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A model electronic structure is explored which attempts to relate a wide range of properties to a few

parameters of covalent and polar solids. The model is based upon tight-binding combinations of bonding

hybrid orbitals. Of the many overlap matrix elements which enter, only three are retained; the three are
associated with covalency, polarity, and metallicity. Many properties may be computed quite simply in terms
of the parameters of the model, and measured values of the properties can then be used to determine the
parameters. In this study the matrix elements associated with metallicity are obtained directly from the
atomic-term values; those associated with covalency and polarity are obtained from the static dielectric
constant using essentially the approach of Phillips, but in terms of the formula for the dielectric constant
appropriate to this model. Also calculated in terms of the model were the valence energy bands themselves,

obtained explicitly for silicon and for gallium arsenide. In treating other properties the unitarity of the final

diagonalization was utilized to avoid carrying it out explicitly. The dipole moment of the individual bonds
was defined and calculated as was an effective ionic charge and the macroscopic transverse charge. The
cohesive energy was also obtained for ionic and metallic structures as well as for the covalent tetrahedral
structures. Criteria for the stability of each structure were thereby obtained. The model also explains why

some properties scale approximately linearly with the ionicity defined by Phillips.

I. BOND-ORBITAL MODEL

The model which we will use is a slight extension
of a model for diamond considered many years ago
by Hall. ~ That model has been generalized more
recently by Weaire and Thorpe to arbitrary tetra-
hedrally coordinated solids in order to study the
electronic structure of amorphous materials. We
will extend it slightly further in allowing more than
one atomic species in the system. It is essentially
a linear -combination-of -atomic -orbitals (LCAO)
model but stripped down to the bare essentials in
order to reduce the number of parameters to a few,
which can be fit to experiment.

We will follow Hall in discussing only the valence
bands and will see in fact that the model is quite
inappropriate for the discussion of conduction
bands. However, we will go far beyond Hall' s
treatment of the bands alone in using the model for
a direct treatment of a range of properties of semi-
conductors and insulators. For definiteness we
will formulate the model in the context of tetra-
hedrally coordinated solids, though obviously the
same approach can be applied to a. much more gen-
eral class of materials.

We imagine then a structure, such as the zinc-
blende structure, in which each atom is surrounded
tetrahedrally by four identical atoms, which may
be of a second type. We will denote the anion, the
nonmetallic ion, by a superscript a and the cation,
the metallic ion, by the superscript c. In the dia-
mond structure the atoms are the same, but a and
c distinguish the two atoms in the primitive cell.
On each ion, or atom, we construct the usual sP
hybrids, oriented towards the four nearest neigh-

bors. Such a hybrid on the anion can be written

ih &=-'. (~ "&.~3~p &). (l)
The p state in question is positive and maximum in
the direction of the bond. We will think of the s and
the P states as atomic states and in this particular
study will even equate the energy expectation values
of these states to the atomic-term values, but this
would not be done in general.

Such hybrid orbitals on any given atom are or-
thogonal to each other if the near neighbors are
exactly tetrahedral. It may be convenient to use
this definition even when the neighbors are not pre-
cisely tetrahedrally arranged and to take explicit
account of the nonorthogonality afterwards. The
procedure for doing this appears elsewhere. '

To the extent that the Hamiltonian is symmetric
around each atom, its expectation value with re-
spect to such a hybrid is given by

e'= (h'
(
H

(
h') = —,

' (e;+ 3e; ), (2)

where of course e,'= (s'I HI s') and e~=(p'IHI p').
We may expect the corresponding value for the
cation E' to be different. We write

and V3 will be one of the fundamental parameters
of our model. It reflects a tendency towards polar
character in the system. In general, we may ex-
pect that the electrons will tend to transfer to the
anion, corresponding to a positive V3.

Although two hybrids on any given atom are or-
thogonal to each other, there will be a nonzero ma-
trix element of the Hamiltonian between any two
such hybrids. It may be evaluated, in analogy with
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Eq. (2). For the anion, it is given by &(e,
' —e~).

We define another parameter of the system

vq= —(b'lHlb' &
= —(e' —e,') . (4)

lb&=~. lb &, ~, lb & (6)

with, of course, u, +u, = 1 and minimize the energy
using the matrix elements defined above. We ob-
tain

The sign has been chosen so that we may expect
V, to be positive. Similarly we define V;.

