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The metal-insulator transition due to electron correlation and potential fluctuations in a substitutionally

disordered n-component system, particularly in a binary disordered system, is studied on the basis of
the Hubbard model and of the loc&i~~tionMelocalization concept in the Anderson sense. For
illustration, the case of n = 1 is first studied. This is the original Hubbard system of a regular crystal,
for which the mobility gap coming from the random distribution of spins is calculated according to the
localization function. The existence of the mobility gap alters not only the critical metal-nonmetal

(M-NM) density but also the sharpness of the transition in the sense that the critical index of the
mobility gap is 1/2, while that of the density-of-states gap is 3/2. It is shown that for reasonably
general systems the resonance corrections in the Hubbard approximation modify the efFect of the
scattering corrections quantitatively rather than qualitatively. It is proved that, when only the scattering
correction of the Hubbard theory is taken into account, the problem of treating the e6'ect of electron
correlation in an n-component alloy with substitutional disorder is reduced to that of treating an

independent-electron picture in the coherent-potential approximation for a 2n -component system. For
binary systems with n = 2, the quasiparticle densities of states are evaluated for various interatomic
distances and the localization of the states is examined. Numerical results are discussed with emphasis

on the M-NM transition. A possible extension of the method to amorphous systems with topological
disorder is mentioned in relation to experiments on the M-NM transition in some metal rare-gas solids.

I. INTRODUCTION

In connection with the problem of localization of
electrons in certain random lattices, the metal-
nonmetal (M-NM) transition in disordered systems
has recently aroused increasing attention. '3 The
nature of the transition in disordered systems is
generally multifold even when we confine ourselves
to such a case in which the system does not undergo
a change in the atomic structure at the transition
point. Experimentally, the M-NM transition has
been observed in doped semiconductors, metal-
ammonia solutions, mixed crystal& or mixed non-
crystalline solids composed of both metallic and
nonmetallic elements, 5 ~ and fluid metals under
supercritical conditions. ' The metal-insulator
transitions in these systems are usually induced by
changing the effective or averaged interatomic dis-
tance somehow, and this change of the effective in-
teratomic distance over a wide range of values is
attained at the expense of a regular array of atoms,
which means that the atomic configurations of these
systems are inevitably made disordered by doping,
mixing, alloying, or applying a supercritical con-
dition. As a result, potential fluctuations do exist
in these systems and the localization mechanism of
electrons due to the potential fluctuations in the
Anderson sense' sets in. Out of the other possible
mechanisms for the transition, the Coulomb inter-
action between electrons is considered to be domi-
nant especially for a system composed of open-
shell metallic atoms. This type of M-NM transi-
tion has first been suggested by Mott' for a regular

array of hydrogen atoms and is called the Mott
transition. In order to treat the effect of electron
correlations in a regular system, Hubbard ' has
introduced a model which has been successful to
some extent in explaining the Mott transition.

The purposes of this paper are to study the effect
of electron correlation in substitutionally disor-
dered systems and particularly to see how the M-
NM transitions in these systems are described in
an interacting-electron picture. We employ the
Hubbard model for electron correlation. The effect
of alloying is formulated on the basis of the coher-
ent-potential approximation (CPA). ' First, we
discuss the mobility gap"' in the Hubbard band.
Our special interest is centered around the case
where the array of atoms is regular. It is shown
that even in this case the states at the extreme
edges of the quasiparticle density of states are lo-
calized because of the random configuration of
spins. ' The disappearance of the mobility gap
rather than that of the density-of-states gap yields
the transition from an insulator to a metal. The
way in which the mobility gap approaches zero is
discussed in relation to the sharpness of the transi-
tion. We mention that it is enough to take into ac-
count only the scattering corrections when the quali-
tative behaviors of electrons are required and that the
Hubbard model applied to a disordered binary alloy is
reduced to the problem of solving equations for a
site-random alloy made of four components in an
independent-particle scheme and more generally,
the Hubbard model in an n-component alloy~6 is
identical with the CPA for a 2n-component alloy.
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=0 otherwise,
(2. 2)

where & is a bandwidth, there exists a critical ra-
tio (4/U), at which a qualitative change of electron-
ic structure takes place. The situation is illus-
trated in Fig. 1(a) where the density of states is

WU (a)
2.0 .

In the next place, we show the results of a numeri-
cal calculation of the density of states and the mo-
bility edges obtained from the above-described
formulations for substitutionally disordered binary
alloys and discuss the effect of potential fluctua-
tions. Finally, some comments are made on the
possible application of the present theory to the
problem of the M-NM transition in some metal-
rare-gas systems. 5 ~

II. MOBILITY GAP IN HUBBARD BAND

For later convenience, in this section we study
the original Hubbard system which corresponds to
a regular array of atoms. The system is described
by the Hamiltonian

H= Z Ton«+ Z Z t~&a«a&, + Z —n«n~~,
$a i&j e ge (2. 1)

in which a;, and a&, are, respectively, the creation
and destruction operators for an electron of spin cr

in the atomic orbital on the ith site and n&, is the
corresponding number operator; To is the binding
energy of the atomic level and U is the Coulomb
interaction of two electrons with opposite spins on
the same site; t&& designates the transfer matrix
between site i and j. It is assumed that there is
one atomic orbital per site. We shall be concerned
with a nonmagnetic system with a half-filled s band.
It has been concluded that, when a generalized the-
ory developed by Hubbard is applied to a special
case of unperturbed band structure with the density
of states of parabolic form

E~ = (const)[(&/U), —(4!U)] (2. 3)

The equation for the self-energy 5 in the Hubbard
approximation is written'

EZ'-(-,'E'+-,'U'-
fI) ~')Z'+ &EU'Z+ & U'=0

(2. 4a)
or with dimensionless variables normalized by U,
e=E/U, f =3/U, and 5= 6/U, we have

nonvanishing in the hatched region of the (E/U, &/
U) plane, while those states indicated by the double
hatching are occupied at T= 0. More precisely,
the quasiparticle spectrum consists of two bands
when the ratio 4/U is smaller than this critical
value while it consists of a single band when 4/U
exceeds (6/U)„ thus lending support to the transi-
tion from an insulator to a conductor as suggested
by Mott. Note that, in the above analysis, both the
scattering and resonance corrections are taken into
account.

