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does not appear to make predictions of a sign consistent with the
photoemission and tunneling experiments.

"J.E. Houston, R. L. Park, and G. E. Laramore, Phys, Rev.
Lett. 30, 846 {1973).

' The energy levels were obtained from Atomic Energy
Levels, Natl. Bur. Stand. Circ. No. 467, edited by C. E. Moore
(U.S. GPD, Washington, D.C., 1952), Vol. II. All the multiplet
levels necessary for obtaining the average of configuration

energies are tabulated, but the 'S of the d's' configuration.
This term was simply neglected in the configuration average.

' Ni'+ data are required here in addition to Ni and Ni'. The
tabulated (see Ref. 16) spectra for Ni'+ d' and d's is
incomplete. Slater-Condon theory, taken with the observed
levels, was used to place the centers of gravity of these
configurations.
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The electronic structure of stoichiometric vanadium carbide has been computed using the

augmented-plane-wave (APW) method and the energy bands for nonstoichiometric phases have been

determined with the APW —virtual-crystal approximation. The energy bands exhibit a very strong

dependence on the relative sizes of the assumed APW-sphere radii for vanadium and carbon. Bands for

the nonstoichiometric phases show a marked deviation from a rigid-band behavior as the composition is

varied. The results of x-ray-emission, heat-capacity, magnetic-susceptibility, and Hall-effect measurements

are discussed in terms of the computed bands.

I. INTRODUCTION

Transition-meta}. carbides such as VC1 pos-
sess seemingly contradictory properties. These
phases have several properties which indicate
strong covalent bonds between carbon and the tran-
sition atom: for example, high melting points
ranging to 3983 C for TaC, 1 hardness values
which lie between those of alumina and diamond, ~

and values of Young's modulus that are double those
of the pure transition metals. ' The electrical, rgag-
netic, and optical properties of these phases, how-
ever, are often typically metallic and not much dif-
fexent frow those of the parent transition metal. '
In addition, nearly stoichiometric NbC, TaC, MoC,
and WC are superconducting, with transition tem-
peratures ranging from 10 to 14 K. '

Previous theories of the electronic structure and
discussions of the relative importance of covalent
and metallic bonding in carbides have been re-
viewed by Toth et al. ~ and Lye. Several workers
emphasized the importance of metal-metal bond-
ing, 5 '.while others have declared that metal-non-
metal interactions are more important. 6' The la-
test band-structure calculations and electron
spectroscopy and x-ray emission and absorption
measurements'6 indicate that there is a mixture of
metal-metal, metal-nonmetal, and possibly even
ionic bonding.

In this paper, the electronic structures of stoi-
chiometric and nonstoichiometric phases in the
vanadium-carbon system are studied with the aid of

augmented-plane-wave (APW) band-structure cal-
culations. The calculations for the stoichiometric
composition were performed using the perf ect-crys-
tal APVf method due to Slater. '7 Theband structures
of several nonstoichiometric phases were complted
using the augmented-plane-wave- virtual- crystal ap-
proximation (APW-VCA) method of Schoen. ' '"

II. COMPUTATIONAL RESULTS AND DISCUSSIONS

A. AP Vf Calculations for Stoichiometric VC

As a first step in the investigation of the energy
bands of the vanadium-carbide system we calculat-
ed the band structure for stoichiometric VC with
the NaC1 crystal structure. VC phases can be pre-
pared in the composition range from VCO ~ to
VC0.65. ' Even though stoichiometric VC does not
exist, these calculations will be used as a starting
point for the calculations on the nonstoichiometric
phases.

In the APW scheme, ~ ~ the one-electron crystal
potential has a muffin-tin form; that is, the poten-
tial is spherically symmetric within spheres cen-
tered on the various atomic positions and constant
in the interstitial volume. In each region, the po-
tential is assumed to be the sum of two terms, one
term which is purely electrostatic due to the nuclei
and the charge density of all the electrons, and an
exchange term. The Slater approximation was
used for the exchange potential~:
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where P(r) is the total electronic charge density.
The approximation has recently been examined by
several authors who have proposed that the
calculations can be improved if the above potential
is multiplied by a constant factor n, optimized ac-
cording to a specific procedure (Xa method).
Schwarz~~ presents optimized n value for atoms H

through Nb.
The present work on the V-C system was essen-

tially completed before these optimized n values
were published, so the fuQ Slater potential, n
equal to 1, was used. Neckel et al. have recently
published APW calculations for stoichiometric VC
in which the full Slater exchange, as well as the
Xn exchange potential was used. These calcula-
tions show that the conclusions of this work would
not be altered significantly by using the Xn ex-
change potential.

