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Several techniques for extending the single-site coherent-potential approximation (CPA) to account for
particular local configurations of atoms are evaluated. It is shown that if one attempts to define a
site-diagonal medium by requiring consistency between the Green's function evaluated at the center of the
cluster and the external medium, one may obtain unphysical results. If, however, one requires consistency
between a site at the boundary and the medium, one can obtain (at least in one dimension) a site-diagonal
medium which reproduces the cellular CPA exactly.

I. INTRODUCTION

The most important recent advance in the theory
of disordered alloys has been the introduction of the
coherent-potential approximation' (CPA) and its
development to treat (at least some) actual physical
systems. The CPA is in essence a weak scat-
tering theory which works best when the e1ectronic
mean free path is long. Its great advantage over
other weak scattering theories is that it is a self-
consistent theory which is exact in all of the weak-
scattering limits. Thus the CPA for a substitution-
al binary alloy is exact in the limit of vanishing
concentration of either constituent and in the limit
in which the difference between the two constituent
atoms becomes small.

When the concentration of both constituents is
high and the difference between the constituent
atomic potentials is large, or when the energy of
interest lies in an impurity band the mean free path
will be short. In this regime the CPA still yields
a fairly accurate representation of the gross fea-
tures of the density of states, however it com-
pletely misses any structure associated with local
clusters of atoms. In addition the "band edges"
are given incorrectly. These points are illustrated
in Figs. 1(a)-1(d) in which the CPA density of
states for a model one-dimensional substitutional
binary alloy is compared with the exact density of
states (histogram) obtained from the Schmidt inte-
gral-equation technique.

The purpose of this paper is to develop a theory
which encompasses the strong-scattering short-
mean-free-path limit as well as the regime ade-
quately treated by the CPA. In our earlier work'
we emphasized the fact that the density of states of
a disordered system is a local property, i.e. , the
average density of states per unit volume at point
r, depends only upon the configurations of atoms
which lie within a mean free path or so of r. (Sim-
ilar conclusions have been reached by Matsuda and
co-workers. ~ ) This locality property means that
a properly performed cluster calculation is exact
in the limit of short-mean free path.

In the following our aim will be to develop a
theory which treats a local cluster of atoms exactly
and the more removed regions of the system in an
approximate but self-consistent fashion. Such a
theory should be exact in all of the weak scattering
limits (as is the CPA) because it is self-consistent
and should be exact in the strong scattering limit
as well since the cluster size will then be greater
than the electronic-mean free path. In addition,
the ability to treat clusters will allow us to intro-
duce off-diagonal disorder and short-range atomic
correlations within the cluster in a straightforward
way.

In this paper we shall focus our attention mainly
upon the popular two level tight binding model. The
Hamiltonian is defined in terms of localized atomic
orbitals I i&. The orbital ii& will be localized on
site i. The Hamiltonian consists of two terms, +p
which is diagonal on this basis but disordered and
W which is off diagonal:

E; may be E& with probability C„or Ea with prob-
ability C~. W;,. is the interaction matrix element
between sites i pmd j. We shall usually take W„
to be zero unless i and j are nearest neighbors and
to be a constant Wp independent of E, and Ez when
i and j are nearest neighbors.

The remainder of the paper is arranged as fol-
lows: In Sec. II we shall briefly review the coherent
potential approximation. We shall also describe
what appears to us to be in principle the simplest
self-consistent cluster approximation, the cellular
CPA. '2 The cellular CPA (CCPA) applies the CPA
formalism not to a single site but to a cluster or
cell of sites. Although simple in principle the
CCPA has the aPPearance of being impractical for
actual calculations.

In Sec. III we shall describe an approximation
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which we call the self-consistent central site ap-
proximation. We proposed this approximation
originally' to avoid some of the computational dif-
ficulties associated with the CCPA. It has also
been proposed by Capek, ' by Brouers et al. ' and

by Tsukada. ' Although the self-consistent cen-
tral-site approximation (SCCS) can yield quite rea-
sonable density-of-states curves there are prob-
lems in the strong scattering regime —the density
of states may not be a single valued function of en-
ergy or for certain values of the energy the density
of states may be undefined. ' We shall explain the
origin of these problems.

In Sec. IV we shall discuss the self-consistent
boundary-site approximation (SCBS). We first
considered this approximation to be a means of
avoiding the difficulties inherent in the self-con-
sistent central site approximation. To our surprise
when we applied the SCBS approximation to a one-
dimensional model binary alloy it proved to be
identical to the CCPA, although requiring no more
computational effort than the very simple SCCS ap-
proximation. Although the equivalence of the SCBS
and CCPA is probably exact only in one dimension,
we believe the SCBS to be a useful approximation
in three dimensions as well.