It is interesting to mention that the density of
states in Fig. 1(a) is that for quasiparticles and
thus each state has a, finite lifetime. This comes
from the fact that electronic states are modified by
scattering and resonance corrections since the dis-
tribution of spins are random in the Hubbard model
in spite of a regular configuration of atoms. In
view of the fact that the random configuration of
spins in an interacting-electron model is regarded
to be analogous to some extent to the fluctuations of
atomic potential for an independent electron, the
states near the band edges of the Hubbard band are
expected to be localized in the Anderson sense as
schematically illustrated in Fig. 1(b). The possi-
bility of localization of states at the extreme edges
of the quasiparticle density of states has been
pointed out. '~' We show in the following that this
is actually the case.

A. Density-of-States Gap

First, let us consider a special nonmagnetic sys-
tem with a half-filled s band of structure described
by Eq. (2. 2) and show that the density-of-states
gap near the critical ratio (4/U), = 6, approa, ches
zero as"

1.0 et' —(-', e + -,' -
fI) 5') t'+ Q et' +

$4
= 0, (2. 4b)

0.0

n/U

('/U)~O
( /U)c

(b)

To/U (To+U)/U E/U

To/U (To+ U)/U

FIG. 1. (a) Dependence of the quasiparticle spectrum
upon the b /U ratio, (b) Mobility edges in the quasiparticle
spectrum. 3(4 —36')= (t' ') &0, (2. 5)

where the origin of energy is chosen such that To
+ & U=O.

The density of states is nonzero when the solu-
tions of Eq. (2. 4b) have nonzero imaginary parts.
The whole formulation is symmetric with respect
to E = 0. Remembering that in the case under con-
sideration the Fermi level is at & =0, we can ob-
tain the critical ratio by equating f to zero in Eq.
(2. 4b) and searching the condition that t' has non-
real solutions, i.e. ,



4542 F. YONEZAWA AND M. WATABE

Next, we examine whether or not the states at
the extreme edges in the bands shown in Fig. 1(a)
are localized as indicated in Fig. 1(b). For testing
the localization of states, we employ the criterion
introduced by Economou and Cohen. ' According to
their argument, the states corresponding to energy
E are localized if the localization function F(E) de-
fined by

(2. 6)

is smaller than 1.
First, let us consider the case E = 0 and work out

the regions of 5 for which the density of states are
nonzero but the states are localized. From Eq.
(2. 5), it is shown that the density of states is non-
vanishing when

5 &5, = ($)"'= 1.15.. . . (2.7)

On the other hand, for 5 satisfying Eq. (2. 7), the
condition for localization is given by Eq. (2. 6) as

E(a=0)=-,'5
i (;

'
i
= —,'5[3(3d —4)] &1, (2. 8a)

which leads to an inequality

5&[-',(I+42)]'"=1.27. . . . (2. 8b)

As a result, the required region for & is expressed
as

($)'" & 5 & [-'(1+/2)]'" (2.9)

Let us denote the upper bound of region (2. 9) by
(&/U)0=5O. On inspection of Fig. 1(b), this ratio
corresponds to a critical ratio at which the mobility
gap disappears.

Secondly, let us investigate the properties of the
states for a fixed value of 5 at 5,= (f) . For this
critical ratio, Eq. (2. 4b) is reduced to

which yields the critical ratio 5, = (&/U), = (+)'~'.
By expanding a, f ~, and 5 in the vicinity of the
critical values, namely, at e=g '=0 and 5=5„and
keeping with lowest orders in c and 5, —6, we have
e = const(5, -5)3~~ which gives Eq. (2. 3).

B. Localization of Electrons at Extreme Edges of the Hubbard.
Band

gate solutions in the form

(' = g —fR + ', i—(3t;~ + g)2 1 /2 (2. 13)

Keeping with the lowest order of e, we obtain the
criterion for localization as

which yields

~

e
~

$&/3=0. 108...

(2. 14)

(2. 15)

S= a/u

Thus, the states corresponding to the energy re-
gion given by Eq. (2. 15) and to the critical ratio
5, are localized. Based upon the above discussion,
we can draw a picture as shown in Fig. 2 in the
immediate vicinity of the point (0, 5,) in the I/O,
d/U) plane. As in Fig. 1, the hatched region de-
notes that the density of states is not zero; the dou-
ble hatching represents the occupied states at T= 0
and the shadowed region indicates that the corre-
sponding states are localized.

C. Mobility Gap in the Hubbard Bands

In view of the fact that the band is half-filled and
therefore the Fermi level is at E = 0 as shown in
Fig. 2, it follows directly that at T= 0 the system
remains nonconductive even after 4/U exceeds (&/
U), since the eigenstates at the Fermi level are in
the mobility gap and as a result are still localized.
Therefore, the critical value &/U for the metal-
nonmetal transition should be determined by the
point (4/U)0 at which the mobility gap disappears
rather than by the point (n/U), at which the density-
of-states gap is filled. Furthermore, the activa-
tion energy E~ for electric conduction at T&0 should
be described by the mobility gap E, rather than
the density-of -states gap E~.

The mobility gap E, calculated according to the
criterion F(E)= 1 is illustrated in Fig. 3 in com-
parison with the density-of-states gap Ed,.