The starting potential was computed according to
the procedure described by Mattheiss. 29 In this
procedure, the charge densities and the corre-
sponding electrostatic potentials of the constituent
atoms, as computed, for example, by Herman and
Skillman, are used. The electrostatic contribu-
tion to the potential inside the APW spheres is ob-
tained by superposing the free-atom electrostatic
potentials using Lowdin's n-function expansion3
and retaining only the spherically symmetric terms
The exchange contribution is determined by insert-
ing the superposed charge density into the above
equation. In the Xn method, this exchange term
would be multiplied by the factor n, depending
upon the type of atom residing on the site. The
electrostatic contribution to the potential in the
constant-potential region is the arithmetic average
of the potential over the interstitial volume, and
the exchange tex m is computed from the average
charge density in the region. In the Xn method,
this exchange term would be multiplied by —,', the
factor for free electrons determined by Kohn and
Sham3 and Gaspar33 using a variational calcula-
tion.

At the present time, there are no clearcut guide-
lines to assist in the choice of proper APW-sphere
radii when the crystal contains more than one type
of atom. To assess the dependence of the com-
puted energy bands on the sphere radii, two poten-
tials, corresponding to the APW-sphere radius ra-
tio Rc/R„values of 0.576 and 0.65, were construct-
ed. The potentials are designed as VCP1 and
VCI'2, xespectively. The first value, 0. 576, cor-
responds to the radius ratio one would obtain by
using Pauling radii for V with a coordination num-
ber of 12 and a value for C appropriate for -a coor-
dination number of 1 and the second value, 0.65,
corresponds to both atoms having a coordination
number of 12. The lattice parameter was taken
to be 4. 182 A (7, 902 a. u. ), a value obtained from

Pearson's compilation3~ and which can 'be seen to
be an extrapolation of the observed lattice param-
eters to the stoichiometric composition. ~ The
potential inside the APW spheres is unaffected by
the values of sphere radii —only the value of the po-
tential in the interstitial region, and hence the dis-
continuities on the sphere boundaries, are affected.

The choice of the values for the radius ratio Rc/
R& was somewhat arbitrary. It is generally ac-
cepted, however, on the basis of crystallographic
evidence, that Rc/R» must lie between 0.41 and
0.73, or in the general range for stability of the
NaCl structure. This range has been derived by
considering ionic compounds; crystallographic in-
stability occurs when like ions come into direct
contact, The NaCl structure (coordination number
6) becomes unstable when anions come into direct
contact or if R, /R, ~ 0.41, where c and a refer to
cation and anion, respectively. The upper limit is
obtained by considering the CsCl structure with the
coordination number of 8. This structure becomes
unstable when R,/R, ~ 0.73. Thus for stability of
the NaCl structure the radius ratio should lie be-
tween 0.41 and 0.73. For transition-metal car-
bides, this range is valid even though the degree of
ionic bonding is probably small (see Ref. 1 for a
more complete discussion). Values of the radius
ratio chosen for previous APW calculations on car-
bides have all been outside this range. The gen-
eral agreement between this result and those of
Neckel et al. ~' (radius ratio = 0. 9) indicates that
carrying the calculation to self -consistency re-
moves much of the dependency of the eigenvalues
on the assumed sphere radii. In our calculation
the value of 0.65 was arbitrarily chosen for the
self -consistent calculations.

The potentials were fed into the symmetrized
version of the APW program and the one-electron
eigenvalues determined. Using the notation of
Bouckaert, Smoluchowski, and Wigner, 3 the eigen-
values were determined for the states I', X, 8', L„
E, Q, Z, n(0, 0, I), n(0, 0, 2), h(0, 0, 3), Z(0, 1, 1),
Z(0, 2, 2), and b, (1, 1, 1), where the numbers in pa-
rentheses are the wave vectors expressed in units
of v/2a. In addition, the eigenvalues for the states
(0, 2, 3), (0, 1, 2), (0, 1, 3), (1, 2, 2), (1, 2, 1), and