II. CPA AND CCPA

G(z) = (z -ff)-',

p(E) = —Im[TrG(E+ iO)] /(wN) .
(2. 1)

(2 2)

N in Eq. (2. 2) is the number of sites in the sys-
tem. Alternatively, since the system is homoge-
neous on the average we may obtain the density of
states from a single diagonal element of the con-
figurationally averaged Green's function:

p(i, E) = —(1/w) Im(i (G(E+i0) ~i),

p(E) = &p(i, E)).,
(2. 3)

(2. 4)

The CPA replaces the configurationally averaged
Green's function (G)„with the Green's function for
an effective periodic medium:

(G)~= G =(z H)- (2 5)

In this section we shall describe the coherent-
potential approximation and the cellular-coherent-
potential approximation in terms of our model
Hamiltonian (1.1).

We desire to calculate the density of states p(E).
This may be obtained from the Green's function in
the usual way:
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H =Zo
I
i&&tI+ w. (2 6) orbitals nn+ 1 through nn+n:

The effective medium described by o is determined
by setting the average scattering (t,&„off a single
site immersed in the medium equal to zero:

t A&B) (EA(B) o}(1+&0
I
c

I 0& t A(B)}&

&t&~, = CAt A+CBtB = 0. (2. 8)

Ene+2 (2. 12)

Since the Green's function for a system with o
on all sites except the origin is given by G„&»,
where

GA(B) G+G IO& tA&»&0 (2. 9)

where In} is a column vector consisting of n of the
orbitals Ii&,

& I= ( &. 1I, "., &.( » I) . (2. 12)

The diagonal matrix 8 contains the energies of

and since t is a 1 x1 matrix, (2. 8} is equivalent to

«0 I@o&).,= c„&o
I GA I

o) + c,&o
I cB I

o& = &o
I
G

I
0) .

(2. 10)
Figure 1 compares the CPA density of states

with the exact density of states for a one-dimen-
sional form of our model Hamiltonian. The param-
eters for the calculation are Cz= C~ =0. 5, Wo= 1.0,
and E„= EB= 0.-5 (a), 1.0 (b), 2. 0 (c), and 4. 0 (d).
Since the curves are all symmetric about E =0,
only the E &0 part is shown. As can be seen from
Fig. 1, the density of states obtains more struc-
ture as 5=(EA EB)/2WB -increases. This structure~
which can be associated with local clusters of
atoms which have particular configurations, is out-
side the scope of the single-site CPA. Although
this structure is more pronounced in one dimen-
sion than in three it is evident from numerical cal-
culations -' that it persists in three dimensions,
especially for energies in the impurity band.

Probably the most obvious way to include these
effects in a self-consistent theory is to apply the
CPA formalism to a cell containing several sites
rather than to a single site. '2' One first divides
the lattice into identical cells each containing sev-
eral sites and then applies the CPA equation (2. 8)
or (2. 10) to the cell rather than to a single site.
The configurational average will now be over all of
the configurations of the cell. The t matrix t will
now be an n xn matrix where n is the number of
sites in the cell. The coherent potential o will also
be replaced by an n&n matrix.

For simplicity of exposition we shall write out
the CCPA equations for a one-dimensional tight-
binding model although clearly the principle is
much more general. W'e rewrite the Hamiltonian
(l. 1) as

H =Z
I
( }h. I

n}+w, (2. 11)

H corresponding to Eq. (2. 6) in the single-site
CPA will have the following form for the CCPA:

H=Z
I
o}zfn I+ W, (2. 14)

where Z is the nxn matrix

+11 +12 +1n

+21 ~22 +2n

(2. 15)

O'n1 0'n2

There are some simplifications in Z due to sym-
metry, e' g' y O11 orms o12 +21& etc. , but there are
still many elements which must be solved for self-
consistently.

The t matrix that describes the scattering off an
n-site cluster with the set of orbital energies (E }
= 1E „„,.. . , E,„}in the periodic medium de-
scribed by Hamiltonian H and Green's function G
=(B -H) ' is

t =(h —Z)(1+G t ). (2. 16)

The Green's function for the system with the medi-
um everywhere except cell n is

G =G+G Io}t.& I
G. (2. 17)

Thus the CPA conditions (2. 8} and (2. 10) become

(t.&„=o,
where the average is over (E }and

(2. 18)

(2. 19}

These equations appear to be quite complicated
and- difficult to solve without further approxima-
tions. For the one-dimensional nearest-neighbor
tight-binding model, however, it turns out that the
exact solution of Eq. (2. 19}is quite easy. We
shall discuss this further in Sec. IV, where we
show that the matrix Z (2. 15), may be replaced as
far as its effect on cell n is concerned by a simple
scalar.

