix elements which Ash-
croft~ derived from the de Haas-van Alphen data,
as shown in Table I.

Heine and Animalu obtained their atomic pseudo-
potential by screening an ionic pseudopotential with
the dielectric function. Because linear response
theory is not valid for the very strong ionic V0,
their atomic V0 is expected to be incorrect. In
fact, they obtain Vo= —0. 5736 By which leads to a
negative work function. We chose Vo to be —1.17
Ry, the value Lang and Kohn find for the potential
in the interior of jellium with the electronic density
of aluminum and which leads to fair agreement
with the experimental work function. We joined
the H-A pseudopotential at k= 0. 8k„ to a smooth
curve going to —1.17 Ry at k=0. Because 0. 8k~
is much smaller than the smallest reciprocal-lat-
tice vector (in two or three dimensions) this has
no effect on the bulk energy bands other than to
shift them uniformly. For improved convergence
we multiplied the H-A pseudopotential by the
Fermi-like function (1+e'" ' ~~) ~, where
k, =10.5~ and & =1.45~ with ~ the Bohr radius.
This is more reasonable than the common prac~.
tice ' of assuring convergence by taking only V&«
and Vz» to be nonzero.

In Fig. 1 we show a (001) projection of the fcc
lattice. The two-dimensional square unit cell is
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FIG. 1. (001) projection of the fcc lattice. The dashed
line represents the base of the commensurate unit cell.

seen to be rotated 45' in the xy plane with respect
to the three-dimensional crystal axes and the sides
to be of length a = a/v 2. The three-dimensional
unit cell commensurate with the two-dimensional
cell is then defined by the lattice vectors a(0, 0, 1),
a(2 2 0), and a(z g 0) and the commensurate
reciprocal-lattice vectors are (2v/a}(0, 0, 1),
(2v/a)(1, 1, 0), and (2v/a)(1, —1, 0).

In Fig. 2 we show the energy bands of the three-
dimensional crystal projected onto the two-dimen-
sional (001) Brillouin zone. Along Z, i.e. ,
k = (2v/a)(a, 0), we have k = (2w/a)(e, o. , t') with
0~ ~ » —, and 0~ t'~ 1. (Note that unitalicized Ro-
man letters with over bar denote two-dimensional
vectors. 3} We have plotted the bands as a function
of z for fixed values of f differing by intervals of
0.1. Note that at X, i. e. , a = —'„ the (—'„—2, f) and

(-,', —,', 1 —t;) states are degenerate except for t' ex-
actly equal to 0. 5. This is because although
—(~, ~, 1 —t;) is a different point than (2, ~, t) in

the commensurate Brillouin zone, it differs from
it by a (1, 1, 1) reciprocal-lattice vector and there-
fore comes from an equivalent point in the prim-
itive three-dimensional Brillouin zone. Lines
which differ in g have different three-dimensional
k vectors and therefore may cross on another (al-
though in a finite slab where the three-dimensional
symmetry is broken, they will not}. Because all
negative energy levels at & have the same && sym-
metry, lines with the same f values must repel
one another. This causes gapa in the two-dimen-
sional energy bands. There are two such gaps in
the negative energy range at &. The upper gap
starts at X but is quickly pinched off as bands of
different t' (0 from the lower edge and 1.0 from the
upper edge) cross each other. The lower gap per-
sists all the way from X to l at the locus of points
for which bands with the same 5 values meet and
repel each other with f going from 0. 5 at X to 1.0

at a point about midway across the band and re-
maining at 1.Of&"omthatpoint over to I'. The gap
at 1 is caused by V&00, being mainly due to the in-
teraction of (0, 0, 1) and (0, 0, —1) plane waves.
Similarly the upper X gap is caused by Vpop inter-
acting between (—,', —', , 1) and (-,', —,', —1) plane waves.
In fact, if higher f= 1 bands did not come down to
repel the two lowest $ = 1 bands, this gap would
persist continuously from I' to X. The lower X
gap which actually does persist over to the I" gap
is mainly due to Vzfg acting between (-'„-',, —,') and

( ——,', ——,', ——,') plane waves. The lower X gap is
much smaller than the other two gaps because
V»j is much smaller than Vzoo.