(1, 1, 3), also in units of v/2a, were obtained by in-
terpolating between the calculated values. This is
equivalent to considering 256 points in the full
Brillouin zone. The magnitude of the highest wave
vector used in the expansion was v/a(80)~1~, suf-
ficient to ensure that all the states mill converge to
0.005 Ry. ' These results are presented in the
E(k) curves, Figs. 1 and 2. The Fermi level is
determined by arranging the eigenvalues in order
of increasing energy and filling them with the prop-
er number of electrons. Also shown are the cor-
responding density-of -states curves which wex e
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obtained from the eigenvalues for the 256 states.
The histogram-averaging procedure of Snow and
Waber37 was used. Although a better method to ob-
tain the density-of-states curve is to fit the APW
eigenvalues to a model Hamiltonian and then recal-
culate the eigenvalues on a finer mesh in k space,
the agreement that Neckela obtains between the
density of states computed from the APW eigen-
values and that from the model Hamiltonian indi-
cates that the present procedure should be adequate
for the purpose at hand. N(E) curves for the
higher-lying states were not determined because
these eigenvalues were incompletely known.

To assist in the understanding of the E(k) and
density-of-state curves, the wave functions for the
states I', X, W, L, A(0, 0, 1), and Z(0, 1, 1), where
the numbers in parentheses are the wave vectors
expressed in units of v/a, were analyzed using the
procedure outlined by Mattheiss et al. ' One ob-
tains from this analysis Q „the fraction of the
normalization in the interstitial volume for the
state, and Q. .. the fraction of the normalization
that can be accounted for by considering the volume
of the sth-type sphere and the APW basis function
corresponding to angular momentum l. The re-
sults of this analysis are given in Table I for the
two potentials.

The charge analysis for representative states in
the lowest-lying energy band for potential VCP1
reveals that a significant amount of the normaliza-
tion occurs in the carbon spheres with l =0. These
states can then be considered as being derived
principally from the carbon 2s atomic levels. The
states in the next-higher set of bands have most of
the charge located on the carbon sites with l =1 and
can therefore be associated with the carbon 2p
atomic levels. The states in the next-higher-lying
bands are concentrated in the vanadium spheres
with l = 2 and can be classified as metal 3d states.
The vanadium 4s states lie above this 3d band.

For potential VCP2, the lowest-lying states
again can be classified as carbon 2s states on the
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FIG. 1. Non-self-consistent band structure for VC
assuming an APW sphere radius ratio R&/R& of 0.576.
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FIG. 2. Non-self-consistent band structure for VC

assuming an APW sphere radius ratio Rc/Rv of 0.65.

TABLE I. APW charge analysis (in %) of the occupied
states for potentials VCPl and VCP2.

VCP1
State Out V sphere C sphere

VCP2
Olit V sphere C sphere

r,
ris
r2s
b,i

29. 2

21.4
10.6
26. 8

19.1 1 = 0

88. 0 1=2
9.71=0

50. 61=0
67 ~ 1 1=1

54. 6 1=0

36. 0
21.6
12.0
32. 7

22. 8 L=O
~ ~ ~

86. 81=2
13.5 1=0
5.0 1=1

40. 81=0
67. 1 1=1

44. 81=0

X1
X3
X4 ~

Xs.
Wi

Ws

Li

L2.
L3
Zf

25. 4

23. 4

19.8
23. 6
24. 8
31.5
24. 2
23. 2

29. 2

23.3

30. 7

24. 5
21.4
25. 0
27. 7

27. 2

21.2

5. 1
16.1
6. 8

78.4
14.2
73.9
21.4
10.4
6. 7

14.6
16.0
5.4
3.8

11.0
17.7
10.4
12.3
25. 9

8.3
11.5
12.9
11.2
9.2

23.4

1=0
1=2
L=l

1=2
1=2
1=2
1=1
l=1
l=l
1=2
L=l
1=2
1=1
1=2
L=O
1=2
1=1
1=2
1=1
1=0
1=2
1=1
1=2
1=2