Results of three-, five-, and seven-site CCPA
calculations are shown in Figs. 2-5. These cal-
culations all represent the density of states at the
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FIG. 2. Three-site CCPA or SCBS density of states
compared with the exact density of states (histogram).
CA = Cg = 0, 5 8 P
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FIG. 4. Seven-site CCPA or SCBS density of states
compared with the exact density of states (histogram).
Parameters are the same as for Figs. 2 and 3.

center of the cluster. 6 is chosen to be 2. 0 so the
bands are just split, all calculations are for C„
= C~ = 0. 5 except for Fig. 5 which shows the impu-
rity band of a 75-25% alloy. Figures 2, 2, 4, and
5 are for three, five, seven, and five sites, re-
spectively. Figures 2-4 may be compared with
Fig. 1(c) which shows the CPA result for the same
parameters.

III. SELF-CONSISTENT CENTRAL-SITE APPROXIMATION

In this section we define the self-consistent cen-
tral-site approximation and discuss the reason for
its failure in the strong scattering regime. This
technique has been proposed previously by our-
selves and several other authors. '

We originally proposed the approximation as a
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FIG. 3. Five-site CCPA or SCBS density of states
compared with the exact density of states (histogram).
Parameters are the same as for Fig. 2.

FIG. 5. Five-site CCPA or SCBS density of states
compared with the exact density of states (histogram).
Parameters are the same as for Figs. 2-4, except that
Cz = 0.25 and C~ = 0. 75. Only the impurity band is shown.
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means of avoiding the complexity of the n&n co-
herent potential matrix Z (2. 15) of the CCPA.
Clearly, it would be much nicer to work with a
scalar coherent potential, i.e. , Z = o f„(f, is the
nxn unit matrix) as in the usual CPA. Use of a
scalar for Z, however, gives one only a single pa, —

rameter in H to adjust making it impossible (ap-
parently) to satisfy Eq. (2. 18) which requires that
all n elements of (t ) average vanish.

In the equivalent equation (2. 19), one would not
try to obtain equality between all n elements of
((n I G I n)) and {aI G I n). One would, however,
do what appeared to be the most reasonable thing
one could do within the limitations of the scalar
coherent potential Anzatz, namely, choose o so
that the density of states per site at the center of
the cluster is consistent with the external medium,
x. e. ,

(n
f
G

f
n) = (n f

G
f
n) .

Here In) is the orbital on the site at the center of
the cluster.

The SCCS approximation is admittedly an ad hoc
prescription. Our main justification for proposing
it was that in many cases it yielded a density of
states which appeared. to agree rather well with the
CCPA and the exact results as is evident in Fig. 6.
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FIG. 7. (a) Contours of real and imaginary parts of
the Green's function G00 in the SCCS approximation. The
solution has been chosen so that G(E) = E ' for large E.
(b) Exact density of states. (c) Density of states for the
SCCS approximation. The dashed line at ReE = 2. 1 in-
dicates where the branch cut has been drawn. The dashed
line at ReE = 2. 3 is due to an uncertainty in the density
of states associated with a singularity on the ReE axis.
The Green's function is continuous at ReE = 2. 3 for ImE
slightly greater than zero. Parameters are the same as
Figs. 2-4.
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FIG. 6. Three-site SCCS approximation density of
states (solid line) compared with the three-site CCPA
density of states (dashed line) and the exact results (histo-
gram). The parameters are 5=8.0, C&=C~=O. 5. Only
one of the two symmetric bands is shown. There is a
branch point in the SCCS Green's function just above the
real E axis at real E=8.1.

Unfortunately, the SCCS has a serious flaw which
is apparent in Fig. 7. The Green's function G(z)
is not an analytic function of the energy parameter
z in the strong scattering regime. As 6 is in-
creased branch points appear in G(z) off of the real
z axis. ' A Green's function with off-axis branch
points violates causality. In addition, the sum rule
for the integrated density of states is not satisfied.

