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The previous microcoscopic models of photoemission are developed and reformulated in order to
include inelastic scattering effects. A general expression is given for the photocurrent and its energy
distribution (EDC). The problem of inelastic scattering is more thoroughly discussed in the case of
electron-phonon interaction for a pseudo-one-dimensional model. The approximations necessary for a
random-walk description of the propagation of the electron in the final state to be valid are given. The
microscopic formulation is then used to discuss phenomenological models such as the step model. It is

shown that, in general, this model is not a good picture since one cannot separate simply the
optical-transition step from the propagation of the excited electron and its escaping into the vacuum. In
particular, even in the absence of inelastic effects, it is impossible to make a general prediction about
the degree of accuracy with which the EDC may reproduce the optical joint density of states of the
semi-infinite solid. Finally the paper discusses what type of information about the solid may be
reasonably extracted from EDC measurements as a function of the energy of the primary excited state.
It is concluded that the best conditions are met for uv and x-ray photoeinission for which the elastic
EDC should give information about the occupied surface states (uv) and bulk density of states (x ray).

I. INTRODUCTION

Inelastic scattering plays a very important part
in photoemission from solids. Indeed, since elec-
trons have to escape into the vacuum in order to
contribute to the photocurrent, the only transitions
of interest in photoemission experiments are those
in which the photon field excites electrons up to
energies + above the vacuum level. That is,

—p, &P, where p. is the Fermi level of the solid
and P is its work function (typically Q-4 ev).

At such excitation energies, an electron in a
semiconductor or a metal has a rather short mean
free path (typically - 100 A), even in impurity-free
materials. In other words, scattering in the ex-
cited final state is non-negligible. It may originate
from various mechanisms (electron-electron, elec-
tron-phonon, electron-impurity, etc intera. ctions),
most of which involve inelastic processes. The
relative importance of these mechanisms depends
on the nature and purity of the material and on the
final-state energy. For example, in a semiconduc-
tor, if ~ —E, & W,„(where E, is the bottom level of
the conduction band and W,h the minimum energy
for creation of an electron-hole pair), electron-
electron scattering does not contribute to energy
losses. In a metal excited by uv light, if ~ —p,- 20 eV the electron-electron mechanism domi-
nates, etc. Inelastic processes give rise to the
inelastic current (i. e. , to electrons which have
lost energy by creating some excitations of the
solid before escaping) and to the finite extraction
depth of the current (photoelectrons come from a
finite layer along the surface). It is therefore
necessary to take them into account, at least quali-

tatively, when interpreting experimental results.
There exist presently two types of theoretical

approaches to photoemission:
(i) Semiphenomenological theories, which are

founded on the so-called "three-steps model"
originally put forward by Spicer. ' In this model
photoemission is decomposed into three indepen-
dent processes —photoabsorption, propagation of
the excited electron to the surface, escape into
the vacuum. The firstprocess is quantum mechan-
ical and involves calculating optical joint densi-
ty of states (for the initial and final electronic
levels) in specific materials. In that step, inelas-
tic scattering effects are usually neglected. The
propagation process has been treated in the frame
of quasiclassical random-walk models in one and

three dimensions. The existing models deal es-
sentially with inelastic scattering by phonons;
electron-electron losses are estimated qualitative-
ly from approximate microscopic calculations of
inelastic scattering cross sections.

(ii) The recent theories of Schaich and Ash-
croft' and of Mahan have given a complete micro-
scopic formulation of the photoemission process in
the absence of scattering, i.e. , for an electron gas
in the presence of a one-electron lattice potential.
Scattering only appears via the introduction of a
mean free path ir the excited state in the final re-
sult for the current —which is therefore bound to be
elastic. Langreth has generalized such a micro-
scopic theory to the case of elastic scattering by
impurities.

It is not very clear at that stage how the two
types of theories overlap or what is the degree of
validity of the step picture. Comparing the two

4552



INELASTIC EFFECTS IN PHOTOEMISSION: MICROSCOPIC ~ ~ ~ 4553

approaches is of interest, since experimental re-
sults are most often analyzed with the help of the
step model, owing to the complexity of the photo-
emission problem. Indeed, a complete quantitative
ab initio theory must include, at the same time,
the three-dimensional lattice structure, the break-
ing of symmetry due to the surface, with appear-
ance of surface states, and the scattering effects.

In this paper we develop previous microscopic
models so as to include inelastic scattering (Sec.
II). We obtain a general expression for the photo-
current and its energy distribution (EDC). In Sec.
III, we specialize to the case of electron-phonon
interaction in a pseudo-one-dimensional metal,
and show what approximations are necessary for
a random-walk description of propagation in the
final state to be valid. The problem is solved, in
these approximations, for a free-electron conduc-
tion band plus step surface potential model.

On the basis of the microscopic analysis, Sec.
IV first discusses the validity of the step model.
It is shown to be, in general, not a good picture,
because it does not properly include scattering
effects and because, even when these effects are
neglected, one cannot separate simply the "opti-
cal-transition step" from the two other ones. We
then discuss qualitatively what kind of information
about the emitting solid can be obtained from EDC
measurements, as a function of the energy of the
primary excited state. It is found that the best
conditions are met in far-uv and x-ray photoernis-
sion, which should permit us to probe with a rea-
sonable accuracy, respectively, the densities of
surface and bulk initial states.

II. GENERAL EXPRESSION OF THE PHOTOCURRENT

Our approach is based on Keldysh's formalism
for out-of-equilibrium many-body systems. As
will be clear in the following, this approach leads
in the present problem, as it should, to the same
formal results as the quadratic-response theory
of Schaich and Ashcroft. ' It is our opinion that it
has the advantage of giving very systematic pre-
scriptions for the calculation of the needed quad-
ratic-response function in the presence of inter-
actions. Moreover, it can be extended to true non-
equilibrium situations such as photoassisted field
emission.

Let us consider a semi-infinite solid at zero
temperature, extending in the region x &0, with a
perfectly flat surface at x = 0, and let us call H p

the Hamiltonian of electrons in this system (includ-
ing, in particular, interactions between electrons
and with phonons). The system is submitted to an
electromagnetic field deriving from the vector po-
tential

A(r, t ) = ya (x) c os At,

i.e. , we choose the gauge so that the scalar poten-
tial is zero, and we assume the field to be mono-
chromatic, linearly polarized along direction y
parallel to the surface, and at normal incidence.
a(x) is oscillating in the vacuum (x &0), and de-
creases on a penetration depth 5 in the solid (x & 0).
Moreover, we assume the solid to have complete
translational invariance in the plane of the surface. '

The coupling between the field and the electrons
is described by the Harniltonian

a, = d'rq' r, t

Air, i)' & ~
2 )Ai, il)'))(, i),

(2)
where g and g are electron creation and destruc-
tion operators.

The total current density induced by the field is
given (for the two spin directions") by

A f

&&G;„(rt, r't) ~;, -.
The "electron-occupation propagator" G;,„(rt, r't')
= i()})~(r ' f)g(r t )) is the first-row, second-column
element of the Keldysh Green's-function matrix
Gt t. of the solid in the pres ence of the fie ld

G tot G tot
G tot

G tot G tot

(4)

Finally, photoemission experiments only measure
the dc part of the total current flowing out of the
whole surface; that is,

2

Gt, t and Gt, t are, respectively, the corresponding
causal and anticausal functions, Gt, t is the "hole-
occupation propagator, " and G tot and therefore
J, can be expanded in powers of the field

(5)

The first-order term in the expansion of J simply
gives the linear conductivity current, which flows
along y and is of no interest to us here. The photo-
current is given, to lowest order, by the term in
J which is quadratic in A (i.e. , linear in the number
of photons). This term itself decomposes into two
parts: (a) AG ' '(r t, r t), which is zero because of
the rotational symmetry of the field-free system
about the x axis (and in any case would not go out
of the solid); (b) the only remaining term is
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with

eS 8 8 (~),
I 8 ~ ( t ) Ix =x

and

G k '(x, x'; ~, ~')= Jd p dt d p dt G' "(rt, r't')

x exp[ik ~ (p -p') —((ot —(u't') jI.
(8)

p = (y, z) is a vector lying in a plane parallel to the
surface.