Along Y where k= (2v/a)( —,', n) and k= (2v/a)
+ (2+5 2 —e, 0) again with 0~a ~ —', and 0& is 1,
the twofold degeneracy between states with f and
1 —g is maintained. Each degenerate pair consists
of states of Y& and Yz symmetry. Thus here again
we cannot have states with the same C crossing one
another. The gap between states with 4 = 0. 5 goes
continuously from X to M getting progressively
narrower and vanishing at the M point. [The M

point where the two (= 0. 5 states become degen-
erate comes from the twofold degenerate level
at W= (1, 0, —', ) in three dimensions. s] However,
this gap between )=0.5 levels is an absolute gap
only about 88% of the distance from X to M; at
that point it is crossed by a P = 1.0 and 4 = 0 degen-
erate pair and from there over to M by a continuum
of states with different f values. The upper gap
extending from X to M is similar to the gap ex-
tending from F to X except that it is pinched off
at M. This occurs because the f, 1 —5 degen-
eracies at M can have the twofold-degenerate M,
symmetry or can consist of M& and M4 states whose
degeneracy is due to the three-dimensional sym-
metry and does not persist in the two-dimensional
thin film. Because they have different symmetries
the M5 states can be degenerate with M& M4 states
with the same g value; this occurs for the
4=0. 425, )=0. 5'75 pair, pinching off the gap. A

continuum of M~ states exist from the lowest f=0,
/= 1 point at M up to the positive energy range
whereas the M& M4 states start at the second )=0,
$=.1 point and continue only to the second f = 0. 5

point where a gap appears. They then exist from
the third &=0. 5 point continuously into the positive
energy range. The range of M& M4 states is in-
dicated in Fig. 2 by vertical bars. Within this gap
M& or M4 surface states may occur but as soon as
one goes away from M by an infinitesimal 5k inany
direction these states will have the same symmetry
as some of the states with which they are degen-
erate and will therefore be surface resonances
rather than truly localized surface states.

We next consider the states along Z where
k= (2v/a)(n, a) and k= (2w/a)(2n, 0, f}again with
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FIG. 2. Two-dimensional (001) projection of the three-dimensional energy bands of aluminum. The horizontal and ver-
tical crosshatching represent continua of states with different symmetries. The numbers labeling the various bands repre-
sent values of k, in units of 2~ja.

0» e~
& and 0 —f —1. All the negative energy I'

states have I", symmetry and these are compatible
with Z& states. At M the M, and M, states are
compatible with Z, whereas', is compatible with

both Zj and Z2. For the sake of clarity we only
show a few of the bands in Fig. 2 which sweep up-
ward in energy away from M. The gap at I' con-
tinues between f= 1 states until just past haU-way

to M, then it becomes a locus of repelling bands
with f decreasing continuously to 0. 575 at M where
the gap is pinched off just as is the 7 gap at the
same point. The bottom of the gap is crossed ex-
actly half-way between I and M, i. e. , at &=0.25,
by another /=1 state but with Z& symmetry. This
crossing point comes from the twofold-degenerate
level at W= (2, 0, l) in three dimensions. To the
right of this Z~ band the gap is filled by a contin-
uum of Zz bands but still remains a Z& gap capable
of containing a Z& surface state. Although the gap
in Z& states emanating from negative energy I'~

states persists all the way to M, at a point about
90% of the way over toward &9 a continuum of Z&

bands (beginning with a k=0 band) sweeping up-

ward from M toward positive energy I"s crosses
the gap, and therefore in this region the gap can
contain no surface states of any symmetry. Note
that our gap is in no way similar to that of Bou-
dreaux which extends with almost constant width
all the way from 1 to M. The Z surface states
which he finds near M cannot exist according to our
picture, and in fact the motivation for our making
this projection was that we did not find such sur-
face states in the thin-film calculation discussed
in Sec. III. We were able to generate a gap sim-
ilar to Boudreaux's by considering only % vectors
within the primitive three-dimensional Brillouin
zone with the planar projection of k equal to k in
two dimensions. We suspect that Boudreaux's
gap may have resulted from this error, but we do

not understand how he could have found surface
states in such a "gap. " (See Note added in proof).