This effect is easily missed in numerical calcu-
lations for two reasons: (a) It does not exist in the
weak-scattering limit. Thus, if 5 = (E„—Ez)j(half—
band-width) then the effect does not show up for
5= 0. 5 (Fig. 5 of Ref. 16 and Fig. 4 of Ref. 14) for
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the one-dimensional 50-50%%uo alloy. We do not know

the lowest value of 6 for which the nonanalyticity
occurs, but for the 50-5010 alloy it is quite appar-
ent at 5 =1.0. For comparison, the actual bands

do not split until 5=2. 0. (b) In the extreme split-
band limit, the branch points occur for values of
real z which correspond to peaks in the density of
states. Since G(z) is changing rapidly as a function

of real z in this region it is quite easy to overlook
the fact that ones numerical algorithim has
"switched branches. "

The origin of this nonanalytic behavior of G(z) is
easily unde stood. Let us consider a three-site
cluster in the extreme split-band limit. We label
the sites of the cluster from left to right 1, 2, 3.
The equation we desire to solve in the SCCS ap-
proximation is

l~

I[

II

[ i

I l I I

I

I

[

lg
I 'L

I

1 I I I l

Z P(E» Ez, Ez)G&z(z, o', E» Ez, EB) = Goo(z —o').
(zgl (3 2)
P(E» Ez, E,) is the probability of any particular
configuration of the energies E, (i= 1, 2, 3). Now

one configuration will consist of an A atom sur-
rounded by two 8 atoms. It can be shown that the
contribution to the sum on the left-hand side of Eq.
(3. 2) due to this configuration is

(Es ~ Ez) zz(z & Es E~, Es)

=P(Es, E~, Ez) [z E~ —2W', -
x[z E, -A(z —o)]-'}-',

where A(z —o) satisfies

A = Wo/(z —o -A) .

(3.3)

(3.4)

In the extreme split-band limit, E„-E~» Wo, and

for z-E„, Eq. (3.3) becomes

P(Es, E„, Es)Gaz(z, o, Ez, E„, Es)

P(Es, E~, Es)—(z —E~+i )e (3.5)

The term represented by Eq. (3. 5) will be the

dominant contribution to the left-hand side of Eq.
(3.2) near the peak at z-Es while the right-hand

side has the simple form

GM(z -o) =[(z -o) —4WO] '~'. (3.6)

P(Ez, E~, Ez)/(z —E~+ie) = [(z -o} —4Wo]
(3 7)

The function Goo(z -a) is illustrated in Fig. 8.
Note that its analytic properties in the upper-half
z —o plane are determined by ImG on the real axis,
i. e. , by the density of states curve. As Im(z -o)
increases the real and imaginary parts of G(z -o)
become smoother and less sharply peaked.

To see the origin of the nonanalytic behavior of
the Green's function let us set Eq. (3.5}equal to
(3.6):

G O

-4
-3

I I I [

-2 -1
I

1 2

FIG. 8. G pp(z —0') for the one-dimensional nearest-
neighbor tight-binding lattice. The abscissa E —Z is
Re(e'-cr). The ordinate is -ImGpp (solid line) and ReGpp
(dashed line). For the upper graph, Im(g —0) =0. 01 and
for the lower graph, Im(z —0) =0.1.

and imagine that we adjust o until both real and
imaginary parts of Eq. (3.7) are satisfied. Since
& is a small positive quantity the left-hand side of
Eq. (3. 7) will become quite large for z-E„. Let
us vary z from z =E„+4 to z =E„-4. The imag-
inary part of the left-hand side of Eq. (3.7) will
follow a Lorentzian curve with a peak at z =E„.
The real part will follow a curve that is essentially
the derivative of a Lorentzian. Now for each value
of E we imagine adjusting o on the right-hand side
of Eq. (3.7) in order to satisfy the equality. Clear-
ly, Imo must become very small as z-E„ in order
to give the required high density of states. In addi-
tion ReG(z) must change sign as z passes through
E&. Thus, the solution must "jump" from the
right-hand peak of Fig. 8 (upper part) to the left-
hand peak as z passes through E„.

This same result may be obtained more directly
ny solving Eq. (3.7) for o,

a=z+2WO[1+(z-E„+is) /4WOP ] ~z (3. 8)

for z=E&+& and P(Es, E„, Ez) =P, Eq. (3.8}be-
comes

n, ' —z'+ 2ied. )'"o=E„+n +2' 1+
4Wo&' ]
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E„+d, +2W I 1+
8&DI' )

' (3.9)

The root in Eq. (3.9) must be chosen so that Im&r

& 0, otherwise the density of states will be nega-
tive. Thus,

o'=Kg -2&0, & =0+

(3. 10)
O=E„+2%'0, 4=0 .

For smaller values of 6 the effect becomes more
complicated but numerical calculations show that
a branch point exists off the real axis for 5 as low
as 1.0 for the 50-50% alloy.