We must now calculate G- '
by means of the

kent

Keldysh perturbation expansion. For the sake of
clarity, we shall first perform the calculation for
a system without interactions, then extend it to the
interacting case.

A. Noninteracting System

Developing the matrix Dyson equation
A g A

Gto~= G+G cr G~o~ y

we obtain

(9)

G„- '(x, x') is the term proportional to a in the
expansion of O'. It therefore contains two contri-
butions, obtained, respectively, by treating the
paramagnetic part of H, (- A V) to second order
and the diamagnetic part (-A ) to first order.

H y is a one-body instantaneous pe rturbation, so
the associated Keldysh self-energy matrix a is
simply proportional to

G„-„'(x,x')= dxk k (4 (kx, xk)o, Gk„(x~, x')j'+ k k dx, dxka(x, )a(xk)

k (x x1) o [ ~k +o(x1 x2)+ Gk A(xk x2)l 8*Gk (xk x )) (10)

where the subscript + means the first-row, sec-
ond-column element of the result of the matrix
products written between the ( ). Carrying out
the matrix products in Eq. (10), one finds that the
diamagnetic contribution to the right-hand side
can be written as

C"„- (x, xk)Gk„(x, , x')+Gk„(x, x, )G'„- (x~, x'), (ll)
where G' and G" are the standard advanced and re-
tarded propagators, which are analytic, respec-
tively, in the lower- and upper-half & planes.

Let us now examine the general properties of
the propagators G of the solid-plus-vacuum sys-
tem.

(a) By definition

Gk„(x» xk) = —2k Im Gk~ (x„xk)8(p —ur), (12)

with

1, for x&0
0, for x&0

and tk is the chemical potential of the system (i.e. ,
G' describes properties of occupied electron
states).

(b) E being the vacuum level (i. e. , the poten-
tial felt by an electron at x-+ ~), whatever the de-
tailed shape of the potential created by the solid—
including image-force effects-, one has

lim Gk„(x, xk)=0, if ~ —ek&E
+oo

where uk= h k /2m is the part of the electron ener-
gy corresponding to motion parallel to the surface.

I

In other words, an electron cannot escape if its
transverse energy does not exceed the vacuum
level.

If (d —&~ &E, when x-~ the elements of
G„-„(x, x,)'s are oscillating functions of x, the am-
plitudes of which depend on the details of the po-
tential.

Since ( J, ) is position independent, it can be cal-
culated on any plane x =est. It is clear from the
above remark that it is most simple to do it at in-
finity in the vacuum. Then the relevant x and x'
in Eq. (9) both approach infinity. Expression (11)
is therefore proportional to 8(~ —ek —E)8(tk —&u).

Taking into account that p, &E and e~ &0, we see
that the diamagnetic contribution to (J„)is identi-
cally zero (to second order in A).

The physical meaning of this result is very sim-
ple: to that order, as appears in Eq. (9), only
the time-averaged (u= 0) part of the diamagnetic
perturbation acts on the energy-conserving part
G„of the Green's functions. A time-independent
potential does not induce electronic transitions;
it leaves electrons in states below the Fermi
level, from which they cannot escape into the
vacuum. It is clear from this interpretation that
this result must remain valid in the interacting
system. We are left with

d~ d'k eh' 8„(,)
1 eh@,x — ' dx, dxka(x ~) a (xk)
4 mc
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(GEE(»l»1) Os[ GKielen(»1l »2)+ file O-(»1 l»2)]

x6.G;.(x„» ))' ~„„„. (13)

As has been shown above, G2„(»„~)= 0. The (]'
factor in the right-hand side of Eq. (13) reduces
to

G'„-„(x,x,) [Gj„~(x„x2)+G'„,„o(x„»2)]Gs, (x„x').
The condition that x and x approach infinity im-
poses that this product is zero unless ~ &E+ cI,~E,
so that ~+ II &E & p and G2,„(x„»2)= 0. Writing
down explicitly the 8-function dependences of
G",G' and G'„„, we get

elk, 'i'
(Js) = 2 8(&u —e2 E)8-(P—&O+, 0)—

2)( (22) 4 mc j
el 8 8

dxgdx2~ xg & x2
~ p G& x xg Gg, -g xj xp Gf~ xp (14)

Equation (14) is the general expression of the
photocurrent in our "pseudo-one-dimensional"
noninteracting system. Several remarks can be
made about it.

(i) It is completely equivalent to Eq. (5) of
Schaich and Ashcroft, ~ it is simply one of the
several equivalent expressions of the quadratic
response to the photon field —i.e. , of the three-
current response function which is represented
in Fig. 1. [Note that G ' is obtained by simply
opening the diagram of Fig. 1 at the J„vertex, and
taking the Keldysh indices at the beginning and end
of the resulting line to be, respectively, (+) and
(-) ]

(ii) Its physical meaning is obvious: an electron
is excited by the field out of an occupied state
(factor G'„„)into an empty state of energy (d. If
it then has a transverse energy (d —c, large enough
for it to go out into the vacuum, it contributes to
the photocurrent J„, its weight being proportional
to the probability intensity (G'„G'„ factor) for going
from the solid to x=+~. The two-particle propa-
gator G"G' contains what is described as the last
two processes of the three-step model (propaga-
tion in the excited state and transmission through
the surface), but, as we shall discuss in Sec. IV,
these are confused with contributions related to
what is called the optical-transition step.

(iii) Note that Eq. (14) does not make any as-
sumption about the shape of the potential along x,
in the solid or out of it. This means that image
force effects can be taken into account in Eq. (14),
as long as they appear via a one-body potential.
Moreover, our simplifying assumption of com-
plete translational invariance along the surface
can be dropped, and band effects in the (Ark, )
plane can be included: let us now assume simply
that there is a lattice periodicity with lattice vec-
tors p„p& in the plane of the surface, and that the
wave functions of the electron eigenstates can be
factorized into t)l (x, p)=u„- (p)$2(x), where u "' is
a Bloch function labeled by a wave vector k of the

X [G~rn, „(X,X,) Gree ~ „(X,, X2)

x G'„-„.„(x„x')]~, (16)
where M„„, is the matrix element for optical inter-
band transitions in the present model:

(16')

which, for simplicity, is often assumed to be in-
dependent of k.

(iv) Equation (14) can be checked by applying it
to the case of a free-electron solid and a step sur-
face potential (Fig. 2), which has been studied by

1
A V

A V

FIG. 1. Diagrammatic representation of the three-
current response function.

first Brillouin zone and a band index (n). Replac-
ing the space Fourier transform (8) by the Bloch
transf orm

Gi '(» xt; (t), &t)')= J dtd pdt'd p'G '(rt, r't')
(n)Q) [ )(Qn)]rs 1 ( etlel t )

(15)
one straightforwardly obtains

nn' 2 "1st rane

x8(p- ~+II) (I„„,('
1 eS 8 8x — dx dx a(x )a(x )4 ' ' ' ' m ex' ex
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several authors, and must give ( J„)= 0 if the field
is at normal incidence and if the x dependence of
the vector potential is neglected (see, for in-

stance, Ref. 6). The corresponding Green's func-
tions are easily found by directly solving their
equation of motion and matching at the surface:

G+ ( I) K(x+x )
0 ~ td 0 for x and x' &0

4im, 2i
sinkx sinkx' ——[»sink(x+x') —k cosk(x+x')]

h k E for x and x'&0

= —e "*(k coskx' —» sinkx')E for x &0, x' &0 (17)

with

with

(&2m 2m 1/2
k=l (ur —0 —e )

h
(E —~+a-e )a

2 mi e $ Ad (%+3' )