Within each bond we may form bonding and anti-
bonding combinations of the two hybrids extending
into that bond. It turns out that the overlap between
two hybrids in the same bond tends to be very
large. We mill nevertheless proceed formally as
if they were orthogonal, as is done in Huckel theo-
ry. This is made possible by replacing the true
potential by a pseudopotential in evaluating the ma-
trix elements, as shown by Anderson. This change
causes no difficulty since we adjust the matrix ele-
ments to fit experiment in the end in any case.
The procedure will be justified —for the valence
bands only —by examining the resulting bands in
Sec. II. We define the matrix element of the
pseudo-Hamiltonian between two hybrids in the
same bond as

v = -(b'IHlb'&

where again the sign is chosen such that V2 may
be expected to be positive. This is the last of the
tight binding matrix elements which we will include
in the calculation. Others will be discarded.

We first seek within each bond the linear combi-
nation of hybrids having lowest energy expectation.
Thus we write a bond orbital

The Hamiltonian matrix for the valence bands
which arises in the bond-orbital model may be
written down for any given system. In particular
we consider the zinc-blende (or diamond) structure.
There are four distinct bond orientations which we
number 1 through 4. The expectation value of the
Hamiltonian with respect to each is identical and
given by Eq. (9). For the o.th orientation we con-
struct the Bloch tight-binding sum corresponding
to wave number k in the usual form;

~n, k&= ~Z e"'& lb.(r-r, )&, (12)

where the sum is over the N positions r~ of the
midpoints of bonds of the o.th orientation. Each
state of wave number k is written as a linear com-
bination of the four Bloch sums given by Eq. (12)
for that wave number. The matrix elements of the
corresponding 4 &&4 Hamiltonian matrix may be
evaluated directly and the secular equation solved.
This can be done analytically, and in fact was done
by Hall' for the case of diamond, V3=0 and Vy= Vy.
For our purposes the solution along a [110]direc-
tion will suffice. The corresponding bands [mea-
sured from the energy of Eq. (9)] are given by

c= &blelb &
=-.'(1 o,)v;.

All other matrix elements, except those given by
Eqs. (9)-(11), are neglected. The energy band
calculation requires the diagonalization of a 4&&4

matrix which can in fact be done analytically. More
importantly, we will see that we may compute di-
rectly a number of other properties in terms of the
parameters of this model system.

II. ENERGY BANDS

where

c.,= v,/(v,'+ v', )'& (6)

E, = —(A + C) —2[4AC cos 8+ (A —C) ] +,
E = —(A+C)+2[4AC cos'8+(A —C) ]'~, (13)

E3 A +C, E4 ——A+C

is the parameter which we will call polarity for
reasons to be discussed in Sec. III. The expecta-
tion value of the Hamiltonian with respect to this
bond orbital is given by

(blrflb) =-.'('+") (v', + v', )'~'. (9)

We have constructed one bond orbital for every
bond in the crystal; we finally are to construct the
valence states as tight-binding combinations of
these bond orbitals. The only overlap integrals
which we include are between adjacent hybrids.
Combining Eqs. (4), (6), and (7), we evaluate the
matrix element between two bonds sharing a given
anion. In terms of it we define

V(=A+C = g(Yj+ V))+ 2(Y) V)) Qp, (14)

We look first at silicon, for which A = C = 2 V&.

Then the energy bands are given by

With 8 = ka-,' v 2. The point 8 = 0 corresponds to I'
in the Brillouin zone, 8= 8 m corresponds to the
point K, and 8 = z m corresponds to the point X.
This agrees with Hall's results for A =C.