In three dimensions the situation is slightly dif-
ferent because of the different analytic form of the
Green's function, however, the same basic argu-
ments apply. Let us consider a simple cubic tight-
binding Hamiltonian with nearest-neighbor interac-
tions only. The SCCS equation for a cluster con-
sisting of a central site 0 and its nearest-neighbor
sites, numbered 1 through 6, is

/
/

/
I

I

/
/

/
/

Z P(Ez, Eq ~ ' 'Ee)GM(z, z, Eo ~ Ez) = GM(z —o) .
(3. 11)

The form of CM(z -o) is indicated in Fig. 9.
Note the approximately flat top to the density of
states curve -ImG(E+i0}. One thing is clear im-
mediately. The SCCS approximation applied to this
model [or any model for which ImG(E+ i0) is finite
for all E) can never give a density of states greater
than the maximum density of states of the perfect
lattice.

We have applied the SCCS approximation to the

simple cubic tight-binding Hamiltonian. To sim-
plify the calculations we made the additional ap-
proximation suggested by Brouers et al. ' of ex-
pressing the quantity analogous to A [Eq. (3.4)] in
terms of Coo(z -o}. This approximation is exact
in one dimension.

For 5 = 3. 0 (bands just split) and c = 0. 5 we could
find no solutions to Eq. (3. 11) for certain energy
ranges. Extrapolation showed that the solution
disappeared whenever zp(E) exceeded max[-ImG
x(E+i0)]. The general considerations mentioned
above lead us to believe that this difficulty is in-
herent in the SCCS approximation and does not
arise because of the additional approximation.

It may be possible in some cases to get around
this difficulty by solving Eq. (3. 11) sufficiently far
off the real axis and extrapolating to Imz =0 to find
the density of states. We have not tried this tech-
nique since it seems that its success or failure
might depend on the analytic form of G(z). Indeed
one would expect that for a more realistic Hamil-
tonian with several maxima one would have the
problem of nonanalytic solutions as well as non-
existent solutions.

-2
-2

FIG. 9. Gpp(z —o) for the simple cubic nearest-neigh-
bor tight-binding lattice. The abscissa E —Z is Re(z —o).
The ordinate is -ImGpp (solid line) and ReGpp (dashed
line). For the upper graph, Im(z —o) = 0. 01 and for the
lower graph, Im(z —o) =0.1.

IV. SELF-CONSISTENT BOUNDARY-SITE A+PROXIMATION

It is clear that a basic difficulty in the physics
of the SCCS approximation lies in the fact that the
density of states per site at site n (-Im[G ]) at the
center of the cluster is almost independent of the
external medium if the mean free path is much less
than the distance from the center of the cluster to
its boundary. As a consequence, determining the
medium by making the density of states at the cen-
ter of the cluster consistent with the external
medium is not always possible.

A site at the boundary of a cluster, however, is
in intimate contact with the medium and therefore
the density of states per site for a boundary site
will depend quite strongly on the external medium.
Thus if we require consistency between a diagonal
element of the Green's function for a boundary site
(G where n is a boundary site} and a diagonal ele-
ment of the Green's function for the uniform ex-
ternal medium we should avoid the most obvious
difficulty with the SCCS approximation.

We call this new approximation the self-consis-
tent boundary-site approximation or SCBS. Like
the SCCS, the SCBS approximation is an ad hoc
theory and must be compared with exact model
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calculations before it can be accepted with confi-
dence. When we applied the SCBS approximation
to the one-dimensional nearest-neighbor tight-
binding alloy we found that the SCBS density of
states was for this model identical to that of the
cellular CPA (CCPA} discussed in Sec. II. This
is quite a surprising result because the self-energy
in the CCPA is an n&&n matrix (n being the number
of sites in the cluster), whereas the SCBS approxi-
mation employs a constant scalar coherent poten-
tial.

The reason that an approximation using a con-
stant scalar coherent potential can yield the same
density of states as the CCPA which employs a
much more complicated coherent potential lies in
the fact that the density of states is calculated
within the cluster. As far as the Green's function
within the cluster is concerned the external medium
enters only as a boundary condition. For the one-
dimensional model which we are considering this
boundary condition involves a single parameter.

We can derive an expression which shows how

the external medium enters the cluster Green's
function for a tight-binding system in one, two or
three dimensions. We require only that the inter-
actions between sites fall off sufficiently fast that
we can to a good approximation take it to be zero
between sites separated by a few lattice param-
eters. Let us divide the lattice into groups of
sites. Group 1 will consist of a single site which
we take to be the center of our cluster. Group 2
we take to be all sites that interact with group
one. Group 3 will be all sites that interact with

group two not already included in group two or
group one, etc. Let us define h„h~, h3 to be block
matrices which represent interactions among the
sites of group 1, 2, and 3, respectively. Let (d»
represent interactions between group 1 and group
2, ~» between group 2 and group 3, etc. Using
these definitions we can write our Hamiltonian in
block tridiagonal form:

hg co)2

"2 as

then

f (M/D)-
M

—D C M D

—A 'B(M/A) ')
«. 3)

(M/A) '

where (M/D) =A —BD 'C is known as the Schur
complement of D in M. Equation (4. 3) may be
verified by matrix multiplication.