'=(" "')=-
a k

""'"""""'-
a kd h kd+ kg

2m 2mi e-kkg6c+x')
sin(k~»&) e "&"~—

jg kd+ k~

ea 0tdx-kgx' &

h kd+k

-Q&p, ;

for x and x'&0

for x and x'&0

for x &0, x' &0 ( 18)

2m 1/2 2m 1/2
k~= &p (&u —e,), k~ =

2 ((0 —e, —E), x&
——max(x, x'), x& = min(x, x'), ur —e &E

Making use of Eqs. (17) and (18), and assuming in Eq. (14) that a(x)=a =Cte, one checks, after some
tedious algebraic computation, that

2
1 2 s Gg~ yX1 6&7 +Q Xl~ 2 qadi»

so that the total current (J„)= 0.
(v) The energy distribution of the current can be defined immediately from Eq. (14). The analysis in

energy of (J„)measures the kinetic energy e= &o Eof the phot-oelectrons infinitely far from the solid.
Setting (J„)=f „j(e)de, one gets from (14)

j(e)= e(e) e(p+ 0 —E —e)—1
27r

'a=' d'k elk, ' 1
dx, dx, a (x,)a (x2)2v mc

eh + a
, ——[Gf ..z(», xg)Cf, De(»1 -»2)Cf...s(xax')1 l~ .. (19)

(vi) Finally, it may be worthwhile to point out
the formal difference between the photoemission
and absorption response functions (which must be
kept in mind when interpreting experiments). While
(Zg corresponds to a quadratic response (Fig. 1) in-
volving a two-particle propagator in the final state,
the optical absorption is obtained from a linear-re-
sponse function (Fig. 3) with only aone-electron
propagator in the final state. The physical implica-
tions of this difference willbe developed in Sec. IV.

B. Interacting Systems

In a real solid, the electrons are involved in
several types of interactions, e. g. , electron-

electron, electron-phonon, and electron- impurity
scattering. As we have already pointed out in
Sec. I, they are particularly important in photo-
emission, since the excited state of the electron
lies at least several eV above the Fermi level p,
so that the mean free path in the final state is
rather short (it may go down to - 10 A in uv photo-
emission experiments). This shows up through
three effects: first, the region of space from
which the elastic photoelectrons (those which have
suffered no energy loss) originate in a slab of
thickness -l along the surface; on the contrary,
in the independent-electron model, this escape
depth is controlled by the field penetration depth
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Xg

xz

FIG. 2. Free-electron solid with step surface poten-
tial.

(a )

5, which is usually much larger than l. Second,
the final state is no longer a one-particle state,
but a composite one made of a particle dressed
with a large renormalization cloud. In other words,
it corresponds to a rather poorly peaked spectral
density. Finally, losses appear.

We must, therefore, now calculate the propaga-
tor G ' of Eq. (7) to second order in A and, in
principle, to all orders in the internal interactions.
Since the Dyson equation has the same formal ex-
pression in the matrix formalism as in the stan-
dard one, itsperturbationexpansion can be repre-
sented by Feynman diagrams. One simply has to
keep in mind that products of propagators and
self-energies are matrix products.

The diamagnetic part of H, does not contribute
to (J„)to order A', even in the presence of inter-
nal interactions, for the same physical reasons
that were developed in Sec. IIA.

The term in (J„)of zeroth order in the internal
couplings has been calculated in Sec. IIA and is
represented in Fig. 1. The terms of higher order
are obtained by renormalizing this diagram to all
orders in these couplings. One can separate all
possible diagrams into four classes, three of
which have a relatively simple physical meaning.

(i) Separate renormalizations of the bare dia-
gram of Fig. 1. This corresponds to inserting in
each of the three G matrices the self-energy cor-
rections due to the internal interactions. The sum
of all such diagrams is obtained by replacing in
Eq. (14) or (16) bare G's by renormalized one-
electron propagators, which we call g and repre-
sent by double lines (Fig. 4).

(ii) Renormalization of the vertices of interac-
tion with the external field (at points x, and x,).
It corresponds to diagrams in which, for instance,
lines xx, and x,x& are connected by one or more
interaction lines. An example of such a term is

G G-

FIG. 4. (a) Three-current elastic response function.
The double lines represent renormalized propagators.
(b) Dyson equation for the renormalized propagator.

given in Fig. 5 for the case of electron-phonon
interaction alone.

(iii) Renormalization of the J, vertex, which
corresponds to the diagrams in which lines xx,
and xx~ are connected by interaction lines. Such
a term is schematically shown in Fig. 6, where
conservation of the parallel momentum and of the
energy has been taken into account.

(iv) Diagrams containing connections between
the three G lines which cannot be cut into diagrams
of type (ii) and (iii) by simply cutting two electron
lines. An example of these is shown in Fig. 7.
They can be expressed in terms of the irreducible
vertex part with six electron lines, F, .

Of course, the most general diagram is an arbi-
trary combination of these four independent types
of renormalization.

We shall now try to make explicit the physical
meaning of these various terms in the usual termi-
nology of photoemission.

(i) Figure 4(a) describes a process in which an
electron at energy ~ —0, renormalized by the in-
ternal interactions, is excited by photon absorp-
tion up to a (renormalized) state at energy to. The
propagation of the escaping electron is represented

v+0
aol «

tiol s&

4l

FIG. 3. Diagrammatic
representation of the
linear-response function
for optical absorption.

X2

FIG. 5. An example of renormalization of the exter-
nal field vertices by electron-phonon interaction.
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X),

X

FIG. 6. Schematic representation of renormalization
of the J„vertex.

by the taboo ro lines. The interactions introduce
self-energies, but the electron goes out at the same
energy & at which it has been first excited; there-
fore the corresponding current is elastic. In order
for state (k, ~) to contribute to (Z, ), it must have
a transverse energy & —&~ &E. We shall, from
now on, neglect the self-energy corrections in the
initial state (~ —0 line). It should, however, be
kept in mind that they may be important in specif-
ic cases, among which are (a) experiments which

measure the spin polarization of the photocurrent
from magnetic metals. This situation has been
analyzed by Anderson"; and (b) infrared catas-
trophy effects giving rise to asymmetrical broaden-
ings in photoemission from deep initial states in
metals 'e

(ii) These terms (renormalization of the ver-
tices of interaction with the external field) corre-
spond to scattering between the "deep" hole, of
energy & —0 & p, and the excited electron, of
energy &E, due to exchange of internal excita-
tions. This is certainly a small effect if these
excitations have energies much smaller than 0
(and a fortiori than E —p). This is the case for
phonons, and we shall therefore neglect it in Sec.
III. Electron-hole pairs can give non-negligible
contributions, but the corresponding renormaliza-
tion should vary slowly with energy ~, due to the
fact that they have a regular continuous spectrum
on the energy scale of interest (except possibly
for 0-&u», the plasma frequency of the system).

(iii) On the contrary, renormalization of the
J„vertex can by no means be neglected. Indeed,
the corresponding diagrams link two propagators

X, t

at the energy of the excited state; i.e. , they de-
scribe the history of the propagation of the ex-
cited electron. They give rise to the inelastic
current, as can be seen on the simple diagram of
this type (Fig. 8): an electron is excited from
the deep state ((o —0) up to the primary state &u,

in which it creates a phonon' of energy ~, so
that it goes out of the solid at energy ~'= ~ —~~
(if, of course, its transverse energy is still
greater than E). Such excitation creations can
be repeated; the resulting electron contributes to

(a)

Xp

(c)

X)

FIG. 8. An electron, excited from a deep state (~ —0)
to the primary state ru, creates a phonon of energy ~~ and
leaves the solid at energy ~'= ~ —cup.

Xp

FIG. 7. An example of renormalization involving an
irreducible I'6 vertex part.