47. 5 1=1
~ ~ ~

60. 1 1=1
25. 0
22. 8

59. 2 1=0

46. 5 1=1
60.3 L=l
52. 6 1=1

21.4
24. 5
26. 8
40. 6
27. 3
22. 9

47. 9 l=l 36. 2

60.4 1=0 24. 2

40. 4 1=1 37.5

60. 2 1=0
51.3 1=1
58. 1 1=0
44. 5 1=1

28. 5
19.1
29. 5
29. 8

49. 9 L=l 32. 1

53. 0 1=1 18.6

31.6
6.5

27. 8
76. 9
20. 1
71.8
24. 1
12.8
7.4

28. 9
15.7
18.0
4. 1

16.4
17.1
19.1
14.6
46. 9
9.7
9.8

26. 0
10.5
28. 7
43. 7

1=2
1=1
1=2
1=2
1=2
1=2

L=l
1=0
1=2
l=l
1=2
1=1
1=2
1=0
1=2
1=1
1=2
1=1
1=0
1=2
1=1
l=2

32. 9 1=1
39.5 1=1

52. 2 1=0

35. 1 L=l
55. 6 1=1
38. 7 1=1

29. 5 1 =1
~ ~ ~

54. 4 1=0

26. 1 l =1

54. 9 l =0
33.3 1=1
49. 5 1=0
29.3 L=1

27. 6 1=1

36. 0 L=l

basis of the charge analysis. However, the states
which are classified as carbon 2p states for VCP1
are now mixed with 3d states from the metal
atoms. The 2p-3d interaction is revealed in the
charge analysis; the amount of charge associated
with angular momentum 1=1 in the carbon spheres
is approximately equal to the charge with l = 2 on
the vanadium sites. The 4s band lies above this
3d-2p hybrid band.

The bonding schemes that can be inferred from
these two calculations differ vastly. For VCP1,
the potential corresponding to the smaller carbon
sphere, there is only indirect vanadium-carbon in-
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teraction; most of the bonding is due to metal-met-
al and carbon-carbon interacting. Several theories
emphasizing the importance of this type of bonding
for transition-metal carbides have been pro-
posed. ' On the other hand, the results for VCP2
suggest that the primary bonding is between the Sd
vanadium states and the 2p carbon states. This
type of bonding has also been proposed, based on
band-structure calculations, "electron spec-
troscopy, and x-ray emission and absorption
measurements.

B. Self-Consistent APW Calculations for Stoichiometric VC
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FIG. 3. Self-consistent band structure for VC assum-
ing an APW sphere radius ratio Rc/Rv of 0.65.

The results of the calculation for the potential
VCP2 were used as the starting point for the self-
consistent calculation. Herman-Skillman 0 charge
densities for the Sp and lower levels were summed
to obtain the core charge density for the vanadium
sphere and in the carbon sphere the core was
formed from the Herman-Skillman charge density
for the 1s state. The APW valence cha, rge density
was obtained by averaging the radial charge density
over the occupied states at I', X, L, and Win the
full zone. The charge density was computed ac-
cording to the method of Mattheiss, Wood, and
Switendick and the averaging was performed using
the procedure described by Euwema et a/. This
APW charge density was used, along with the core
densities, to construct a new potential in the man-
nerdescribedby Mattheiss, Wood, and Switendick. '
The APW eigenvalues at these points for this new po-
tential were compared with the previously deter-
mined eigenvalues. If any of the eigenvalues
changed by more than 0.002 Ry, a new potential
was constructed and the process repeated.

The energy bands and the density-of-states curve
for this approximately self-consistent potential are
shown in Fig. 3. The results of a charge analysis
for the occupied states at the equivalent of 32 points
in the full Brillouin zone are listed in Table II.

By iterating the calculation, the ca"bon-derived
states are elevated and those from the metal are
depressed in energy, indicating that in the super-
position procedure the carbon spheres contained

TABLE II. APW charge analysis (in /o) of the occupied
states for self-consistent vandium carbide.

State

42.(0, 0, 1)
45(0, 0, 1)
Xg
X4i
X3
Xsi
Wg

W2.

W3

Lg

L3
L2.
Z, (0, 1, 1)

Outside

37.7
10.6
4. 6

34. 5

23. 1
19.0
18.1
24. 8
43. 0
24. 2

29. 0
20. 7

24. 5
35.6

37.4

17.1
30.3
31.5
28. 3

30.6
16.3
6. 1

V sphere

24. 4 l =0
88.4 l =2
94. 1 L=2
14.9 L=0
5.3 l =1

41.4 L=2
79.6 l =2
53. 8 L=2
23. 8 L=2
25. 6 L=1
74. 6 l = 2
14.3 l =1
6. 8L=O

40. 2 l =2
20. 0 l =2
14.6 l =1
27. 3 l=2
16.8L=O
24. 0 l =2
57. 7 l=2
16.2 l =1
10.1 L=1