Applying Eq. (4. 3) to (4. 1) gives, for the cluster
Green's function, G':

z -h( —(d3)

z -h2

—(d32 z -h3

(4. 4)

h3 = h3 —(d3464 (d4, . (4. 5)

a Wo

Wo a Wo

G4 is the Green's function for propagation between
sites of group 4 in the region external to the clus-
ter, the electron not being allowed to visit any site
within the cluster. Our point here is that the effect
of the external medium enters the cluster Green's
function only through modification of the interac-
tions between sites on the boundary of the cluster.
One can change the external medium at will, so
long as the matrix (d34G4(d43 is unaffected, without
affecting the cluster Green's function.

We shall now write out in detail the SCBS equa-
tions for the one-dimensional nearest-neighbor
tight-binding model and then show that for this
model they are equivalent to the CCPA. For sim-
plicity, we shaH write the equations for a three-
site cluster. Extension to more sites is trivial.

We consider a cluster of three sites with site
energies E&, E2, and E, immersed in a medium
described by a site energy 0,

Sa hs &S4

(@43 h4
(4. 1)

Wo E~ Wo

Wo E2 Wo

Wo E3 Wo

Wo 0 Wo

Let us suppose that we are interested in the
Green's function for this Hamiltonian, but only
within the cluster that consists of the sites in
groups 1, 2, and 3. Now there is a matrix identity
for inverting block matrices. If

Wo o

(4. 6}

M— (4 3)

Let G=z -H.
Also let H be equal to H except that E„E» and

E3 are all replaced by a, and define G=z-H.
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In the SCBS approximation the coherent potential
v is determined by requiring that the average diag-
onal element of the Green's function evaluated at a
boundary site (G»)„be equal to a diagonal element
of the Green's function for the uniform medium G

For the SCBS we can obtain the following re-
sults for the Green's function within the cluster by
applying (4. 3) recursively:

where

Q Wo

Wo Q Wo

Wo Q
(4. 15)

z -E, -A —Wo

G = —Wo z-Ep
—Wo z -E3-A

(4 7)

Wo 0

The boundary parameter A is related to the coher-
ent potential o' through

A =A(o) = Woo /[z —o -A(o)] . (4. 8) (4. 16)
Equations (4. 7) and (4. 8) are derived with more
detail in the Appendix. From Eq. (4. 7) the 1, 1
element of G' is given by

Ggg--(z —Eg -A —Wo[z —E2 —Wo(z —Eo -A) ]
(4 9)

A diagonal element of G is given by

G = (2 —o —2A) = (Wo/A -A) (4. 10)

Thus, the SCBS approximation for a becomes

P(E„E2~ Eo)(z —E, -A —Wo
fgg@

x[z —E2 —Woo(z Eo-A) ~] ~] '=—(Woo/A -A) ' .
(4. 11)

Note that 0 only enters through the boundary param-
eter A. In fact we need never calculate o to obtain
the density of states. Once A is determined using
Eq. (4. 11), one can use the central site of the
cluster to determine the density of states

mp(E) = -Im(G (E22+i0))„, (4. 12)

Here we have used symmetry to reduce the number
of different elements of Z from 9 to 4:

(EDO
),

0 Ep 0

0 0 E,)
(4. 17)

z -E)-A
G =~ —W'0

—Wo

z -E~ —Wo

—Wo z -Ee-A
(4. 18)

Equation (4. 18) is equivalent to (4. 7) except that
the boundary parameter A is now given by

Again we only need the Green's function within
the central cluster. Application of Eq. (4. 3) yields
(see Appendix)

w',
G22(za E1& E2& E3& A) =I z —E2 z-E, -A

WR )-1

z -Es-A] (4. 13)

A=Wo(X ')~2,

( z —og

X= —cr2 —Wo

—crq —Wo

z -(74

—(r2 —Wo

-s,
—g~ —Wo

(4. 19)

(4. 20)

We shall now show that Eq. (4. 10) is equivalent
to the CCPA. For the CCPA, Eq. (4. 6) becomes Application of Eq. (4. 3) to (4. 19) and (4.20) yields

(4. 14)

A = Wo[z —oi —UY(A)Ur] i,

where U and Y(A) are given by

U = (- o2 - Wo, - oo)

Y(A)=(
' '4

(-cr~ —Wo z —cr~ -Aj

(4. 21)

(4.22)

(4.23)

U is the transpose of U.
The Green's function G where 80 in G is replaced

byZis
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z —cr, -A -02- &o

G' = o-z —Wo z o-, —oz —Wo . (4. 24)

—o2 —Wo z —0~ -A

The boundary parameter A is again given by Eq.
(4. 21).