It is also interesting to see how the mobility gap

——,ef +g ge+$= .0 (2. 10) 2(1+ A) 2
80s

It is easy to derive from this equation that, for
small values of e, one real solution of f = gR is ex-
panded as follows:

Sc =(4/3j
1/2

-1 1 q/3=
2(6)g/ [1 Q) e +''' ] (2. 11)

I I

I I

I I I

where e = c'~'. In terms of t;~, Eq. (2. 10) is ar-
ranged in the following way:

e(L Ls)(L'+4t'-+La+ h) =0, (2. 12)

from which we have the other two complex-conju-

r
- I3/16 +&3/16

FIG. 2. Density of states and the mobility edges near
the critical ratios (5/U)~=6, and (4/U)p=6p in the (E/U,
4/U) plane.
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O.e—

0.4

0.2

0
0.8 1.0 1.2 ~ 8 =b /U

FIG. 3. Dependence of the mobility gap E~ and the
density-of-states gap E+, upon the b/U ratio near the
critical values. (Both the scattering and resonance cor-
rections are taken into account).

between two succeeding mobility edges becomes
zero as 6= 4/U approaches from below the critical
value (4/U)o of the mobility gap. To this end, let
us expand g around f = &0 which is the solution of
Eq. (2. 4b) for &=0 and 6= 60, and is given by

—(-' —A 6o)&o+ 4h=o

or by

to=i[+(1+/2)]' '=-in, .

(2. 16a)

(2. 16b)

3 2+2&~2 '"
v 2+1

f2 —1 p g 3 2+242 ~ . 642+5
6g +s

2
E ~

(2. 18)
The criterion for the mobility edge now becomes

With f = $0+ Py and & = 6p —5g Eq, (2.4b) is rewrit-
ten

e(LO+ 8LO Ci) —[3 + 4 —$(6o 2606')]

x (go + 2)ok g) + h e (K p + L q) + qg
——0 . (2. 17)

Then we have, for f„
2/2+ 1 g2+ 1 ~/~ . g2+ 1

As mentioned at the beginning of this section, all
the formulations in this section have been carried
out on the basis of the original Hubbard theory in
which both the scattering and resonance (or dynam-
ical) corrections are taken into account. However,
it is easy to see that the resonance correction
terms give only quantitative modifications to the
scattering corrections when the system is assumed
to be nonmagnetic and the density-of-states function
of a parabolic form a,s given by Eq. (2. 2) is em-
ployed for the unperturbed band structure. When
only the scattering corrections are included in the
theory, a self-consistent equation for a self-energy
Z is, instead of Eqs. (2. 4a) and (2. 4b), written

EZ —~(U —~& )Z —~EU Z+ QU =0,
(2. 21a)

or as

——(1 ——6 )g ——eg+ /=0, (2. 21b)

where the symbols have the same meanings as be-
fore. From Eq. (2. 21b), it is readily shown after
some simple manipulation that the critical index
of the density-of-states gap at the critical point
(4/U)o is -', while that of the mobility gap at (&/U)0
is —,

' just as in the case of the original Hubbard ap-
proximation discussed in this section.

The mobility gap and the density-of-states gap
in the present example are shown in Fig. 4. On
comparing Figs. 3 and 4, it is apparent that the
resonance correction does not introduce any qual-

Consequently, it is concluded that the critical be-
havior of E~ qualitatively differs from the behavior
of E~ in the sense that the derivative of E, at (4/
U)0 is divergent while that of E& at (&/U), is zero
as is apparent from Eq. (2. 8). This fact is inter-
esting in relation with the problem about the sharp-
ness of the Mott transition and with the interpreta-
tion of the activation energy E& in the problem of
impurity conduction. ~0

D. Discussion

F( )
k(60 —6x)

I ~-g, -g, l

or equivalently

(2. 19a) 0.6—

0.4
—2eng+ ng+ 2ao ng+ ng+ z 6p6g = 0, (2. 19b)

where we write f, a, +iuz a=—nd Eq. (2. 16) has been
made use of. From Eq. (2. 18), it is easily shown
that a~= O(e) and a&= 0(e )+O(6,), which together
with Eq. (2. 19b) leads to the relation e o- 6~ or e
~ (6~)'i~. Thus, the mobility gap E, goes to zero
at r//U- (~/U), as

Z = (const)[(~/U)0 —(~/U)1 '" . (2. 20)

0.2

0
1.8

I

2Q 22~ 8 b/U

FIG. 4. Dependence of the mobility gap E~ and the
density-of-states gap E upon the b/U ratio near the
critical values. (Only the scattering corrections are
taken into account. )
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The Hubbard model for a bina. ry alloy has been
discussed by Fukuyama and Ehrenreich. We ex-
tend the theory to a more general case of an n-
component alloy and show that the problem is re-
duced to that of finding a self-consistent solution of
the CPA in a 2n-component alloy.

We work with the Hamiltonian of the form

H= Z E; a, ~a;,,+ Z Zi~&a, ,a&„

~1+ 2U]ng, , n
f,a

(S.1)

where the notation is the same as for Eq. (2. 1) ex-
cept that E; is an atomic level of an atom at site f
and U& is the Coulomb interaction between electrons
with opposite spins on the same site i. Let us con-
sider an n-component alloy and assume that the
atomic distribution is completely random. We as-
sume that E, takes atomic levels E„E2,..., E„
.. . , E„with respective probabilities x&, x~, ... , x„
~ ~ . , x„, and U& equals one of n values U&, U2, ...,
U„.. . , U„. The off-diagonal matrix element t&& is
supposed to be independent of the types of atoms at
z and).

For illustration, we shall be concerned in the
present section only with the scattering corrections
since, as has been shown in the preceding section,
in moderately general systems the resonance or
dynamical corrections give rise to quantitative
modifications rather than qualitative ones.

It is known that the scattering corrections of the
Hubbard theory are described in the alloy analogy
and thus determined from the relation equivalent to
the CPA formulation. Therefore, the effective
atomic energy Z, , for an electron with spin o at a
site of sth component atom is given by

n, ,N, + tr, -Z, .,} (1 -n, . ,)(E, —Z, .,)

(3.2)
where the partial occupation number n, , on the sth
component atom is related to the partial Green
function G„, by

n„,=- v Im f G...dE . (3. 3a)

Note that the total occupation number n, is given by

(3.3b)

Here E~ is the Fermi energy which is not given a
priori but must be determined self-consistently.
The partial Green's function G, , describes the ef-

itative alteration; therefore for getting qualitative
properties of electrons, it is reasonable to include
only the scattering effects.