III. THIN-FILM CALCULATIONS

In deriving a thin-film potential from the three-
dimensional potential some care must be taken.
The common procedure" is to use an unperturbed
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crystal potential right through the last occupied
layer of the film, and then to jump discontinuously
to a uniform vacuum potential. But even though
this model simplifies analysis, the potential is
clearly unphysical. A more reasonable potential
results from overlapping atomic potentials (or
pseudopotentials). This gives a potential which
falls off smoothly over a few interplanar spacings.
However, experience with a self-consistent cal-
culation shows that such a potential falls off too
rapidly in the selvage region and builds up a little
too much charge at the center of the film. The
correct falloff of the potential is probably that
found by Lang and Kohn in their jellium calcula-
tion.

As we have done previously, ' we took our 13-
layer thin film to have a unit cell a&&a&& 2L where
2L =19a/2, i. e. , thirteen planes of atoms sepa. -
rated by &a and three empty planes on each side
forming the selvage regions in which the wave
functions decay to zero. The complete set of basis
functions obeying the two-dimensional periodic
boundary conditions and vanishing at (x, y, + L) is

(k) = 2 ~ze'~"' ' ' 'sinnvz/2L

n an even integer

= 2'~ e'~"' ~ ' cosnvz/2L

n an odd integer

where k is a k vector within the two-dimensional
Brillouin zone and G is a two-dimensional recipro-
cal-lattice vector. Using our previous method'
for obtaining the thin-film potential we superpose
H-A atomic pseudopotentials (modified for very
small and very large k as discussed in Sec. II) to
get

almost entirely to exchange and correlation. The
cube root of the charge density appearing in the
Kohn-Sham exchange approximation greatly en-
hances the value of the exchange when the charge
density is small. One could probably obtain a
fairly good potential in the selvage region by in-
cluding exchange in the H-A atomic pseudoptential
but this would cause one to superpose the cube
roots of the atomic charge densities in the interior
of the film rather than to take the cube root of the
superposed charge densities. This leads to disas-
ter; e. g. , in lithium one obtains a work function
too large by an order of magnitude. Because the
H-A pseudopotential seems to lead to satisfactory
results in bulk calculations without the specific in-
clusion of an exchange term, we constructed
V«, (0, k, ) in the following manner. We start with

V~„,~(0, k, ) obtained from a superposition of H-A
atomic pseudopotentials; we then Fourier trans-
form back to obtain Vb„,„(0, z) which is the bulk po-
tential averaged over the z plane as a function of
z. We then take

V„,.(0, .}=V,„(0, z) V,.(z)/V, (0)

V„, (0, z)= V, (z) for Izl & Iz
I

where V, (z) is the Lang-Kohn6 jellium potential,
V~(0).= —1.17 Ry is their bulk value of the jellium
potential and z, is the largest value of z for which
the bulk and jellium potentials cross. In Fig. 3
we show V„, (0, z) and V&(z); the discontinuous
derivative of V«, (0, z, ) has been smoothed out.
This potential is obviously quite good for either
Iz1» Iz, or IzI « lz, l and is probably as good as
can be obtained for IzI ~ Iz, I without a fully self-
consistent calculation. Finally, to obtain Vfgy

V„, (G, k, )=S(G, k, )vs„(G, k, )/N (2)

where N is the total number of layers in the film
including selvage, S(G, k, ) is the structure factor
obtained by summing over the 13 atomic positions
in the 19-layer unit cell, and k, = nv/L. For large-
k vectors there is no reason to expect this potential
to be unsatisfactory and therefore we use it for all
G40. For small k vector corresponding to large
values of r, a superposition of atomic pseudo-
potentials is not good even if modified to have the
correct Vo. For bulk calculations this causes no

problems aside from a constant shift of all the
bands due to uncertainties in Vo. The superposition
of atomic potentials contains errors of two sorts.
The tails of the atomic charge distributions are
greatly modified when the atom is in a crystal, af-
fecting small-k Fourier transforms. Even more
important is the problem of exchange. The poten-
tial in the selvage region of jellium is known to
rise to its vacuum value very slowly. This is due

0.0

-0 5-

N

-1.0-

hARAAR
"VVVVV

4q~ u m u a
0 1 2 3 4 5

z/ ~ a

6 7 8 9

FIG. 3. Jellium potential and V(4 = 0, z), the planar
averaged potential, for the 18-layer aluminum film.
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(0, k, ) we Fourier transform once again.
The energy bands of the 13-layer (Q01)-Al film

shown in Fig. 4 were calculated from an expansion
in basis functions [Eq. (1)] containing 30 even or
odd' values of n and from 3 to 7 two-dimensional
symmetrized combinations of plane waves (S2DPW)
at the points in the two-dimensional Brillouin zone
shown in Fig. 5. Eigenvalues tested by (doubling
the number of n's and planar S2DPW's at F were
converged to 0.007 Ry in the plane and 0.002 Ry
in k, . We have also calculated eigenvalues and
eigenfunctions at special points for thicker films.
These will be discussed later.