FIG. 9. Three diagrams involving a pair-excitation
by Coulomb interaction. The contribution to (J„)of the
"primary" and of the "secondary" electrons are respec-
tively depicted in (a) and (b).



INELASTIC EFFECTS IN PHOTOEMISSION: MICROSCOPIC. . . 4559

4)
I

I

I

4) -4)4]

~u+v,

I

(a)
(bj

FIG. 10. Process of Figs. 9(a) and 9(b) in the energy-
level representation.

(J,) as long as it can escape. This class of terms
also describes the emission of secondary elec-
trons, which is induced by the electron-electron
intera. ction. Figure 9(a) describes a process in
which the primary electron goes out after having
lost energy „which it has given to an electron-
hole pair. Figure 9(b) describes the contribution
to (J„)due to the secondary electron, of energy
((o'+ (o~), which has been excited in the same inter-
action process. Both effects are schematically
depicted on Fig. 10. Fig. 9(c), which corresponds
to a term of interference of the same order in the
interaction, shows that the distinction between
primary and secondary electrons is somewhat
artificial (their contributions do not simply add).
Finally, as pointed out by Langreth, it would be
incoherent (i. e. , conservation of the number of
particles would be violated) to keep self-energy
corrections to G„and to neglect I'4 corrections
to (G„Gg. As we shall see in Sec. III, this im-
plies that approximations used in calculating Z and
I'4 satisfy a consistency requirement.

(iv) Finally, the terms (see Fig. 7) which are
not mere combinations of (i), (ii), and (iii) can
be understood as three-particle correlation ef-
fects, i. e. , interferences between the various
elementary processes which come into play in the
above effects. They cannot be reduced simply to
any step picture. " Conservation laws bring in a
coherence condition between these terms and I'4,
as well as between I'4 and Z.

It may be useful to note that each of these re-
normalization terms includes the contribution (at
the corresponding order) of what is usually classi-
fied as indirect transitions. In fact the notion of
indirect transition is particularly well adapted to
the analysis of optical absorption, in which it can
be used to calculate transition probabilities. In
the case of photoemission, such a notion keeps a
descriptive value, but its further use in calcula-
tions assumes that the step model be valid. More-
over, the presence of the surface cannot be ignored,

especially when the electron mean free path is
short. In the terminology of optical absorption,
this gives rise to "nondirect" transitions, which
simply means that the transverse wave vector is
not a good quantum number. As shown by Schaich
and Ashcroft and by Mahan, the corresponding
"surface effect" does not simply add up to the
"volume effect. " This is clear in the microscopic
formulation from the fact that all propagators have
to be calculated in the presence of the surface.

At this point, one would like to calculate the
above inelastic effects due to electron-electron
scattering, since this mechanism is the leading
one in most experimental cases. Unfortunately,
the final-state energies in photoemission lie in a
range' (&u-p &4 eV) in which the validity of the
existing approximations is very questionable. (See,
for instance, Beeferman and Ehrenreich's discus-
sion of the optical absorption of metals' . ) More-
over, to our knowledge, the simplest of these ap-
proximations —namely, the RPA —cannot be per-
formed to give analytical results for the self-
energy in the case of a noninfinite medium. In
those circumstances, it seems to us that electron-
electron scattering effects can be taken into ac-
count in photoemission only by means of qualitative
arguments, which can be founded on existing per-
turbation estimates of the corresponding scattering
cross sections. '

We shall therefore limit ourselves, in the next
section, to the case of electron-phonon scattering
in a metal, where inelastic effects can be treated
completely within reasonable approximations, and
which permits to understand how the present for-
malism overlaps with semiphenomenological ones.

III. EFFECT OF ELECTRON-PHONON SCATTERING ON
PHOTOEMISSION FROM A METAL

The reasons why we specialize in this section
to the case of a metal are the following: in a
metal, due to the screening effect of the gas of
conduction electrons, electron- phonon interaction
is at most of atomic range and can be assumed to
be local. In an infinite metal, the self-energy is
correctly described by Migdal's approximation,
that is, in Keldysh's notation [i.e. , with the
superscripts ij labeling, respectively, the lines
and columns of the Keldysh matrix (4). In the
following, + means 1 and —means 2].

x g z (x x )D o f b(x x )(o&)yg &
(20)

where& is the coupling constant. Equation (20)
is represented by the diagrams of Fig. 11, where
the wavy line represents a phonon propagator. As
shown by Migdal, Z is practically local in space
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FIG. 11. Dyson equa-
tion for the self-energy in
Migdal's approximation.

(its range is of atomic order), while it varies
strongly with &u (on a scale of the order of the
Debye frequency 1dn). Therefore, in such a uni-
form system,

2~(x, x') —= Z(u1) 5(x —x'), (21)

i. e. , that Z has its bulk value everywhere inside
the solid and is zero outside. This approximation,
which follows the one made by Langreth in the im-
purity problem, ' neglects the following effects:

In a real system, an electron in the vacuum may
interact with the phonons by exciting a pair inside
the solid (this is equivalent to saying that its image
charge interacts with the phonons).

Inside the metal, Z must vary with x in the
vicinity of the surface for two reasons: on the one
hand the phonon spectrum is perturbed in that re-
gion, in particular surface phonons generally ap-
pear. We shall ignore them in what follows.
On the other hand, as already noted, the inter-
acting electron propagates in a semi-infinite sys-
tem. Its propagator g (x, x') is the sum of two
terms: the one corresponding to the direct path

where Z(&u) is independent of position.
In our semi-infinite metal plus vacuum system

Migdal's expression (20) remains valid (higher-
order corrections are smaller by a factor -

&dn/p, )
but the electron and phonon propagators are now

those in the presence of the surface and of the
vacuum. One can still safely assume Z to be
local, since this property derives from the fact
that the phonon moves at the sound velocity, which
is much smaller than the Fermi velocity character-
istic of electron motion. We then assume that
Eq. (21) becomes

Z~(x, x') = Z (u1)8( —x) 5(x —x'), (22)

from x to x' gives the same contribution to ~ as
in the infinite medium. The other one corresponds
to a path going from x to x' with one reflection on
the surface (x= 0). It therefore contains a factor
e '" ' ', where / is the electron mean free path
due to the phonons, and it gives an additional con-
tribution to Z in the region —x &l.

For all these reasons, our approximation
only has a semiquantitative validity. Moreover,
as we mentioned in Sec. IIB, we neglect the elec-
tron-phonon interaction in the initial state. This
means that we forget about renormalization of the
initial-state propagator and about the terms of
classes (ii) and (iv) of Sec. IIB. Finally, we as-
sume that the excited states (1d &E) lie in a free-
electron band and take for the surface potential
the step approximation. The one-electron propa-
gator g in an excited state is then easily calculated
by including Z in the equation of motion of G, solv-
ing separately for x & 0 and x &0 and matching at the
boundary. g;„(g;„)is obtained from G;„(G;„
= (G;„)*)of Eq. (18) by the transformation

ke —ke (ke = ke*),

where
2m &/z

k,"-=k, +ikz- 2 [1d- e, —Z"(1d)], k, &0.