Thus, the CCPA is determined by setting Q'

[Eq. (4. 24)] equal to the configurational average of
G' [Eq. (4. 18}]. This appears to be a set of four
equations in four unknowns o'„a2, a3, o4. Note
however that G' is determined once A. is known.
We can obtain a single equation for A that does not
involve 0'g, 02, 0'3, and 04.

The 1, 1 element of G' [Eq. (4. 24)] is given by

G;i = [z —a, -A —UF(A) U

or equivalently, using Eq. (4. 21),

(4. 25)

( G') i i = ( Wo /A —A) i . (4. 26)

V. DISCUSSION AND CONCLUSIONS

A great deal of theoretical and empirical work
indicates that the CPA is a reliable self-consistent
single-site approximation for the density of states
of a disordered alloy. We emphasize the extensive
empirical model calculations as well as the exact
theoretical investigations of limiting cases because
as far as we know there is no general proof that
the CPA Green's function has the requisite analyti-
cal properties. ' The CPA has "worked" in all
cases for which it has been tried to date. How-
ever, we might well remember that all calculations
with the exceptions of the CCPA calculations re-
ported here and by Tsukada have involved zero
range potentials.

Assuming that there exists a general theorem
stating that the CPA Green's function has the re-
quired analytic properties it is clear that this

Thus the equation which determines the boundary
parameter A in the CCPA is obtained by equating

(4. 26) to (G»)„calculated from (4. 18}:

Z P(E„E2, Ea)(z —E, -A —Wo
{E(E~3)

x[z —E2 —Wo(z —E -A) ~] ~) ~ =(Wo/A -A)
(4. 27)

Equation (4. 27) is clearly identical to (4. 11) so
that the SCBS is equivalent to the CCPA for this
model. To extend the proof to any number of sites
one need merely note that the right-hand side is
independent of the number of sites in the cluster
and that (G'„)„has the same form for the SCBS ap-
proximation (4. 7) as for the CCPA [Eq. (4. 18)]
regardless of the number of sites.

theorem must hold for the CCPA as well since the
CCPA can be considered to be a CPA for a special
extended potential. This is important because of
recent work which indicates that self-consistency
arbitrarily applied often leads to a nonphysical
Green's function especially in the strong scattering
regime. " The importance of the CCPA is also
emphasized by the work of Leath who showed that
theories which yield "cluster diagonal" coher-
ent potentials such as the CCPA and the SCBS can
interpolate between the virtual crystal and split-
band limits. '

Given then that the CCPA is a reliable approxi-
mation which encompasses the short mean free
path as well as the long mean-free-path regime
there remains the question of whether or not it will
be practical for application to three-dimensional
physical systems. We are doubtful of the efficiency
of straightforward application of the CCPA to actu-
al physical systems without further simplification
or approximation and for this reason we proposed
the SCCS approximation which appears to fail in
the strong scattering regime.

An investigation of the reasons for the failure of
the SCCS approximation led us to the conclusion
that these difficulties could be avoided by making a
site on the boundary (rather than one at the center)
consistent with the external medium. As a test of
this SCBS approximation we applied it to a one di-
mensional model Hamiltonian. For this model we
found that the SCBS and CCPA are identical.

The equivalence of the SCBS and CCPA is prob-
ably only true for one-dimensional systems. In
two and three dimensions one usually finds that
cells which reproduce the lattice when periodically
continued do not have all boundary sites equivalent.
For example, the smallest cell for the simple
cubic lattice which has a central site and which
reproduces the lattice when periodically continued
has boundary sites with three different symmetries.

We feel, nevertheless, that the SCBS approxima-
tion will be useful in two and three dimensions.
For most simple lattices one could imagine treat-
ing a cluster consisting of a central atom and its
nearest neighbors with this approximation. In this
case all of the boundary sites would be equivalent.
We realize, of course, the need for further testing
of this approximation.
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APPENDIX

Consider the block tridiagonal matrix M defined

by

B, Ci 0 0

Dq Bq C2 0

0 D2 83 C3
(Al)

B C

D B C

D B

(AS}

0 0 D3 B4

where B, is an n, &&n& matrix, C, is n, &n„„and
D, is n„,&n, . Suppose that we are interested in
the upper left-hand block of the inverse of M, i.e. ,
the block corresponding to ~B. Let us call this
block of M ', G». We can derive the following
formula for G»..