III. HUBBARD MODEL FOR A DISORDERED n-COMPONENT
ALLOY

feet of replacing one atom by an impurity atom hav-
ing a,n atomic level Z, , in an otherwise regular
crystal. Recalling the formulation for the repeated
scattering due to a single impurity, we can express
G, , in terms of the Green's function G, and the ef-
fective atomic level Z, for the regular system as

G.,e = Ga+ GN(~. ..—~n) Gs.s (S.4a)

1
Ga" —(I's,s —~s)

(3.4b)

Qn the other hand, the regular system defined by
G, and Z, is taken to be an effective averaged crys-
tal in the sense that both the random configurations
of spins and the random distributions of atoms are
averaged over, and accordingly the system has re-
stored the translationally invariant symmetry.
Since the average over the spin configuration is ef-
fected by Eq. (3. 2) in the alloy analogy, the re
maining process for obtaining G, and Z, is the av-
erage over the atomic configurations. This is im-
plemented as follows. The site-diagonal element
of the ensemble-averaged Green's function G, is
expressed by the Fourier component G„(E) while
G~(E) is defined by means of the total self-energy
or the coherent potential Z, as

G, (E)= —Z G~(E) = —Z, (3.5)

G, =(G(,) = 5 x, G. .. (3.7a)

which, together with Kqs. (3. 3a) and (3. Sb), natu-
rally leads to

n, = -v Im J G, (E)dE . (3.7b)

Equations (3.2)-(3.7) and analogous equations
for an electron with spin —0 should be solved simul-
taneously, and the solution gives the properties of
interacting electrons in an n-component alloy with
site-diagonal r andomness. (A detailed procedure
for attaining the self-consistency in actual calcula-
tions will be shown in a succeeding section. )

Now, let us show that the problem of finding the
solution of the above simultaneous equations is re-

where E~ is the band energy determined from the
transfer matrix t&~. This self-energy '5, is in turn
related to the total Green's function by the CPA
equation

~g.s —~a g &s@s.a —~a)
O

1 —(Z(,, —Z, )G, , ~ 1 —(Z„,—Z, ) G,
(3.6)

where the angular brackets represent the average
over the atomic configurations. By definition, the
partial Green's function for an sth component atom
is connected to the total Green's function by
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duced to that of solving the CPA equation for a 2n-
component alloy. It has been shown by Yonezawam
that the CPA equation for a disordered n-compo-
nent alloy is rearranged into a simpler form on the
introduction of a new variable. For illustration,
we employ a one-electron Hamiltonian of the foQow-
ing form

H= ~ E]cE)0] + ~ fgf tz) Qf
t

i,f
(3.8)

where

$-=G +Z .

s-i &-&s

(S. 11)

Clearly, an equation analogous to Eq. (3. 5) holds
for G and Z Along this line, Eq. (3.2) for the al-
loy analogy of the Hubbard model is rewritten as

in which

(„,—(E, +U, ) („, E, - (3. 12)

(3.13)

In a completely similar way, Eq. (3.6) is rear-
ranged into the foQowing CPA equation:

(3. 14)

with

It is easy to see that the relation

(3. 15)

(S.16)

is derived from Eq. (3.4b}. Substituting Eq.
(3. 16) into (3. 12) and using the relation (S.7), we

finally have

a=5 ' ' + ' '
) ($17)

This is the special case of Hamiltonian (3.1) in
which all U&'s are zero. Here, the subscripts de-
noting the orientations of spins are dropped since
interactions between electrons are not taken into
account. Again, it is assumed that the Hamiltonian
(S.8) bears site-diagonal disorder such that E,
takes n atomic levels E&, E~, ...,E„... , E„with
respective probabilities x„x2, ..., x„..., x„. The
CPA theory yields a well-known equation for an
ensemble-averaged Green's function G and a coher-
ent potential Z as

(
E, -Z g xs(Es-Z) (3 8)

1 —(E, —Z)G s.q 1 —(Es —Z)G

It is shown that after some manipulation, Eq. (3.9)
is brought to the CPA equation of a simpler form
as

From the general discussion through Eqs. (3. 8) to
(3. lib), it is readily concluded that the simulta-
neous equations (3. 5), (3.15), and (3. 1V) are iden-
tical with the CPA equation for a 2n-component al-
loy with site-diagonal randomness in which an

atomic level at an arbitrary site takes one of 2n

values Eg, E2, ... , E, ... , E„and Eg + Ug, E2+ Um,

..., E,+ U„..., E„+U„with respective. probabilities
x~(1 —n~, ~), xm(1 - ns, ,), ..., x, (1 n„-), ... , x„(1
—n«) and xqnq ~1 xmnm, -a1 ~ ~ ~ 1xsns, -a& ~ ~ ~ 1xsnn, e.

The only difference between the original CPA
for a 2n-component alloy and the Hubbard model for
an n-component alloy is that in the latter problem
the partial occupation numbers n& „n~ „... must
be determined in a self-consistent manner so as to
satisfy a set of simultaneous equations for n, „E&,
Z„G„etc., while in the former problem the con-
centration of each constituent atom is predeter-
mined.

IV. METAL-NONMETAL TRANSITIONS IN DISORDERED

BINARY ALLOYS

Qn account of the fact that the M-NM transition
is experimentally observed in some binary sys-
tems, ~ let us particularly consider in the present
section the case of disordered binary alloys. This
example serves as an important model from which
to learn essential aspects of the effect of electron
correlations in systems with cellular disorder. ~~

We can get as well some insight into the problem bf
the M-NM transition in some topologically disor-
dered systems, which will be discussed in a suc-
ceeding section.