8. 8 L=O

34. 5 l =2
40. 1 l =2
55. 1 l =2
93.1 l=2

C sphere

37.6 L=0

41.0 l =0

26. 2 l =1

21.2 L=1
48. 0 l =0
31.2 l =1

52. 2 l =1
30.5 L=1

50.3 l =0
21.9 L=1

21.6 l =1

24. 7 l =1
51.7 l =0
45. 6 L=0
23.2 l =1

19.0 L=1
27. 0 l=1

too much charge and the vanadium too little. The
self-consistent bands have 4. 23 electrons in the V
sphere and 2. 50 in the C sphere, compared to 3.44
electrons in V and 3. 18 in C for potential VCP2.
When the present energy bands are compared to
those of Neckel and co-workers, ~8 redrawn to con-
form to the noncrossing rule of group theory, it is
observed that the two bands are almost identical.
The 2s bands have the same width of 0. 27 Ry. Our
Sd-2p band is 0. 04 Ry narrower than Neckel's, 0.98
Ry as compared to 1.02 Ry. The spacing between
the lower 2s band and the upper 3d-2p band for the
two calculations differ by only 0.01 Ry. Potorocha
et al. "used a tight-binding method and obtained
energy bands which are in qualitative agreement
with the APW results but differ in the ordering of
the eigenvalues. Disagreement is found with the
energy bands of Lye and co-workers, ' who propose
that both metal and carbon s states are located be-
low the Fermi level and metal and carbon p states
are above.

The charge analysis yields some interesting in-
formation about the electronic structure of the sys-
tem. About 50% of the charge for the states in the
lowest-lying band is in the carbon spheres, with
the remainder shared nearly equally between the
vanadium spheres and the interstitial volume. The
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charge on the vanadium sites has d- as well as s-
type symmetry, which can be construed to be some
small amount of s-d bonding. The analysis of the
states in the 2p-Sd bands again points to the inter-
action between p and d electrons. The states in the
Z2 band, and possibly also in b, ~ and 63, appear to
be nearly pure d-type states. Thus, we arrive at
the conclusion that the strong bonding is caused by
covalent-overlap interactions below the Fermi sur-
face, while a significant amount of the states near
the Fermi level are d type so that certain proper-
ties will be metallic in nature.
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C. APW-VCA Calcuhtions for Nonstoichiometric VC

The electronic structure of nonstoichiometric
VC was computed using Schoen's APW-VCA meth-
od. ' This method was derived by using Lloyd' s
APW pseudopotential in the momentum represen-
tation for an APW sphere centered at l and summing
over all the lattice sites. Schoen ' performed
this sum for a random alloy, and the resulting sec-
ular equation is the same as the corresponding
APW equation for a perfect crystal, except that the
logarithmic derivative of a particular site in the
unit cell is replaced by the average of the logarith-
mic derivatives of the atomic species that can oc-
cupy the site.

In the nonstoichiometric V-C system we have as-
sumed that the phases are composed of three types
of atoms: vanadium atoms, carbon atoms, and
vacancies. Although carbon ordering has been ob-
served for V,C, and V6C5, ' we will assume that the
vacancies are randomly distributed on the carbon
sublattice. Schoen and Denker have applied the
APW-VCA method to the Ti-0 system. They con-
structed a virtual-crystal-type potential for the Ti
and 0 spheres and assumed that the potential in a
sphere occupied by a vacancy was a constant, equal
to zero. In the present work we have assumed that
the potentials in the VandC spheres are the respec-
tive self-consistent potentials and the potential in a
vacancy sphere is equal to zero. Unfortunately, as
Schoen ' has pointed out, the APW-VCA method
cannot be iterated to self-consistency as was done
for the stoichiometric case. The appropriateness
of the potential must be judged by the degree to
which the bands can be correlated with experi-
mental results. The potentials employed here prob-
ably overestimate the potentials in both V and C
spheres, so that all the eigenvalues would be shifted
slightly upward if a more accurate potential were
used. We have also neglected any change of lattice
parameter with composition, since the observed
lattice parameters vary by only 1% over the entire
composition range. '~

The E(k) curves for the compositions VC0.9,
VCp 8 and VCp 7 are shown in Figs. 4-6. Apart
from a continuous distortion of the bands as the

FIG. 4. APW-VCA energy bands for VCp g.

carbon concentration is changed, the bands for the
nonstoichiometric phases are qualitatively similar
to the bands obtained for stoichiometric VC, Fig.
3. No new bands arising from vacancy states were
detected in the energy range studied. All of the
carbon states and states which represent metal-
carbon interactions are elevated in energy as the
carbon is removed, while the bands which are com-
posed of localized d states, &z', b.» A3 from I'qz

and Z2 from I'z, ', are not affected by changing the
carbon concentration. Because of the similarity
between the stoichiometric and the nonstoichio-
metric bands, the previously proposed bonding
scheme can be assumed to be valid for the non-
stoichiometric phases.