Note that the two upper bands are independent of
wave number, and this is true throughout the zone.
Note also that the total bandwidth is given by
4(A+C). It is convenient to define a parameter V,
which represents this spreading of the valence
band;

b')'= —(I+~~)V;. (10) E~ 2 ——Vj +2V, cos 8, E3 4 —V, .2 (15)

In terms of that for the cation, we define We could regard V, as an adjustable parameter and
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FIG. 1. The energy band structure of silicon along a
[110]direction in electron volts. On the left are the
bands calculated by Herman, Kortum, and Kuglin (Ref.
6). On the right are valence bands obtained with the
bond-orbital model with V~ =1.75 and V2 =3.02 eV, cor-
responding to a metallicity of 0.58. The zero of energy
has been taken at the top of the valence band in both cases.

fit the bandwidth. However, this is probably not
the best standard for selecting V, for our model
system. Of course when a model predicts many
properties, any one of those properties can be
used as a standard. For the purposes of this paper
we will use Eq. (4) to relate V; and V; to the atom-
ic-term values as given by Herman and Skillman, '
and will compute other properties in terms of that
choice. Consideration of the cohesive energies in
Sec. V would suggest that this may not be the best
standard for choosing V,. However, those con-
siderations also make clear that the total bandwidth
is a worse choice. Very possibly the cohesive en-
ergy of each element (even if as an element it is
metallic} may be the best standard. Then of course
the model predicts the difference in atomic term
values, though not very accurately.

Substituting for A and C in Eq. (15}gives direct-
ly the energy bands, which are shown in Fig. 1,
along with those calculated by Herman, Kortum, and
Kuglin along the same line. We will see in Sec.
IV how to obtain V3 and can therefore determine the
energy of the unbonded hybrids, E„which is also
indicated in the figure. In Sec. III we will relate
the concept of metallicity to the proximity of the
valence band edge to this value f,. As we expected,
this is a crude representation of the bands, but
nevertheless is sufficiently close to give us some
hope of calculating other properties. In particu-
lar, we note that our calculated bandwidth is con-
siderably too small. A calculation of the antibond-
ing bands with the same model gives bands of the
same shape, though possibly scaled or inverted.
These clearly have little relation to the true bands
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FIG. 2. Energy bands of gallium arsenide along a
[110]direction in electron volts. On the left are the
bands calculated by Herman, Kortum, Kuglin, and Van
Dyke (Ref. 7). On the right are the energy bands from
the bond-orbital model with V~ = 1.62, V~ = 2. 36, V2
=2. 67, and F3=1.51 eV. These correspond to a polarity
of 0.49 and a metallicity of 0.71.

and will not be considered further.
We consider second a partly ionic crystal, gal-

lium arsenide. V2 was obtained from Eq. (28). V~

was obtained from V2 using Eqs. (8) and Eq. (29).
It is interesting that the value we would have ob-
tained by using Eq. (3) (V, = l. 7 eV as opposed to
1.5 eV) is quite similar. Vf and V; were obtained
from Eq. (4). Energy bands from Eq. (13) for gal-
lium arsenide are plotted in Fig. 2, along with
those calculated by Herman, Kortum, Kuglin, and
Van Dyke.

The bandwidth is again 4V„as it was in the non-
polar crystal. However, in addition a band gap has
been opened up at X. That band gap is given by
4IA —C I. Figure 2 would suggest that we have
overestimated that gap, and this turns out general-
ly to be the case with the choice of parameters
used here. Grobman, Eastman, and Cohen have
recently compiled experimental values for this gap,
obtained from photoemission experiments. These
are plotted in Fig. 3 against the predictions of the
bond-orbital model. The s-p splittings for the
divalent metals were obtained by extrapolating the
splittings from the same row in the Periodic Table
since the tables have no a~ for these cases. Sodium
chloride and rubidium chloride (both rocksalt
structure} were included by taking (see Sec. VI) o.~

equal to 1 in this structure, and thus 4(A —C) is
E~ —E, for chlorine.

The experimental results scale with the predic-
tion but are some 33% smaller (though the dis-
crepancy in Fig. 2 is only 10%). In these terms we
overestimate the s-p splitting in this calculation.
On the other hand, the narrowness of the model
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imagine the bonds to be doubly occupied. Thus
each bond contributes to the anion a charge —2eu, /
(u~+u2), seen from Eq. (7) to be —e(l+o, ~).
Similarly, it contributes a charge —e(1 —o.~) to the
cation. In this context the term "polarity" for o.~
is most natural. The anion also has a nuclear
charge of (4+&Z)e, where 4+&Z is the column
number in the Periodic Table. bZ =0 for carbon,
1 for nitrogen, 2 for oxygen, and 3 for fluorine.
Thus the net charge on the anion (in units of —e) is

Z+= 4np —&Z. (16)

4(A-C)

FIG. 3. Experimental (Ref. 8) splitting of the first
two bands at X plotted against the predicted values, both
in electron volts. The line represents 3 of the predicted
value.

valence bands shown in Figs. 1 and 2 indicates
that we underestimate the s-p splitting in that re-
gard. Again, it is interesting to see the predic-
tions from the simplest choice of parameters, and
it appears that other choices could be better.