We formulate the problem based upon the general
theory developed in preceding sections, calculate
the density of states and the mobility edges, and
discuss the effects of potential fluctuations on the
M-NM transition. We study a disordered A„B,
alloy. In the Hamiltonian (3.1}, the atomic level
E, is either E& or E& according as the site i is oc-
cupied by an atom A or B, respectively. Suppose
E& is smaller than Ea. The Coulomb energy U& is
also U& or U& for anA or B site, respectively.
For numerical calculations we confine ourselves to
the model with U& = 0 since this simulates a system
where the effect of electron correlations in the low-
er band is important and the existence of 8 atoms
serves as scattering centers, which is quite often
the case in physically interesting systems. For in-
stance, the concept of the present model is applica-
ble to a doped semiconductor in which the activa-
tion energy es for an intermediate density region is
regarded as originating from the Hubbard gap in the
impurity band. ~0 In a doped semiconductor, impor-
tant in the study of the Mott transition, the exis-
tence of a conduction band should not be neglected
even though the conduction band is rather far above
the impurity band compared with the width of the
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neous equations (4. 4a)-(4. 6). The actual imple-
mentation of a numerical calculation has been per-
formed according to the following procedure: (i)
give a test value of nj„(0—n&, ——,'); (ii) calculate
(, by Eq. (4.4b) by using nz, given in (i); (iii) find
Er so that Eq. (4. 6) is satisfied for $, derived in
(ii) and n, =

& x; (iv) determine n&, according to Eq.
(4. 5b) on making use of nz, given in (i), (, calcu-
lated in (ii), and Er defined in (iii); (v) solve Eq.
(4. 4a) for $, with nj„calculated in (iv); (vi) derive
n~, by Eq. (4. 5a) with n~, a,nd $, found in (iv) and

(v), respectively, and with E& found in (iii); and
(vii) check whether n„', obtained in (vi) is the same
a.s n„, given in (i). The whole procedure is repeated
with different test values for n&, until the self-con-
sistency is attained in the sense that n» = n&t.

It is shown from the calculation that n», which
meets the self-consistency requirement, is deter-
mined uniquely and thus n&, = ~z&, . This guarantees
G&, (E)= Gz, (E) and the density of states for an up
spin has the same structure as that for a down
spin.

In Fig. 5, the calculated density of states is
shown. The energy is measured by choosing as an
energy unit the Coulomb interaction on site A,
i.e. , U& = U. The difference between two atomic
levels E~ and E„ is taken to be 3U. The concentra-
tion x=x& of A atoms is chosen to be 0.4. A seU-
consistent calculation is performed for various val-
ues of &/U.

As in the case of the Hubbard band for a crystal,
we can see that the density-of-states gap comes
continuously to zero as 4/U approaches the critical
ratio (&/U), from below and that the mobility gap
persists even after the ratio n/U exceeds the crit-
ical ratio (n/U), at which the density-of-states gap
vanishes. Therefore the actual transition from an
insulator to a conductor takes place at a larger ra-

impurity band.
For the band structure of the unperturbed crys-

tal, we employ the parabolic form given by Eq.
(2. 2). Combining Eqs. (3. 5) and (2. 2), we have

1 g 1 Po(E')dE'
E -Eg -Z, E -E'-Z

(4. 1)
The integration is performed with the result

G,(E)= —,fE-&, -[(E—&,)' —(2&)']"Q. (4. 2)

This is the very relation which leads to the self-
consistent equations {2.4a) and (2.4b) [or to the
equations (2. 21a) and (2. 21b)]. Straightforward
algebra yields that, for this special model, $, de-
fined by Eq. (3.15) is related to G, in the following
way:

$, =G, +Z, =E —$4 G, . (4. 3)

Equations (3.17) and (4. 3) applied to our system
lead to the relation

4' ( xn~, x(1 -s„,) 1-xE=)t+- + +18 &(, —{E +U ) $, Ej-, E)-
(4. 4a)

pg
1+gt 7f Im G~t dE= —m

~eO

gg 1

, t, —(E„+U„);,-E„
(4. 5a)

xn~t2 x(1 —n„, ) 1 -x
+ +18 (, —(E„+U„) (, —Z„(, E) '-

(4.4b)
where the partial occupation numbers n» and n&,
are related to the partial Green's functions G&, (E)
and G„,(E) by Eq. (3.3a). Namely,

r EF
7T

-1 Im Gg, dE= —p""1

Im + "' dE
f, —(Ex+ Ux) $, -Ex

(4. 5b)
where use has been made of Eqs. (3. 12) and (3.16).
The Fermi energy which appears in Eqs. (4. 5a) and
{4.Sb) is determined self-consistently so that the
following equation for the averaged total occupation
numbers is satisfied:

n, = —v f„ Im G,(E)dE

0(E)U

L
D(E)U

LI K&
D(E)U F

x= O.t,

/U

/U

f Im(16/& )(E —$,)dE . (4. 6)

When the system is assumed to be nonmagnetic and
the number of electrons present is one per A atom,
then we have nt = n, = —,'x. The density of states is
determined from G,(E) by solving a set of simulta-

E.]u (E.+u)/U Eg/U E/U

FIG. 5. Calculated density of states D(E) for a dis-
ordered binary system in which U~=U, U&

——0, Ez-E~
=DU, and g =g~ ——0.4. Results are shown for various
values of 6/U, i.e. , b,/U=4. 0, 3. 7, 3.2, and 2. 6 from
the top to the bottom of the figure. The density of states
is normalized by 1/U.
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2.

corresponding regular lattice is equal to the aver
age interatomic distance between metallic atoms in
the disordered system under consideration. In the
present example, the mean distance between A at-
oms is taken to be a lattice constant of the corre-
sponding regular system. This yields the following
relation for d and d:

Nd =Nd (4. 8)

E, /U (E.+u)/u Es/U

where N is the number of all the lattice points in
the original system and N& the number of the sites
occupied by metaQic atoms therein. As it is ap-
parent that N& =Nx, we have

(4.9)
FIG. 6. Dependence of the quasiparticle density of

states upon the b/U ratio. The concentration of A atoms
is g =~~=0.4. The shadowed regions corresponds to
localized states. The density of states is nonvanishing
in the hatched region of the I/U, 4/U) plane. The
states in the double-hatched region are occupied.

p 4= 6x2 U(1+d)e (4. 7)

tio (&/U)p which corresponds to a disappearance of
the mobility gap.