Schoen ' has emphasized that the construction of
the density-of-states curve for the APW-VCA bands
is more complicated than for a perfect crystal be-
cause when these APW-VCA states are counted they
must be weighted according to the concentration of
atomic levels from which they coalesced. The den-
sity-of-states curves for the nonstoichiometric
phases are shown in Fig. 7. In obtaining these
curves, it was assumed that the vacancies could in-
teract with all the states and a perfect-crystal
counting scheme was used. The lowest band, due
primarily to carbon 2s and vacancy states, is con-
stantly elevated in energy as the carbon concentra-
tion is reduced, its shape remaining approximately
constant. The widths of the higher-lying d bands,
responsible for the peaks at approximately 0. 6 and
0. 85 Ry, decrease with decreasing carbon concen-
tration, and the entire structure is altered signifi-
cantly.

III. COMPARISON WITH EXPERIMENTAL DATA

A. Soft X-Ray Emission

Fischer has reported the vanadium Lzz zzz x-
ray emission and absorption spectra for VC, in
which photons due to electronic transitions to a
final V-2p core state are measured. Based on cal-
culations of the transition probability for dipole



ELECTRONIC STRUCTURE OF VANADIUM CARBIDE 457

I.5 40

I.O

IX

h 0.5
Q

LLJ

0.0

5
3

I I I

5' 3.4
~~

3 3
(sic 2

l2

I
I EF =0.780

25
p 32

I

22'

30-

20-

IO-
VCO g 02

-0.5r x z w o L A r

WAVE VECTOR

FIG. 5. APW-VCA energy bands for VC0.8.

l.5

0.0

I

2 ~~~ ~~ l2~
EF = O.747-

5,4 2
l~.l~22 2

I

I

X Z W Q L A

WAVE VECTOR

I' E K

FIG. 6. APW-VCA energy bands for VC0.7.

transitions, ' it is expected that the emission spec-
trum will be determined by the density-of-states
curves for states that have a significant l = 0 or l = 2
charge component in the vanadium sphere. The
carbon K emission band for VC, caused by elec-
tronic transitions to vacant 1s carbon levels, has
been measured by Holliday. 2 Here, the emission
spectrum should be dominated by transitions from
valence states that have a significant l = 1 compo-
nent in the sphere.

Although the transition probabilities as well as
the density of states are needed to explain the
shape of the emission spectra, gross features such
as band spacings and widths should be explainable
in terms of the density-of-states curve. In Fig. 8
we have reproduced and superimposed the x-ray
spectra obtained by Fischer and Holliday along
with the density-of-states curve for VCO &, the
most nearly stoichiometric composition that has
been prepared. '1,2

The main peak in Fischer's emission spectrum
is attributed to transitions from the states which
have a significant amount of l = 2 charge in the va-
nadium sphere. The structure on the high-energy
side of this peak can be roughly correlated with the
structure in the density-of -states curve. The next-
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FIG. 7. Density-of-states curves for VC„phases.

lower emission band can be correlated with the 2s
band on the density-of-states curve, because these
states have some l=0 charge component in the va-
nadium sphere. Fischer's lowest band, which may
be a plasmon satellite of the main peak, cannot be
correlated with the computed band structure. The
main peak in Holliday's C K emission spectrum is
attributed to transitions from states in the 2p-3d
band because of the presence of a l = 1 charge com-
ponent in the carbon spheres.

B. Electronic Specific Heats

N„, the heat-capacity density of states, is com-
puted from y, the measured electronic specific-
heat coefficient, by

Ny = (3/2v ks)y,

where k& is Boltzmann's constant and N„ is the den-
sity of states for a single spin direction. If the
electronic system is noninteracting, N„will be
equal to N(0), the density of states at the Fermi
level obtained from a band-structure calculation.
In most systems the electrons will experience in-
teractions, so N„will be larger than N(0). Migdal~
has shown that the relation between these two quan-
tities can be expressed as
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FIG. 8. Comparison of the computed density of states
for VCp, p with VLzz zzz x-ray data due to Fischer (Ref. 16)
and CK x-ray emission data of Holliday (Ref. 42) for VC.
The dashed line is Fischer's (Ref. 16) absorption curve.