Grobman et aE. , noted that these gaps were ap-
proximately equal to the parameter C of the Phil-
lips -Van Vechten' model (see Sec. IV) though
there is no a priori reason to expect that particu-
lar result. From the point of view of our model the

gap approaches the anion s-P splitting in highly
polar materials and is of course zero in nonpolar
materials. If the s-p splittings in the anion and
cation were the same, 4IA —C I would equal e~
times the total bandwidth, or n~(4V, ); however,
there are significant contributions from the differ-
ences in splitting also. In general, the effect of
asymmetry between the two atoms in the primitive
cell is to separate the P bands from the s bands.
As the effect becomes larger the valence band
states correspond more closely to atomic s and p
states on the anion. The fact that the bond-orbital
model correctly portrays these states in the ionic
limit will prove to be essential to the utility of the
method in describing the properties of polar mate-
rials.

III. POLARITY AND METALLICITY

In a solid the charge to be associated with an
atom is an ill-defined quantity since there is a,rbi-
trariness in associating each contribution of the
charge density to a particular atom or a particular
bond. However, the choice becomes quite natural
within the context of our model. The bond wave
function is written as in Eq. (6), and that state may
be thought of as being a fraction gP, /(u, +u, ) on the
anion and a fraction u, /(u, +u, ) on the cation. We

Of course the charge on the cation is equal and
opposite. Note that as the polarity approaches 1,
the magnitude of the effective charge approaches
the chemical valence, 1 for sodium, 2 for mag-
nesium, and 3 for aluminum and 1 for chlorine, 2
for sulphur, and 3 for phosphorous. When we de-
termine the polarity of gallium arsenide we will
see that it is near 0. 5, leading to an effective
charge of 1, with the arsenic negative. We will in
fact find in general that the electronic transfer is
larger than the proton transfer and therefore that
the nonmetallic ion is negative, as we might have
anticipated. We may note, however, that the de-
scription of the system in terms of screening might
have suggested that the proton transfer would be
only partially screened and for small valence dif-
ferences that the charges might have been reversed
from what we find here.

It is convenient to associate a dipole moment
with each bond in a similar way. That dipole mo-
ment is equal to the asymmetrical charge, —en~
times a length which we write yd, where d is the
internuclear distance and y is a parameter which
would be unity if the hybrids were nonoverlapping
and spherically symmetric and if there were no
local field effects. We tentatively take it the same
for all systems. Because of the way y mill enter
the dielectric constant [Eq. (23)] and because we
are determining V~ and V3 from that dielectric con-
stant, y will scale the values of V~ and V, we obtain.
A value y = 2 seems to give an appropriate scale,
and we will use that in our numerical examples.
The fact that it is larger than 1 suggests that as a
bond becomes polar the principal charge transfer
is between the far sides of the corresponding ions.
In any case, the dipole moment becomes

P = -yedo. ~, (17)

where d is the vector distance from cation to anion.
The effective charge given in Eq. (16) is appro-

priate for the evaluation of Madelung potentials, but
in many properties there are other contributions.
For example, the dipole moments arising from the
displacement of the anions with respect to the
cations contain a "dynamic" contribution. ' In the
context of Eq. (17) this contribution arises directly
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from the change in o.'& with the displacement. V3 is
not expected to have any variation linear in this
displacement but V2 is found [Eq. (26)] to vary as
d '. This leads immediately to a change in n~ of
—3&x~(1 —n~}/d times the change in d. When an

anion is moved with respect to its neighbors there
are contributions from four neighboring bonds, but
angular factors reduce the effect by a. factor of
three. In all cases the electron transfer is in the
direction of the motion of the anion. Thus the dy-
namic charge adds to the effective charge in Eq.
(16) to give a macroscopic transverse effective
charge of

e~r = 4n~ -d.Z+4yn~(1 —n~) . (18)

TABLE I. Polarity, effective charge [Eq. (16)],
transverse effective charge [Eq. (18)], and experimental
transverse effective charge. Polarity was obtained from
Ref. 11 using Eq. (29). Experimental values of ez were
also taken from Ref. 11.