Comparison of Figs. 2 and 4 shows effects of
both the surface and the finite thickness of our film.
The band gaps at I' and X are wider in the thin film
than in the projection, and are occupied by surface
states. The energy gaps are widened because the
perturbation of the surface has moved states at the
edges of the gaps inward to form the surface states.
But if we went to progressively thicker films the
bands would be more and more densely packed and
the widening of the gap by removal of only two
states would decrease until we were left with about
the same widths as in Fig. 2. For instance the F
gap is 0. 2741-Ry wide in a 13-layer film, 0. 1839-
Ry wide in a 39-layer film, and 0.0975-Ry wide in
the projection. The perturbation of the potential
also drives the lowest I' eigenvalue downward, '
but again the magnitude of the effect depends on the
film thickness —the thinner the film the greater the

surface-to-volume ratio and the stronger the per-
turbation. The lowest I'& level in the 13-layer film
is 0.0104 Ry below the lowest I' level in the pro-
jection but ina 39-layer film it lies only 0.0049 Ry
below the lowest I' level in the projection. Final-
ly M&, 4 and X&,~ degeneracies in the projection
have been split. To see how the presence of the
surface splits these degeneracies we first note
that the X& S2DPW's go over into Xz S2DPW's un-
der the translation T =(—,a)(x —z) from a face
center to an adjacent cube corner. Since this is a
lattice translation in the bulk, the X&,~ degeneracy
is explained. Since the presence of the surface
destroys the translational symmetry in the z di-
rection, the splitting of the X&,z degeneracy is
also explained. Exactly the same argument applies
to the M& 4 degeneracy. In a thicker film T would
be "nearly" a translation vector in the interior, and
there would be less splitting. But note that occu-
pation of the band gap pulls states away from their
degenerate partners at the band edge. Even in our
13-layer results we can see that degeneracies are
most strongly split near band gaps and this result
holds for our calculation of X& ~ in a 29-layer film
and of Mq, 4 in a 39-layer film.

For the bands plotted in Fig. 4, the Fermi en-
ergy is —0. 33 Ry for a work function of 4. 49 eV.
This is to be compared with Lang and Kohn's"
jellium value of 3.87 eV which with first-order
pseudopotential corrections became 4. 20 eV. The
difference between our results is probably due in
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FIG. 4. Energy bands calculated for the 13-layer aluminum film.
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part to the difference between nonperturbative and
perturbative calculations and in part due to the
fact that we chose our pseudopotential to have an
average value in the interior of the film equal to
the jellium value, whereas Lang and Kohn con-
sidered the perturbative effect of a non-zero-av-
erage pseudopotential on the jellium result. Lan
and Kohn's" assumption that the polycrystalline

u . ang

work function is an average of the (001), (011),
and (111)face work functions leads to an estimate
of the true (001) work function bein 0. 2- V 1

eV. '6
an e polycrystalline experimental value of 4. 19

In Fig. 6 we show p(r, z) for six different 1n vaues
o r. is was obtained by summing the squares
of the absolute value of the pseudo-wave-functions
with eigenvalues below the Fermi energy and
weighting the contributions from the wave functiounc ions

ig. y t eeach Brzllouin zone point shown in Fi . 5 b th

th
area surrounding that point. The boundaries of
hese areas are formed by the bisectors of lines

joining the point at the center of the area to the
other points. We note that near the center of our
film the valence charge density varies from a max-
imum in the interstitial region of 3.76 electrons
per atom to the minimum at atomic sites of 1.27.
This is quantitatively different from the results

C hen Al
of a recent bulk calculation by Walt r Fa er, ong, and
Cohen. Although they found their maxima and
minima at the same places as ours, their p(r) var-
ies only between 3.4 and 1.65 electrons per atom.
We think that this results from their having taken
all Fourier transforms of the potential other than
V«& and V300 to be zero. Our potential has non-
zero V(k) for k & l (2, 0, 0) l and thus, in real space,

in charge density follow. In Fig. 7 we compare

(z,~) 2

0 l 2 3 4 5 6 7 8 9

z/-,' a

FIG. 6. ChCharge density p(r, z) (in units o& e per atom)
for six different planar positions, r.