In Fig. 6, the region in which the density of
states is nonvanishing is shown in the (&/U, E/U)
plane. This is the result for x=x& =0.4. A simi-
lar behavior of the density of states as in a regular
lattice case studied by Hubbard is observed. The
difference is the characteristic property of the mo-
bility edges at the upper band edges in the A bands.
Another marked aspect is that, although in the re-
sults of Hubbard the two bands are symmetric with
respect to energy E&+—,

'
U our results show a rather

asymmetric band structure. This is reasonable
because the existence of the upper B band works to
lower these two A bands.

Let us now see how the critical interatomic dis-
tances are influenced by the existence of random
potentials. For this purpose, we first calculate
the lattice constants d, and do which respectively
correspond to 5, = (&/U), (the ratio at which the
density-of-states gap goes to zero) and 5p = (&/U)p
(the ratio at which the mobility gap vanishes) on the
basis of the nearest-neighbor tight-binding approxi-
mation by assuming a simple cubic lattice. Em-
ploying a hydrogenlike wave function and remem-
bering that the binding energy for a ground state is
almost equal to U, we can relate the bandwidth &

to the hopping energy in the form

Thus, we finally can attain the critical ratios d,
and do which are the lattice constants of the respec-
tive corresponding regular lattices.

According to the above-described procedure, the
critical ratios, the critical interatomic distances,
and the lattice constants of the corresponding lat-
tice are calculated and shown in Table I for x=0.4.
It has been shown in Sec. Q that for a completely
regular system the critical ratios 5, = (&/U), and
5p= (&/U)p are, respectively, 2 and (2+242)' P

=2. 19V. Assuming the relation (4. 5), we derive
the lattice constants for these critical ratios such
that d —4, 12 and do —4 00 ~

On comparison of these values with the numeri-
cal results in Table I, it is easily concluded that
both the density-of-states gap and the mobility gap
of a disordered binary alloy disappear for larger
interatomic distances than critical lattice constants
of a regular lattice.

These results are explained in the following way.
Let us first consider the case of critical distance
for the density-of-states gap. Suppose we take an
arbitrary distance d. If a completely regular lattice
has a lattice constant equal to d, then the bandwidth
is determined by this value d. On the other hand,
if a system is disordered and the average inter-
atomic distance between metallic elements is equal
to d, then the bandwidth for this system can be
broadened as much as defined by dx'~3 and subse-
quently become wider than that defined by d. So it
is possible for some given value of d that the gap

TABLE I. Critical interatomic distances and the
lattice constants of the corresponding regular lattice cal-
culated from the critical ratios on the basis of Eq. (4. 1).
The concentration x of A atoms is chosen to be 0. 4.

where d is the lattice constant measured in atomic
units. Thus, by making use of this equation, we
can calculate d, and dp respectively, from 5, = (&/
U), and 5p—- (4/U)p.

Next, let us define the corresponding regular
lattice" on the idea that the lattice constant d of the

Critical ratio

~c=3.09

6p -=3. 82

Critical interatomic
distance

dc=3. 56

dp =—3.26

Lattice constant

—4. 89

dp
—= 4.42
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Although it is necessary to develop different
methods to treat the effect of electron correlations
in structurally disordered systems, the present
theory which has originally been intended to treat
the problem of substitutionally disordered systems
may also be applied to structurally disordered sys-
tems in the first approximation. ' For illustration,
let us consider the case of n= 2 as presented in
Sec. IV. When E& is brought to infinity in the for-
mulation, the model simulates a system where
electrons cannot enter sites B because the atomic
levels on them are infinite. Therefore, the elec-
tronic conduction is possible only through the paths
formed by connecting A atoms alone.

As actual systems to which the above idea is ap-
plicable, metal-rare-gas mixtures such as Na-Ar
and Cu-Ar 6 solids, or liquid metals and alloys in
the supercritical regione'~ are considered. In these
materials, the M-NM transitions are experimental-
ly observed and it is suggested that the transitions

f(g, x)

I

-1/2I

I

I

j 1/2
I

I

between two density of states of a disordered sys-
tem has vanished while that for an ordered lattice
is stiQ present. The reason why the critical dis-
tance for the mobility gap is larger than do = 4. 00
is easier to understand from physical considera-
tions because the random configuration of metallic
atoms works to favor the formation of infinite per-
colation paths for a given density. The problem in
this context will be again discussed in the Sec. V.

V. METAL-NONMETAL TRANSITION IN AMORPHOUS
METALS AND LIQUID METALS

therein are due to electron correlation as well as
the quantum-mechanical percolation mechanism.