Crystal

Zinc-blende structure

e&(expt)

CUC1

CuBr
CuI
AgI

0.78
0. 77
0. 74
0. 79

0. 11
0. 08

—0, 06
0. 16

1.85
1.85
1.85
1.84

l. 12
1.49
2.40
1.40

This is compared with the experimental values
given by Lucovsky, Martin, and Burstein" in Table
I. The values of n~ used are obtained from the
ionicities also given in Ref. 11 using Eq. (29). We
have overestimated e~ somewhat, but have repro-
duced the remarkable feature that it tends not to

TABLE II. Dependence of cohesion on metallicity.

Material parameters Cohesive energy (eV/atom)

V2(e V) V& (eV) f1~ 4V2(1-nm) Expt

c
Si
Ge
Sn

10.8

3. 0
2. 7
1.8

2. 14
1.76
2. 00
1.64

0. 20
0. 58
0. 74
0.92

34. 5
5. 7
2. 8
0.6

7.4
4. 6
3. 9
3.1

C. Kittel, Introduction to Solid State I'hysics, 3rd
ed (Wiley New York 1967) p 78

increase appreciably with increasing polarity for a
given structure. This arises from the reduction in
the dynamic charge as the electrons become more
tightly bound to the anion.

We see that in each of Eqs. (16)-(18)the polarity
n& gives a very reasonable measure of the polar
character of the electronic states. The definition
of o.~ in Eq. (8) is clearly analogous to the defini-
tion of ionicity made by Phillips on the basis of an

approach we will discuss later. A central feature
of Phillips's work was the determination of ionicity
from the dielectric constant, and we use the opera-
tional definition of ionicity as the quantity obtained
from the dielectric constant following the prescrip-
tion given by Phillips. Within our model we may
calculate the dielectric constant, which will depend
on polarity, and can therefore obtain Phillips's
ionicity in terms of our polarity.

We have noted that the total bandwidth is given
by 4V, for any system. We will see that this
broadening of the valence bands is closely related
physically to the concept of metalization introduced
by Mooser and Pearson, ' and it will be convenient
to make a quantitative definition of metallicity,

ZnS
ZnSe
ZnTe
CuTe
HgTe

BN
AlP
AlAs
Alsb
GaI
GaAs
GaSb
InP
InAs
InSb

SiC

BeO
ZnO
Cds
CdSe

GaN
A1N

0. 69
0. 70
0. 68
0. 76
0. 78

0.43
0.47
0.44
0.56
0.48
0.47
0.43
0. 55
0. 51
0.48

0.35

0.68
0. 69
0. 74
0. 74

0. 61
0.57

0. 76
0. 78
0.73
1.02
1.11

0. 71
0. 87
0. 74
1.24
0. 94
0. 87
0. 71
1.21
1.03
0.90

1.41

2. 80
2. 81
2. 79
2. 86
2. 85

2. 68
2. 94
2. 74
3.41
3.03
2.94
2. 68
3.38
3.16
2. 99

3.15

0.70
0. 76
0. 95
0.97

1.43
1.29

2. 78
2. 80
2. 85
2. 85

3.60
3.47

Wurtzite structure

2. 15
2. 03
2. 00
2. 35
2. 96

2.47
2.28
2. 30
1.93
2. 04
2. 16
2. 15
2. 55
2. 53
2, 42

2. 57

1.83
2. 09
2. 27
2. 25

3.20
2. 75

n =V,/(V +V)'i (19)