(D 2
I

0 I 2 3 4 5 6 7 8 9
z/-,' a

FIG. 7. Com
of the ch

parison of p(G = 0, z), the planar ave a
e charge density with the jellium p(z) from Ref. 6.

vera ge

the jellium charge density with the planar average
of our charge density which is obtained by Fourier
transforming p(G =0, k, ). The similarity of these
charge densities should not be surprising since our
,» (0, z) is so closely related to the jellium o-

tential.
rum po-

In Fig. 4 we have denoted surface states at I". ,
M, and X by S. It is interesting to note that the
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inite crystal and become surface resonances rath-

er than localized surface stats es as soon as one
moves away from M by an infinitesimal distance
in k space.

Because the high-symmetr
S2DPW's

ry points require fewer

~ ~

s, we were able to use morre, sin eex-
pansion, allowing us to do the calculation for
thicker films. In Fig. 8 we plot the Fi and M i
surface states for fixed r as a f tia unc 'on of z (Be-
cause of the translational relationship between
Mi and M4 previously discussed, the M surface

is an A lan
en e surface planestates have M4 symInetry wh th

p ane and Mi symmetry when it is a B
plane where the center plane of the film is an A

plane). Because both wave functions are normal-
ized and Mg has nodes at = (—

'
+

r= ~, —,) and (2, 0) where-
as I'i has no planar nodes th M'e i function is larg-
er than the I'i at its antinodal
of the lar e kin

a r points. Because
f th ge kinetic energy represented b its 1-yispa-

s, e i state has less kinetic energy to
spend on z nodes than the 1" t t . Hi s a e. ence the Mi
function has a longer wavelength th an the Fi func-
ion in Fig. 8. In Fig. 4 note that in the lower X
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FIG. 9. Wave functions at X calculated for a 29-layer
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Wave function Eigenvalue Decay constant r
p+i
1V,

Xg
Xg

—0.5307
—0.3001
—0. 1841
—0.2088
-0.6766

0. 027 + 0. 001
0. 023 + 0. 0005
0. 0275 + 0. 001
0. 031+ 0. 002
Q. 007 +0. 002

(k, 0)
(0, 0)
(4, 0)
(0, 0)
(-.', 0)

degeneracy of the surface states. This is another
effect of film thickness, and as we go from a 13-
layer film to a 39-layer film the splitting of the
surface states at I' and M changes from 0.042 and
0.029 Ry, respectively, to 0.002 and 0. 002 Ry.
As we go from a 13- to 29-layer film the splitting
of the states in the lower X gap goes from 0.039

TABLE II. Decay constants in inverse Bohr radii for
surface states at high-symmetry points. Eigenvalues
are given in rydbergs. The first two eigenfunctions were
computed for a 39-layer film with six selvage layers, and
the last three eigenfunctions were calculated for a 29-
layer film with six selvage layers.

to 0. 013 Ry. The splittings of the states in the
upper gap goes from 0.045 to 0.007 Ry and from
0.044 to 0.009 Ry.

In conclusion, we find surface states on the
(001}surface of aluminum. These are of various
types; some of them are occupied and some will
be above the Fermi surface. We find surface
states at X which were not reported by Boudxeaux,
and we find that they extend along both the ~ and
F directions. We find that the energy gap along
the Z direction disappears before reaching 19, and
we do not find the surface state extending along Z
from M which Boudreaux reported. In addition,
we have found that comparing our 13-layer results
to results at special points for thicker films and
to a two-dimensional projection of the three-dimen-
sional infinite-crystal energy bands elucidates the
effects of the surface.

Note added in Proof. Dr. Boudreaux has re-
viewed his calculation and concludes that he prop-
erly included all points in the three-dimensional
Brillouin zone.
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