N(0)=NF/[1+N(0)VP] i

e~ 1.04[1 +N(0) V~]

1.45 N(0) Vq —0. 13[1 0. 62N(0) Vj,] '

a value for T,=10 K was computed. Several
workers ' have failed to find superconductivity in
VC„phases above 30 mK. The reverse of this type
of analysis was performed for pure V, which has a
T, of about 5. 0 K, and it was found that the param-
eter V~ for VCp g ls only about 25% less than that
for vanadium. The main reason for the absence of
superconductivity in the VC system is that the N(0)
values are less than half for those of vanadium.

where V~ is a parameter representing the inter-
action. Often the interaction parameter will be
small so that the measured values will be roughly
proportional to the band-structure density of states
at the Fermi level.

Ishikawa and Ishikawa and Toth have measured
the electronic specific heats of several VC„phases.
The heat-capacity density-of-states values N„, as
well as the values obtained from the present cal-
culation, N(0), are plotted in Fig. 9. The heat-
capacity measurements of Lowndes et al. are in
agreement with these results, with the exception
that a more pronounced peak at high carbon con-
centrations is found.

Using Migdal's formula to compute a value for
V~ and substituting this value, as well as the Debye
temperature of 685 K, ' into McMillan's formula
for the superconducting transition temperature,

I

& I.6-0

I.4-
I—
UJ

z I2-

z I.O-
0

-0
0.8-

Q3

w 0.6

I
/

I

I

i
I

I

/

I

/'Nx
/

/
/

/
/

Ny

~ N(o)

0.4 I I I I

I.O 0.9 0.8 07 0.6
ATOMIC FRACTION, c/v

FIG. 9. Comparison of the computed Fermi-level
density of states N(0) with the values determined from the
electronic specific heat N„and the magnetic susceptibility
N)(, by Ishikawa and Toth (Ref. 45).

C. Magnetic Susceptibility

Ishikawa, "Ishikawa and Toth, "and Bloom
et al. ' have measured the magnetic susceptibility
of VC„phases. The specimens were paramagnetic
and exhibited extremely high values of X. The
curve labeled N„ in Fig. 9 represents density-of-
states values calculated by assuming that the entire
susceptibility was due to Pauli-spin paramagne-
tism. The large difference between these N„val-
ues and those for N„and N(0) was attributed to an
orbital paramagnetic contribution to the suscepti-
bility that increases as the carbon concentration is
decreased.

Orbital paramagnetic susceptibility varies in-
versely with bandwidth and depends on the position
of the Fermi level in the band. ~ The widths of the
computed alloy bands shown in Fig. 7 decrease as
the carbon concentration is reduced and presumably
would yield an increasing orbital paramagnetic con-
tribution. Since the d bandwidths of the VC„phases
are larger than the bandwidth of approximately 0. 15
Ry computed for vanadium, s~ the orbital paramag-
netic susceptibility for the carbides should be less
than the value of 75x 10 ~ emu/mole computed for
pure V. ' Values that are needed to bring the N„
in better agreement with N„and N(0) range from
approximately 66 x10 ~ emu/mole for VCO, to zero
for the highest carbon concentrations. Bloom and
co-workers have discussed the orbital paramag-
netic susceptibility of VC„based on composition-
independent energy bands of Lye et al. ' The pres-
ent bands do not allow such an interpretation.
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D. Hall Coefficients

The low-temperature Hall constants as reported
by Borukhovich et al. "monotonically increase
from a negative value for VCO « to a positive value
for VCO», passing through zero at a composition
of about VC0.8 ~

Although a calculation of the Hall constants would

be extremely complicated, the observed behavior
can be rationalized with the computed band struc-
tures. At the highest carbon concentration the
Fermi level lies on a rising portion of the density-
of-states curve, which indicates that a new band is
being filled, resulting in a dominance of electronic

conduction and a correspondingly negative Hall con-
stant. At a composition with slightly less carbon
than VCO 8, the Fermi level lies in a minimum of
the density-of-states curve and the electronic and
hole contributions cancel. Decreasing the carbon
concentration still more results in the Fermi level
lying in a falling portion of the density-of-states
curve and hole conduction predominating.
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