G~, =(B~ —C~A~D, ) ',
A~=(Bz —C2AzD2) ',

Az=(B3 C3A3D3} ',
(AZ)

AB=B4

Equations (A2) assume the existence of G», A„
A&, and A„but this assumption will be true for the
applications in which we are interested.

The proof of (A2) is accomplished by using Eq.
(4. 3). For example, if we partition (Al) so that D

in (4. 3) corresponds to B4 in (Al) we have

One can obtain a diagonal block of the inverse of P
without resorting to momentum space integrals.
Let G be a diagonal block of the inverse of P. Then

G=[B —CA~D —DAzC] ',
Aq=(B —CAzD) ',
Az = (B —DAz C}

(A9)

(Alo)

(All)

Thus G is determined if the matrix equations (A10}
and (All) can be solved for A, and Az, respectively.
Note that these equations are quadratic in A, and

A2 so that there will be two possible solutions for
A~ and A2. The solution which one chooses depends
upon the desired boundary condition at infinity.

A few simple examples will show how the proce-
dure works. Consider the problem of obtaining a
diagonal element of the Green's function for a
periodic one-dimensional nearest-neighbor tight-
binding Hamiltonian. The Green's function is given
by

B(

G»= D

C,

B, C,

D2 Aq

(A3)

(Zl —H)

z —0' —wp

—wp z —(7 —wp

Az = ( B3 C3 84 D3) (A4)

Applying (4. 3) to (A3) we have

j B, C,

j»
(A5)

(A17)
where z, 0, and wp are scalars. Application of
(A9)-(All) yields an expression for a diagonal ele-
ment of (A17)

Aq = ( Bz —Cz Aq Dz}

Finally, if we apply (4. 3) to (A5) we have

G~, ——( ~B
—C ~ A ~ D, )

' .

(AS}

(A7)

6„„=(z —o' —BPpAg —woAz)

where 4& and Az are determined by

A, =A2--(z —o —wpA, ) '.
Solving (A19) for A, yields

A4 = z ((z —(7) k[(z —o) —4too] ]'1')

(A18)

(A19)

(A20)
This matrix continued-fraction formalism is

especially useful for treating periodic block tri-
diagonal matrices. Let P be such a matrix

We choose the minus sign in (A20) because it gives
fm(G„„)& 0 and also because it can be shown that
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z —Eg —Kg A —$vp

6= —ZUp z -E2 —ZUp

—$0p z —E3 —KpA2

(A21)
where A is given by (A19) or (A20). The important
point to note is that A is determined entirely by the
medium exterior to the cluster so that it is not af-
fected when the matrix elements of the Hamiltonian
within the cluster are changed. It can be seen that
Eq. (A21) is equivalent to (4. 7).

As a third example consider the problem of ob-
taining 6 in the three-site one-dimensional CCPA.
The Hamiltonian is given by (4. 14). Let us write

/oq

Z = a'&

O2 ~3

o4 oz

Oa 0»

(A22)

We can then write zI II in the f-orm of (A8) with

this choice of sign corresponds to outgoing waves
at infinity for Im(z) & 0. Using (A20) in (A18) yields

G„„=[(z-o)' -4w', ] '~. (A21)

This result agrees with the usual expression ob-
tained from a momentum space integration.

The technique described above is especially use-
ful when one wants the Green's function for a Ham-
iltonian consisting of an impurity cluster in an
otherwise periodic medium. Consider for example
the Hamiltonian (4.6). The Green's function within
the cluster can be written

(0 00
C= 0 00., oo)

(A24)

0 C T

Equation (AQ) then yields

(A25)

z -oi -A.

G= -(o, +w, )

—(o, + wo}

Z —0'g

—(o', + m~)

-(o, +w, )

—Oq -A
(A26)

where A is obtained from the (1, 1) element of A,
or the (3, 3) element of A~. Note that CA, C r
yields svo times the (1, 1) element of A, and
C AzC yields wo times the (3, 3) element of A, .
Thus,

( z —0'g

A = wo
~

—(oz + ggp)

—(oz + wo)

z -a4 —(oz+uro)

—(r, ,) z —,-A
(A27)

This establishes Eqs. (4. 19) and (4. 24).
Finally, let us obtain the cluster Green's func-

tion G [Eq. (4. 18)] needed for the cellular CPA.
This is obtained trivially because our Hamiltonian
(4. 14) does not differ from (2. 14) except within the
central cell. For this reason the boundary param-
eter A which represents the effect of the region
exterior to the cell is unchanged. Thus,

—ZOp

z-o,
B= —(oz+ wo)

—(~, ~ ,)

z -o, —(o, +cavo), (A23)

-(~ +~o)

—SUp z -Eq-A —Wp

-o z -E3-A
where A is again given by (A2V}.
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