The retarded component Z"(1d) of the self-energy
is defined by

Z"(~)=Z'(~)+Z'(~)=Z" (~)+Z' (~), (24)

where Z '1 is given by Eq. (20).
We are left with an expression for (J,) which

is simply a sum of two terms, namely: (a) the
elastic current, represented by the diagram of
Fig. 4(a), is immediately obtained from Eq. (14)
or (16):

21"(d„)'=,8(1d —e, —E)8(i1 —1d+ 0)
~
M

~

— dx, dx, a(x, )a(x,)
~f

88 8 8 a
X Gz O(«1,»2), ——[gz „(» «1) gz„(»2, «')] (25)

With the help of Eqs. (23) and (18), this becomes

d2
~M ~

8(1d —e, —E)8(i1 —1d+II)
2W (211)2

x d d1 2 ( 1) (»2)Gz, o(»1y»2)
(k k )2 kz xp[kz(x, +xz)) .+ kdcos[ke1(»1-»2)] '26

~ CO "d+ "e1 + 2
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(2V)

and it is related to the mean free path l() in the
final state by k2--I/2l(to). The vector potential in
the solid is &(x)=&oe"~". It, then, appears in
Eq. (26) that the electrons which contribute to the
elastic EDC originate from a finite layer —L(~)
-x & 0, of thickness

X)s

(28)

A more explicit expression of (Z, )" can be ob-
tained only if one chooses a detailed model for the
initial states. the properties of which appear in

G„„(x„x,) 2im=g y*(x,) y (x,)

Xp

X
4) J&

4)+Q-4)

x5(&u —0 —e }8(p, —w+ 0}, (29)

where the p 's are the one-electron wave functions
of the "deep" states. In order to illustrate our re-
sult, let us consider the simple case of an initial
state with a completely localized electron at ener-
gy &0, v&z. ,

G„' „(x„x2)= 2zw5(x, —x2)

&&5(u —0 —eo) 8(p —~+ 0}, (30)

with Eo+ 0 &E. We obtain

FIG. 12, One-phonon and two-phonon [(b) and (c)]
terms in the renormalization of the J„vertex. The term
depicted in (c) is excluded when Migdal's approximation
is retained for Z.

In Eq. (26) we have taken advantage of the fact that,
since co —0 & p, , G „(x,x2) only has a range of
atomic order in the vacuum; i. e. , the contribution
of occupied electron states in the vacuum can be
neglected. Moreover, we have symmetrized it
with the help of the general relation: G (r„rt)
= G„(ro, r,}. In order to interpret Eq. (25} more easi-
ly and to simplify further calculations, we shall now

assume that the system is pseudo-one-dimensional,
that is, we shall forget about parallel momentum. '

k~ is then

2m
~M ~

~L(so+ ~) ~a
5 (k~+kr ) k

(31}

(b) The inelastic current is due to electrons which
escape after having emitted one or more phonons.
It corresponds to the terms (iii) of Sec. IIB (Fig.
6), in which the two ~ lines are linked by one or
more wavy lines. The one-phonon term is shown
on Fig. 12(a); the two-phonon term may a Priori
contain either two nonintersecting wavy lines or
two crossing lines [Figs. 12(b) and 12(c)]. How-

ever, in order for conservation laws to be satis-
fied, the following condition must be fulfilled: all
the diagrams of the four-vertex part I'4(ur, u')
(Fig. 6) are obtained by opening a bare electron
line in any diagram of Z, in all possible non-
equivalent ways. Since Z is given, in Migdal's
approximation, by the sum of terms of Fig. 11,

4) (a)

4)M 4)-4)
+err ~

4) 4)

FIG. 13. Bethe-Salpeter equation for I"4 in Migdal's approximation.
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one immediately finds that terms with crossing
phonon lines [Fig. 12(c)] are excluded from I'~.
For the same reason, no renormalization of the
electron-phonon vertices appears, a& j'4 reduces
to the expression represented in Fig. 13. Let us

now come back to the one-phonon term [Fig. 12(a)].
The fact that we are calculating (8/8x' —8/sx)
XG' '(x, x') (with O'—= G '

), imposes that this
diagram corresponds, in Keldysh's notation, to
the contribution

eS~ 1 2. 2—~M
~

ig Q dx~dxzd(dg'a(x~)a(x2)(
m 4 'Ie' S

"[& '~ (x, &)(&)«fl~' ~(&, &') & ~ (&, xg)(&)s, G.-a(xi, x2) (&hr B.'' (xa, &') (&)gg ~~ (&'~x')l~x=- (32)

In order for such a term to be nonzero, we need
that ' &E, which implies g'„. = 0 and restricts the
sum oni and j to i=+and j= —.The only relevant
element of the phonon propagator is therefore
D ' =-8', with

D'„. „($,g') = —2ivA.„. ($, (') 8((o-~'). (33)

($, $') is the phonon spectral density. Equa-
tion (33), which is valid at T = 0 'K, implies that
phonons can only be emitted: it imposes & &'
in Eq. (32), i. e. , the electron can only loose ener-
gy before escaping. Therefore &E, and g'„= 0.
Expression (32) reduces to

eS I a. 2 8 8ig' dx, dx2dh d$'a(x, )a(x2)
m e x' ex

&&[9"„.(x, $) Q"„(),x,)G„' „(x„x2}b'„(x2,$') „',(E', x') '„. „((,$'}],.=,= . (34)

The same kind of analysis can be made on terms
of higher order. It is found that, since phonon ab-
sorption cannot happen, the energies ~, &', &",
etc. [see Fig. 12(b)] of the excited electron lines
can only decrease from left to right (in the tri-
angular diagram representation).

One can then easily generalize expression (34)
to include emission of 2, 3, etc. phonons; i. e. ,
write the full Bethe-Salpeter equation for I'4(~, &').
In order to calculate it explicitly one must choose

I

a definite model for the phonon spectrum. Since
we are not dealing here with any specific solid,
we shall use the simplest model, namely the Ein-
stein one, in which phonons do not propagate and
have a single frequency ~0. Then

f)'(h, 5') = -imago 8(- &) 8(5 —h') 8(~+ ~0) (35)

Setting A= m~, we then find for the inelastic
current

(J)"= —IMl e( '-&) &*, &* (*,) (* ) —,—— A'&: (*,&)&: N. *'))panel
0 0

m 2w

d(d 0
x 8(p —(o+ 0) dg' g"„((',x, ) 9'„(x2$')G„' „(x„xg}F„.(5, 5'),2' «Q4

with

F..(&, &') = 8(- ()8(- &') i~

x[5($ —$')5(&u —~' —uro)

+H ~ (&, 5')], (3'1)

and H obeys the following integral equation:

H„. (t', g')=H„.,„,(g, g')5(ra —~' —2&so)

J d(IP Ho ($ (Pl)H ()PI )I)
(38)

where

H.'(&, &') = &8".(&, &') S'.(&', &)

Note that F,0, and H are needed only in the re-
gion $ and $' & 0. E„.„(or equivalently H„, ) is the
correlation function for an electron starting from
$ with energy and arriving at 5' with energy &'

Since the phonons have a single frequency
+0 the loss spectrum is discrete, +' = —n 0
(n ~ 1), so that

H„.„($,g')= Z H" ($, $')5(~- &u' &u,)n(39)-



INELASTIC EFFECTS IN PHOTOEMISSION: MICROSCOPIC. . . 4563

with

H (f $')= J „d$, f d)„2

xH„(„(&„(t',g, ) ~ H„„($„2,g').
(39)

As is seen in Eq. (18) g" (and Q') is a sum of two
terms which correspond to direct and reflected
waves. Following Langreth we neglect in 8'g"
the cross terms due to interferences between
these waves, since they oscillate on less than an
atomic distance and average to zero when surface
inhomogeneities are taken into account. Then

Ho(( gl) (+ 202(( ( I Re 2021(+( 1)
@2 4 ~yy' Iz

(40}
and the reflection coefficient 8 is given by

R =
~ (kg —k ~) /( kg + k~)

~

(41)

k~, kz (= 1/2l), and R in Eq. (40) are functions of
Because of this dependence, one cannot obtain

a compact result for H „" ($, $') for high n's. We
therefore make one further approximation, which
is to neglect in Eq. (39) the ~ variation of H . This
is quantitatively reasonable as far as we are con-
cerned with losses —'« —E, in which case
R is quasiconstant, and (~ —~')/&u «1 [variations
of Z(~) are then small]. Our calculation will
therefore hold for n «((a& —E)/~o

Finally, calculating Z from Eq. (20) in our
model, we find that

m ~,
(42)

Using this together with Eq. (2V}, one obtains

(
2m A

4)Q"

This relation, which ensures that the correlation
function H of Eq. (40) is correctly normalized,
is a consequence of the consistency relation link-
ing Z and I'~.