We study the same model as described by Eqs.
(4. 4a) to (4. 6) and bring Ep to infinity. We assume
a nonmagnetic case with one electron per A atom.
As there are only A, atoms in the system, the rela-
tion n&, =n&, = —,

' holds for any value of &. For con-
venience of formulation, let us choose, this time,
the origin of energy such that E&+ —,

' U= 0. On mak-
ing use of the same dimensionless notations as in
Sec. IV, the self-consistent equation is written

6x
16 $' ——, $'+p (5. 1)

which gives a definition of a function f((', x). The
function f($', x) is shown in Fig. 7 as a function of

The left-hand side of E'l. (5. 1) is expressed by
a horizontal line at E. As is explained in detail in
Ref. 16, the density of states for a given set of pa-
rameters e and x is either zero or finite according
to whether E'l. (5. 1) as a function of $' has (a)
three real solutions or (b) one real solution in
addition to two complex conjugate solutions, re-
spectively. The number of real solutions of Eq.
(5. 1) is determined by the number of intersections
of a horizontal line E with the solid lines corre-
sponding to f($', x). We are interested in the ener-
gy region such that --,' &c& —,', since the density-of-
states gap due to electron correlation, if there ex-
ists one at all, comes in this region. The density-
of-states gap is persistent if the curve between $'
= —~ and f'= 2 has a minimum and maximum as in-
dicated in Fig. 7 while it is filled if the curve de-
creases monotonically. These two cases are char-
acterized by the following statement. Concerning
the former case, the curve f((', x) has a maximum
and minimum if df((')/df'&0 at the value of (' (--',
&$'& —,') which satisfies d f($')/d$' I,.~,p=0. On the
other hand, the curve has no extrema if df($')/d('
&0 at $'=$p. Therefore, df($')/d$' I, , =0 gives
the critical ratio at which the density-of -states gap
disappears.

Observing that

h((', xj

I

I tI
I

I

I

I

I
I

I

I

I

I

I I

-1/2 0 1/2

F&G. 7. Functions f{$', ~) vs g' and h{(', g) vs ]'.

we define a new function h((', x) as

(5.2b)

E luation (5.2b) is also shown in Fig. 7 as a func-
tion of $'. On noting that f($', x) is an odd function
of (' and h($', x) an even function of (', it is easy to
see that the minimum of h($', x) exists at $'=)p=0,
which enables us to calculate the critical ratio 5,
=(~/U), by using df($ )/d$ I g p=0 as



PLECTRON CORRELATION AND METAL-NONMETAL. . . 4549

16 «2

ao x x«~' (5. 3)
6.0

By definition, this is the ratio at which the density-
of -states gap vanishes.

On the other hand, the ratio 52 = (&/U)2 at which
the mobility gap becomes zero is evaluated by solv-
ing Eq. (5. 1) with c = 0 and substituting the obtained
solution f' into the criterion for localization, i.e. ,
E(e) & 1, where F(e) is defined by Eq. (2.6). The
solution of Eq. (5.1) for s = 0 is written

0
l U

4.12
4.07~4.00

$'=i —,'(x62 —4)'~2=—ip2 . (5.4)

Remember that we are interested in such a region
of 6 that 6~ 62= 2/x~~ . In our model under con-
sideration, the self-energy Z is determined by Eq.
(4. 3). Simple and straightforward algebra yields

Z, 5
U 16$' 16P)

= —i [4+(1-x)5 ] .1 2

16Po

By inserting Eq. {5.5) into the criterion E(e = 0)
& 1, we obtain an inequality which 6 should satisfy,
namely,

(5. 5)

(1 —6x+x )6 +8(3-x) 5 +16&0 . (5.6)

x1 (2 c 0 [x (3 2g2)] 1/2 (5.7)

15 -
///////

METAL

C
o 1Q—
X

0
CiO

NON-METAL
I

0.5 1.0

FIG. 8. Dependence of the two critical ratios (b/U)~
and (6/U)0 upon the concentration x of metallic elements.
The shadowed region indicates that the density of states
at the Fermi level is nonvanishing for these values of
x and b,/U but the states are localized.

It is suggested by this inequality that we have to
discuss two regions of x individually. First, let us
consider the case where 3 —2v'2&x&1. For this
case, the required region of 5 is expressed as

METAL

I

0.5 1.0

FIG. 9. Dependence of the two critical interatomic
distances d~ and do upon the concentration g of metallic
elements. Detailed definitions of d~ and do are given in
the text.

where the density of states at a+ = c = 0 is nonzero
but the states are still localized. For 0 &x & 3
—242, the states at the Fermi level are always lo-
calized no matter how large 5= b/U may be.

The critical values 5, and 5o for the disappear-
ances of the density-of-states gap and the mobility
gap, respectively, are shown in Fig. 8. The shad-
owed region corresponds to the states of the Fermi
level {er= a =0) such that the density of states is
nonzero but the states are localized. Note that the
system is nonmetallic in this region of (x, 5). In
the upper side of the (x, 5) plane, the density of
states is nonzere at a+ and the states thereof are
extended, accordingly the system being metallic;
while in the lower side of the (x, 5) plane, the Fer-
mi level is in the density-of-states gap and there-
fore the system is an insulator.

It is interesting to note that the value x, = 3 —2v 2
is nearly the same as the percolation concentra-
tions for several typical three-dimensional lat-
tices. The result that the states at the Fermi level
are all localized for x smaller than x, may be un-
derstood to indicate that no infinite percolation path
can be ."ormed for x &x,.

Another important conclusion is drawn by evalu-
ating the lattice constants d, and do of the corre-
sponding regular lattice based upon the concept and
formulations developed in Sec. IV. The results of
a numerical calculation are plotted in Fig. 9 as
functions of x. Again, the shadowed region denotes
that the states there are localized although the den-
sity of states is not zero. Note that the critical lat-
tice constants should be all the same as the values
at x= 1 if these corresponding lattices are regular.
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Therefore it is suggested from the figure that both
critical values are larger than the completely reg-
ular lattice except for those regions where x &x,.
The explanation for these results has been given at
the end of Sec. IV.

VI. DISCUSSION

It is generally accepted that the M-NM transition
in a regular lattice with a half-filled s band is in-
duced by the change of the lattice constant and that
the mechanism of the transition is the effect of the
Coulomb interactions between electrons. It is
pointed out in this paper that even in regular sys-
tems potential fluctuations due to the random con-
figurations of spins do exist and it is essential to
take these potential fluctuations into account in or-
der to discuss qualitative behaviors of the transi-
tion.