H is then calculated in the following way: con-
sider the integral equation

f (&, &') =H (5, $')

ficient of the term in u in the expansion of

f,($, $') in series of powers of u

s'" "f.(&, &')
Q~ (ft 2)

H(n (~ ~g)
a=O

(J„)= 8(&v' E) 8(i( —(0+-Q)A„„. (45)
de' den

and A„„., which gives the current contributed by
electrons which have been excited from level
(~-0) to &o, and escape after having lost (~ —~'),
1s

en2
A„„.= Xl

m J-edxza(x, )a(x2) —,
'

~M
~

This result is exactly equivalent to those found by
Kane and Duckett by classical methods for slight-
ly different problems. We rederive it in the Ap-
pendix by a simple random-walk calculation. Com-
parison of the above discussion with the random-
walk formulation shows that the conditions for such
a classical picture to be valid are that Migdal's ap-
proximation (or equivalent ones for other scatter-
ing mechanisms) holds; i.e. , that vertex renor-
malization as well as renormalization of the phonon

propagator may be neglected. If not, the simple
expression of Fig. 13 for I'~ is no longer valid,
and quantum interference terms appear in it which
cannot be described classically. Also, the scat-
tering center (here the phonon) does not propagate.
If it does, the vertex function 1"4 depends on four
space variables instead of only two in the Einstein
approximation, which again brings in quantum
interf erences between the propagating electron
and the recoiling scatterer. These two conditions
are fulfilled with sufficient accuracy in the cases
of elastic impurity scattering in dilute alloys and

scattering by phonons (owing to the smallness of
their velocity with respect to the electron one).
But they are obviously not satisfied by electron-
electron scattering, so that losses due to this
mechanism are not described properly by the
classical picture-i. e. , by the knowledge of the
single parameter l (u&).

The total current can now be rewritten as

+ u J d(,H„($,(,}f,(g„g') .

Its solution is easily found to be

(1+R) (1—u) i —(1—R)
(1+R) (1—u)"'+ (1-R)

(43)
2m (- 2ik~}" n' ~k, k"'~'

cos[k~ (x, —x2)]e'"»'~'5(u&- ~')
0

+ A dg g"„((,x,)(j'„(x~, g)
w (O

x exp 1 —a

+ exp — — 1 —n . 44lk —5' t l]2
l

Comparing Eq. (39) and the iteration expansion
of f ($, $'), one sees that H „"'(g, g') is the coef-

(()
1 S"(('(u, ()

n t ao."

with

a=0

&& Z y„($ ) 5[~—u&'- (n+ 1)~,]
n=O

(48)
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2

(1+R) (1 —u)' + (1 —R)

()()- &)"') (47)

(fl) 2' z z kg
so !h h !z&+ e

where

1 d")!)(u)
n! de"

(48)

is the coefficient of n" in the power expansion of

2 l5
(1+R)(1—a)'i + (1 —R) I+5(1- a)'i

(49)
In practice 6»l, so that

2l
(1- a)"z[(I+R) (1- a)'"+ (1-R)]

3+R z R +5R+10
4 16

The generating function y(u, $) (which is the ran-
dom-walk one) only describes the history of the ex-
cited electron after the fA'st Phonon emmission,
as is shown by Eq. (46). What happens to that
electron before this first emission is described by
the quantity Ag"„($, x,) g'„(xz, (), which reduces to
the position correlation function if, and only if,
points x, and xz can be taken to coincide. This is
not generally the ease, since G' „(x„xz)is an
oscillating function of x, —xz.

In the step model it is assumed that, once the
electron has been excited, its further history is
completely described by the (classical) position
correlation function. Equation (46) shows that,
on the one hand, optical excitation and propagation
cannot be separated even in the elastic term (quan-
tum interferenees occur). This is discussed at
length in Sec. IV. On the other hand, the knowl-

edge of the correlation function is not sufficient
to describe the electron behavior in the final state,
except in two limiting "local" cases:
(i) the "deep" state lies in an extremely narrow
band, then

G' „(x„xz)~5(x, -xz);

(ii) the final state is at very high energy (x-ray
range). In that case the quantity g„(x„ t') g'„((,xz)
oscillates with (x, —xz) on much less than an atom-
ic distance and, due to destructive interference,
integration on (xz-x, ) selects the region xz =x,.

In order to put Eq. (46) into closer form, let us
now specialize to the local case (i) of an infinitely
narrow deep level at ez. Using Eq. (29), we obtain

A„„.= 5(ur-ez —0) Z A'"'5(&u' —&u+n&uz),

The reflection coefficient R varies from R = 1 (for
~=E) to R=O (for &o»E). If R= 1, )!)„=I, there-
fore the contributions to J„with 0, 1, . . . , n emit-
ted phonons are comparable. If R =0, P„
=l(2)z+ 1)!/2 n!(n+ 1)! so that, for large n's,
)!)„decreases as 1/Wn, i.e. , quite slowly. It can
be concluded that, in this ease (pure electron-
phonon scattering and narrow initial state), the
high-energy part of the EDC would appear practi-
cally flat.

Finally, let us try to define extraction lengths.
Since the correlation functions in the excited state
with 0, 1, .. . , n emitted phonons are different for
different n's, it is clear that, contrary to what is
often assumed empirically, it is not physically
meaningful to define a single extraction depth. One

must define an extraction depth at given & and ',
i. e. , for a given primary excited energy and a
given loss level. Moreover, we can define such
quantities unambiguously only in the "local"
cases-otherwise one cannot define a location for
creation of the excited electron. For our narrow-
deep-band model we set

'*'=)(I a)
R + 7R+ 22(")'=' R' 5R 10 ' "'
R + SR+10

(51)

For R = 0, for instance, (x)z= I, (x)~= 5I/3,
(x)z ——Ill/5, . . . , (x)„~=(l/e)(sn) . For finite
R and large n's (x)„)x))n, which is a well-known
result for diffusion processes. Note that (x)„
depends on n (i.e. , on w —ur') much more than
on ~, which only appears via l(&u) and R.

From this it can be concluded that, in actual
experimental situations, one can ascertain the
region of space from where the contributing elec-
trons originate only if the inelastic current can be
neglected (as we shall see in Sec. IV, this means
working in the high-energy part of the EDC).
Otherwise, the measured EDC mixes an elastic
contribution coming from a layer l -x & 0, with a
n = 1 contribution coming from a layer - 1, 6l & x
& 0, etc. , and these various terms generally can-
not be separated.

Finally it can be remarked that the relative con-
tributions to (J ) of terms with 0, 1, . . . , n emit-
ted phonons are independent of the coupling strength

g (or of I) and are only given by geometrical fac-

with g„ the coefficient of u" in the expansion of
)))(u) = f „d$!$ ! P(u, $), and (x„) is the mean ex-
traction depth for an electron at energy co+ A-n&0,
which has emitted n phonons.

We find

(x&o=!
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tors. The variations of the coupling are compen-
sated by those of the extraction lengths, which are
proportional to I, so that (J,}/I is—in this model-
a constant.

IV. WHAT DOES PHOTOEMISSION MEASURE?

In this section we shall first discuss, in the
light of the above results, the relevance of the
step model, which is the basis of most interpreta-
tions of experiments. Let us recall that the step
model makes two necessary assumptions: (a) ab-
sorption of the photon and propagation in the final
state can be separated into independent (i.e. , multi-
plicative) processes; (b) the absorption process
appears in the expression of the photocurrent
through the same quantity which appears in the ab-
sorption coefficient, namely the optical joint densi-
ty of states (OJDS)

p(~, II) =.~ I iaaf. ~(k) I

kn n'

X 5((d- Q —e&~ ) 5(&d —ef ),
(52)

where n and n' are band indices for, respectively,
the full and empty states of the (supposedly infinite)
solid.

It is clear that the OJDS is a quantity appropri-
ate only to a noninteracting system, since it in-
volves only one-electron states. Let us first re-
strict to this case. As we have already pointed out
in Sec. III, it is clear in Eq. (14) that the assump-
tions (a) and (b) are not strictly justified: indeed,
if we try to factor out a quantity characteristic
of propagation in the final state, it is most natural
to choose the factor

xI
~

~
~
~ )

ii rkt~ x t
at~ t

I
I

8 8~i
, ——

I G'„- (x, x,)Gi (x~, x').

We a,re then left with another factor, which is sim-
ply G„'- „„(x„x2),i.e. , the Fourier transform of
the spectral density of initial states. This is ob-
viously not an "absorption factor", since it does
not characterize the optical transition between two
states, but only the initial one.

One would like to be able to separate out a fac-
tor G~ „„(x„x,)G~„(x~, x,), since

p(~, II)= .~ Ii—if.~ I

1 2

~x fnn'

x dx)dx2G~&„„x~, x2 Gg„" 'x2, x~ . 53

However, no simple relation exists, for a general
system, which permits to express G"(x, x,) G'(xs, x)
as the product of G (x„xm) (= 2Im G') by some sim-
ple quantity related to a physical property of the
system.

The question can of course be raised of whether
the photocurrent cannot, however, be proved to be

approximately represented by the three-step ex-
pression and, if so, with what accuracy. Among
the possible equivalent expressions of (J,}in a non-
interacting system, the one which is most illus-
trative for this purpose has been derived by Schaich
and Ashcroft [Eq. (13) of Ref. 6]. It reads

(J,)= Z n(E )
m, g

iehx m A ~ V u, 5E +O,-E„. 54
DEC

tm) is a deep state with occupation function n(E ).
The final state I u ) is built so that it is the only
one of the two degenerate eigenstates with given
energy and parallel wave vector k having an out-
going plane-wave component at infinity in the
vacuum.

The contribution of a given transition to Eq. (52)
has a golden-rule-type of expression, but this ex-
pression does not actually verify the predictions
of the step model. Indeed, the quantity

(
""Av.-)'

contains information about the three steps. In-
formation about the last two ones (propagation in
the excited state and transmission through the sur-
face) is included in it via the definition of state

l u), which is an eigenstate of the solid in the
presence of the surface. Its amplitude and struc-
ture (admixture of ingoing and outgoing Bloch
states in the solid region) are determined, on the
one hand, by matching conditions on the surface
and, on the other hand, by the requirement that
only outgoing waves in the vacuum contribute to
photoemission. This information can clearly not
be factored out of the matrix element, so that the
optical-absorption step cannot be separated from
the other two. This of course becomes even more
impossible once the summation on all possible val-
ues of k has been performed.

One cannot therefore make a general prediction
about the degree of accuracy with which the EDC
may reproduce the OJDS of the (semi-infinite)
solid, even in a noninteracting system. One ex-
pects that the important peaks or singularities of
the OJDS will show up in the EDC, but the only
possible way of comparing precisely the measure-
ment of a specific EDC with a calculated band
structure is to compute numerically Eq. (52) on
the basis of the given band model applied to the
semi infinite solid plus vacuum system. Let us

emphasize that such a computation is much more
heavy than that of the density of states of the in-
finite solid. It has been performed by Schaich and
Ashcroft on model systems, and their results show
that the EDC can differ considerably from the
OJDS.
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When scattering effects in the final state are in-
cluded two problems arise in connection with the
analysis of experiments: First, the elastic cur-
rent (assuming that it can be measured separately)
is affected by the scattering, so that Eq. (52) no
longer describes it, and one has to come back to
the general expression (25), in which the renor-
malized Q's include self-energy effects. Equation
(25) has no simple general expression in terms of
one-electron wave functions and the g's must be
calculated for each specific case. It can only be
qualitatively argued that the final-state structures
must be widened by an amount (Z')„with respect
to those of the noninteracting system [(Z')„being
some average of the imaginary part of the self-
energy Z~„(x,x')]. This appears in a particularly
simple form in Eq. (31) (nonpropagating deep state
and free-electron excited state).

The second problem is to know whether it is pos-
sible to separate in experiments the elastic cur-
rent from the inelastic one. Such a separation is
essential if one wants to make any —even only
qualitative —interpretation of experimental results
in terms of properties of the solid. If this is not
done, the measured EDC at a given energy + is,
in general, due to electrons originating from a
wide range of primary energies ~' & &a (except if
the deep state is a core level, in which case the
width of the distribution of excited primary ener-
gies is due only to the photon line width. This can
happen only in x-ray photoemission). Therefore
such an EDC mixes contributions from densities of
states in that whole energy range. Moreover, as
shown in Sec. III, the outgoing electrons have
various mean extraction depths depending on the
losses they have experienced, so that they mix in
generally unknown proportions surface and volume
properties of the solid.

The essential scattering mechanisms are (a)
electron-phonon interaction: in the interesting
energy rangy the electron self-energy due to this
mechanism alone is of the order of the Debye fre-
quency ~~-10-100 meV. This is also the order of
magnitude of the average loss per phonon emis-
sion. (b) As shown by the existing perturbation
estimates ' ~, as long as &o- p & 2&v,, (where &u&

is the plasma frequency), the losses Au& due to
pair excitation are concentrated essentially in the
region A&a & —,'(&o —p). For higher primary ener-
gies, plasmon emission can take place, and losses
can be neglected only at most for Aced & ~~. One can
therefore approximately measure an elastic (with
respect to losses by electron-electron interaction
only) EDC, provided one studies the corresponding
upper part of the EDC spectrum.

In order to make the above analysis slightly more
practical, we shall now discuss what information
about the solid can be reasonably extracted from

EDC measurements depending on the energy of the
primary excited electrons. As already stated, we
discard the case of cesiated specimens and are
interested only in materials with a clean surface,
or possibly covered with a well-defined thin ad-
sorption layer. The primary energy is then, in
most cases, at least about 4 eV above the Fermi
level.

(i) 4& to —p & 10 eV. This is most often realized
with photoemission in the visible or near uv. If
the material is a metal, the initial state lies in the
conductionband; if it is a semiconductor it lies inthe
valence band. Although the mean free paths l» and
l~ which would be due to, respectively, electron-
phonon and electron-electron scattering alone can
only be roughly estimated, it can be thought that
l,&

—-l» for (d -p roughly of the order of 5 eV. 7

In the region that we consider here, (d-E-5
eV. From what has been said above, the electrons
which have lost energy by pair excitation are most-
ly concentrated at energies ~' &E (where they do
not contribute to the EDC) or, for 0- 10 eV, at
mostat ~'- (d —3 eV. Most of the EDC is there-
fore "electron elastic. " It may of course by "pho-
non inelastic", i.e. , contain contributions from
electrons which have lost phonons before escaping.
The electron-elastic current originates from a
layer of thickness -l„. On the other hand, as
shown in Sec. III, an electron which has emitted
n phonons has a mean extraction depth (x)„-/s,un
The EDC therefore contains phonon-elastic elec-
trons as well as electrons which have emitted
n & n o phonons, with (x)„-/, q. In practice, for
ur —p, &4 eV, /, &//~ is at most a few units, and the
broadening of the elastic EDC structure due to
phonon losses is at most a few ~. Moreover, the
presence of a self-energy in the final state, (Z')- ~, mixes contributions of one-electron states
on a width 4(d- ~. One therefore expects struc-
tures with intrinsic widths typically of the order of
a few tenths of eV.

Let us, however, insist that these structures do
not necessarily reproduce those of the OJDS.