The M-NM transitions in substitutionally disor-
dered systems with half-filled s bands are shown
to be mainly due to electron correlation but the ef-
fect of potential fluctuations is also important. Es-
pecially when the potential fluctuations are very
large, the localization of electrons in the Anderson
sense plays an essential role. The potential fluc-
tuations in disordered systems are due to random
configurations of spins as well as random distribu-
tions of atoms, and measured by, for instance, in
the model studied in Secs. IV and V, U, the Cou-
lomb interaction between opposite spins on the
same site, v= I E& Es I /U, -a normalized energy
difference between the A and B atomic levels, and

x, the concentration of A atoms. Larger values of
U, v, and x" produce a larger fluctuation and con-
sequently a smaller interatomic distance is re-
quired so that the system may attain metaQic prop-
erties. An important point is that, although the be-
havior of the electron conductivity or mobility in
the metallic phase might be explained, for instance,
by using the perco1.ation theory, the formation of an
infinite percolation path is possible only when the
density of metallic atoms is high enough to make
the density-of-states gap in the Mott-Hubbard band
disappear. In other words, metallic conduction is
attained only when both conditions for the so-called
Mott transition and the percolation conduction are

fulfilled, and it is expected from our results that
the requirement for the Mott transition is first sat-
isfied accompanying the increase of the density or
equivalently the decrease of the average interatom-
ic distance, and a higher density or a small in-
teratomic distance is required to meet the con-
dition for the formation of an infinite percolation
path.

A1though the present theory is originally intended
to treat electron correlations in substitutionally
disordered systems, it also serves as an approxi-
mate theory to discuss the problem of the M-NM
transitions in topologically or structurally disor-
dered systems. This alloy analogy of an amorphous
or liquid metal corresponds to the case with v = ~
and x small in the binary-alloy model described in
the above, and extracts some essential features of
the problem. Namely, it has been shown that, no
matter how small the interatomic distance is, elec-
trons in these systems are always localized when
the concentration x of metallic elements is smaller
than some critical value. This indicates that the
infinite potential v = ~ prohibits electrons from oc-
cupying B atom sites and therefore percolation
paths cannot be connected infinitely when x is small
enough. It must be noted however that the positions
of atoms are restricted to regular lattice sites in
the alloy analogy model of structurally disordered
systems, and this restriction might not be appro-
priate in actual amorphous or liquid metals be-
cause structural randomness in the atomic distri-
bution of these systems is usually expected to favor
the formation of infinite percolation paths. There-
fore, in structurally disordered systems, the mo-
bility gap may disappear at a smaller value of 6
than estimated by the present theory and according-
ly the system attains the transition from an insu-
lator to a conductor at a larger interatomic dis-
tance. This subject will be discussed elsewhere at
length. '

ACKNOWLEDGMENTS

The authors are grateful to Professor H. Endo
for fruitful discussions. One of the authors (F.Y. )
is also indebted to Dr. D. Mattis for useful advice
and warm encouragement.

«The main part of this paper was reported at the "Kyoto
Seminar" held in Kyoto, 30 August-1 September 1972. The
proceedings have been published.

~Research at Yeshiva supported in part under Grant Nos.
AFOSR-73-2430 and AFOSR-72-21538.

~On leave from Department of Applied Physics, Tokyo Institute
of Technology, Meguroku, Tokyo 152, Japan.

'P. W. Anderson, Phys. Rev. 109, 1492 (1958).
2N. F. Mott, Philos. Mag. 24, 935 (1971). N. F. Mott and E.

A. Davis, Electronic &ocess in Noncrystalline Materials
(Clarendon, Oxford, England, 1972). References of a series of
works by N. F. Mott will be found therein.

3F. Yonezawa and M. Watabe, International Seminar on Electron
in Disordered Systems (1973) (unpublished), p. 72.

4See, for instance, Solutions Netal-Ammonia', edited by G.
Leputre and M. J. Sienko (Benjamin, New York, 1964).

'R. C. Cate, J. G, Wright, and N. E. Cusack, Phys. Lett.
32A, 469 (1970).

H. Endo, J. G. Wright, A. Eatah, and N. E. Cusack, J. Phys.
Soc. Jap. 34, 666 (1973).

'B. Raz, A. Gedanken, U. Even, and J. Jortner, Phys. Rev.
Lett. 2, 1643 (1972).

See, for instance, R. G. Ross and D. A. Greenwood, Prog.
Mater. Sci. 14, 173 (1969).



E LECTRON CORRE LAT ION AND METAL -NONMETAL. . . 4551

9For more recent developments, see the Proceedings of the Second
International Conference on the Properties of Liquid Metals
(Taylor 8c Francis, New York, 1973).

' N. F. Mott, Proc. Phys. Soc. Lond. 62, 416 (1949).
"J. Hubbard, Proc. R. Soc. Lond. 281, 401 (1964).
"For instance, see a review article by F. Yonezawa and K.

Morigaki, Progr. Theor. Phys. (Kyoto) (to be published).
"N. F. Mott, Adv. Phys. 16, 49 (1967).
"M. H. Cohen, H. Fritsche, and S. R. Ovshinsky, Phys. Rev.

Lett. 22, 1065 (1969).
"F. Yonezawa and M. Watabe, Solid State Commun. 11, 1667

(1972).

' F. Yonezawa, Phys. Rev. B 7, 5170 (1973).
"N. F. Mott, Philos; Mag. 24, 935 (1971).
' M. Cyrot, Philos. Mag. 25, 1031 (1972).
' E. N. Economou and M. H. Cohen, Phys. Rev. B 5, 2931

(1972).' N. F. Mott and E. A. Davis, Philos. Mag. 17, 1269 (1968).
"H. Fukuyama and H. Ehrenreich, Phys. Rev. B 7, 3266

(1973).
"J. M. Ziman, J. Phys. C 2, 1230 (1969).
"F. Yonezawa, M. Watabe, M. Nakamura, Y. Ishida, and T.

Ogawa, in Ref. 9, p. 373.