Note that in this regime l is typically -100 A;
the relative weight of surface states is therefore
small. However, the presence of surface defects
or impurities may change non-negligibly the sur-
face matching conditions in the excited state and
thus modify the relationship between the OJDS and
the measured EDC, which may consequently be
rather sensitive to surface conditions (including
the quality of the vacuum).

(ii) 15~ &a& —p- 40 eV. This is realized in recent
far-uv photoemission experiments. ' In this
regime l,& decreases rapidly with increasing
(~- p). It varies typically from /, &- 15 A for
~ —g - 15 eV to /, &

- 5 A for ~ —p,
- 30 e V' (it

reaches its minimum value for ~ —p,
- 50 eV, then
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increases with ~ at higher energies). On the other
hand l» increases slowly with &, so that l~ « l&.
The electron-elastic current, which dominates
(I,) in the range ur —~- ~,~ (where ur = p+ Q},
is then at the same time essentially phonon elastic:
its extraction depth is limited by lz «(r)0& (x),
&. . . , so that the probability P„of extracting an
electron which has emitted n phonons decreases
rapidly with increasing n [using Eqs. (45) and (47)
one shows that p~/pa= 4, p„/po-n as n-~].
The broadening of structures in the elastic EDC
due to phonon losses is therefore negligible.

On the other hand, (Z') in the final states varies
typically from —1 eV for ~- p,

- 15 eV to about
4 eV for - p, -30 eV. This implies that the true
final state at energy & mixes one-particle states from
the whole energy range I

~' —~ I- (I")-l-4 eV,
which results in a considerable blurring out of
the specific high-energy structures. It can there-
fore be expected that the corresponding EDC will
reflect rather closely the accidents of the density
of initial states alone.

Moreover, since, in this situation, - p, is
large compared with the pseudopotential in the
solid, the surface matching conditions in the ex-
cited state have much less influence than in the
visible or near-uv range. The presence of the
surface is nevertheless crucial: because of the
smallness of the extraction depth (at most a few
atomic spacings} the relative weight of initial sur-
face states is important and what is reflected in
the elastic EDC is not the bulk density of states,
but the one close to the surface. Ultraviolet photo-
emission therefore seems to be a promising tool
for studying surface states, and especially chemi-
sorbed ones, since these give rise to large reso-
nancelike contributions. Such an effect has already
been observed by Eastman and Cashion.

(iii) ~- I keV. This can happen only in soft-
x-ray photoemission. [We only consider the case
when initial states are not too deep (conduction or
valence band}. ] In this regime the electron mean
free path is limited by electron-electron scatter-
ing and is large (typically - 50 A) so that the weight
of surface states is negligible. Losses in the
upper part of the spectrum are primarily due to
plasmon emission. ' Qne simplification can be
made in this case: in Eq. (25) the final-state
propagators can be approximated by those of an
infinite free-electron gas. Indeed, they describe
the one-dimensional motion of an electron with
transverse energy &- E, much larger than the
vacuum energy (except for a very small fraction
- (I/2v) (E/~)'~' of the electrons which hit the sur-
face at grazing incidence). Moreover, at such
energies, band effects are completely negligible.

Since self-energy effects are negligible we can
use the Schaich and Ashcroft expression (54) for

(J„). It is now extremely simple, because the
final state t u ) is a pure plane wave with positive
transverse momentum (an optical transition takes
place, and only this half of the excited free states
contributes to (J,) whose velocity is directed to-
wards the vacuum). The surface conditions do not
affect the matrix element, since the reflection co-
efficient R=0. This is therefore the only case in
which the step model is valid. The density of free-
electron final states is regular and slowly vary-
ing, so that one expects that the elastic EDC will
reflect closely the bulk initial-state structures.

From the above qualitative analysis it can be
concluded that, while photoemission measure-
ments in the visible range are very difficult to
connect with simple properties of the emitting
material, far-uv and x-ray photoemission, which
are presently being developed, can provide valu-
able data:

uv experiments should give rather detailed in-
formation about (occupied) surface states;

x-ray experiments seem to be well adapted to
explore bulk densities of (occupied) states.
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APPENDIX: RANDOM-WALK CALCULATIONS OF
SCATTERING EFFECTS

We recall here, as applied to our specific prob-
lem, the random-walk treatment developed by
several authors ' for studying the correlation
function of the escaping electrons.

The model used has been defined in Sec. III:
the excited electrons are in a free-electron band
of a semi-infinite medium, they can excite Ein-
stein phonons and loose a fixed energy p at each
collision. For the surface potential, we retain
the step approximation. The electron is excited
and the effect of the surface is described through
reflection and transmission coefficients, R and T.
We shall restrain ourselves to a one-dimensional
approximation which is sufficient to exhibit the
qualitative results and simplifies appreciably the
mathematical calculations. '

We shall compute the probability for a given
electron emitted at the point gp & 0 in the solid to
escape through the surface located at $ = 0 after
having suffered n collisions (i. e. , emitted n pho-
nons and lost energy n~o}.

For a one-dimensional infinite system we shall
take the probability for an electron starting from
(p to suffer its first collision between $ and g+dg
under the form
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P($ —$o)d$ =—exp — d(,lk -4ol
(A1)

G, (&o, $)= f „dy G„(&o,y)P(y —t),
(A2)

H„„(to, t)= f„'dyG. ((o,y)P(y+&) & t'o

The probability for an electron to reach the sur-
face for the first time after exactly n collisions
is given by

& (t'o)= f dh'&, (5, 5') ~ (A3)

We introduce the three generating functions

8(u (of &) 3L'(u 50 &) S'(u 50).

They satisfy the following integral equations:

8(u, 5o, 5) = 5(( —$o)

+u f„g(u, (o, y)P(y-()dy,

&(u, $~ t)= u f 8(u, h~y)P(y+ h)dy,

s'(u, h.)=(I/u) f„Ie(u, (., $')«'
With the simple form chosen for P(y —$), we ob-
tain easily

(A4)

we assume as in Sec. IH that the mean free path
t' and the reflexion and transmission coefficients
R and T are energy independent in the relevant
range.

Let us define the following functions: G„($„$)d)
($o, $ & 0), which is the probability for an electron
created at $o to suffer its nth collision between

$ and $ + d$ without having ever reached the sur-
face. H„($„$)dg ((o, $ &0), which is the probabil-
ity for an electron created at $o and having been
reflected on the surface between its (n —1) th and
nth collisions to have suffered its (n —1) first
collisions in the negative half-space without having
ever reached the surface and its nth collision be-
tween ( and $+d$.

These functions obey the following recurrence
relations:

~(u, &o, t)=5(& —&o)+
( )iso

o'. - 2 [1- (1—u) i io]

2 I(I u)1/2

( (1 u)l/2
"exp~I&-

~
I

&+& I),

&(u, &o, t) = I[I,(1 )igo7

Ik I ~ (1- &)'"
i

t'
t

)x exp

g (u, go)=, &o exp — (1 —u)
1 I&o & ayah

(A5)

an expression which is the equivalent of Eq. (47),
which gives y(u, $).

When the electron reaches the surface it has a
probability R to be reflected and T = 1 —R to be
transmitted. Therefore if it is transmitted the
first time it reaches the surface, the correspond-
ing generating function is TG'(u, $o). If it is re-
flected it suffers anew collision in $ „reaches the
surface again, and is transmitted, the correspond-
ing generating function is:

R3C(u, $ o, $,) T(p (u, t', )

The total generating function Z(u, t'o), which gives
the probability for an electron to leave the metal
after n collisions, is thus

g(u, $o)= TG'(u, $o)

+ f R3C(u, go, $,) Ts'(u, $,)d$,

+ f„dpi J „d)oRX(u, (o, (i) Ta'(u, t', )

x RK(u, $ „$o) TO'(u, t'o)+ ~ ~ ~ . (A6)

Using the explicit form of a' and $C, we obtain"

exp[-(1 —u)'~o /t'o[/I7
(A7)
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