in analogy with the polarity defined in Eq. (8). We
will see that the metallicity increases with the prin-
cipal quantum number of the valence states, as
indicated by Mooser and Pearson, but because the
denominator becomes small rather than because the
numerator V, becomes large. The interpretation
of this quantity in terms of electronic structure
may be seen from Eqs. (9) and (13}. The average
hybrid energy is given by & (e'+e'). The energy of
the bond is lowered through the covalent bonding,
represented by V2, and ionic transfer represented
by V3. These bond orbitals are then broadened into
a band by metallicity, arising from V, . A metal-
licity of one corresponds to a sufficient broadening
to bring the top of the band up to the initial hybrid
energy. Figures 1 and 2, and the values of n we
give for the elemental semiconductors in Table II,
would suggest that this may be associated with a
vanishing band gap. We will see that when the
metallicity is of the order of or greater than 1, a
metallic structure tends to be favored over the
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tetrahedral structure postulated in this paper.
We could also of course defined a. third param-

eter, covalency,

n, = Vz/(Va+ V3)'~, (20)

though for the purposes of this paper it has not
proven very useful. Obviously, the covalency and

the polarity are related by n, = (1 —u~) +.
We will see that metallicity, and the matrix ele-

ment V„play a smaller role in the properties than
one might first guess. The reason is related to the
fact that in our band calculation V, first entered in
the final diagonalization which led to Eq. (13). That
diagonalization corresponds to a unitary transfor-
mation and therefore left the sum of diagonal ele-
ments unchanged. It follows that for computing the
total energy, since all valence band states are oc-
cupied, we may simply use four times the diagonal
element, Eq. (9); the total energy is independent
of V, . Thus within the model the total valence band

energy is exactly a sum of identical bond energies.
In addition, because the transformation is unitary,
the total charge density may be computed from the
bond states of Eq. (6). That charge density also is
not changed in the final diagonalization and is inde-
pendent of V,. These two features will tremen-
dously simplify the calculation of a number of the
properties of the systems in question.

IV. DIELECTRIC CONSTANT AND THE DETERMINATION
OF V2 AND V3

The calculation of the dielectric constant is very
central to this approach since we will follow Phil-
lips in using it as the standard for determining two
of the parameters of the theory, V2 and V3. V, will
be obtained in this study from the atomic term
values using Eq. (4) as indicated earlier.

Our approach to calculating the dielectric con-
stant will be to compute the change in dipole in each
bond due to the presence of a field, to sum this
over bonds to obtain the susceptibility, and finally
to write the dielectric constant. This is quite dis-
tinct from the usual approach of obtaining the di-
electric constant in terms of oscillator strengths
between the ground and excited states. That ap-
proach is not immediately accessible to us; we
have seen that though our model gives a reasonable
description of the ground states it does not repre-
sent the excited states at all well. Such a calcula-
tion of the dielectric constants based upon our va-
lence states could be carried out using the orbital
correction method as further developed by Meserve
for calculating the polarizability of the inert
gases. ' In this method, the correction to the
wave function induced by the electric field could
be expanded in plane waves, orthogonalized to the
ground state. However, at this stage, and in view
of the crudeness of our model, it seems preferable
to calculate the polarizability by computing directly

2 2 2
'eScos (22)

where 8 is the angle between the field and the bond.
This is to be averaged over angle and multiplied by
the density of bonds 2 N (where N is equal to the
density of electrons) to obtain the susceptibility,
leading finally to a static dielectric constant

e =1+v vNe d V /3(V + V) i (23)

Again, d is the interatomic distance, and again we
take y2=2.

This is a surprising formula in the context of the
familiar formula

&0= 1+4vNe 5 /mE (24)

Here E~ is the energy difference between ground
and typical excited states. One factor of 1/E~ came
from the usual energy denominator, the other from
variations in the oscillator strength. The matrix
element (Vz+ V3)'~ of Eq. (23) has some relation
to an energy gap but we see that the dependence is
very much different depending upon whether the
variation is a covalent or an ionic one. We have
seen that the tetrahedral solid does not have a sim-
ple two-level electronic structure, and it is per-
haps not surprising that the formula differs appre-
ciably from that derived for the simple two-level
system.

the ground state in the presence of a field. Such
an approach is reminiscent of the rigorous relation
found by Hopfield' between the dielectric function
and the properties of the ground state.

Our approach is to first treat the deformation of
each individual bond by the electric field. This
leads us to modified bond states but nevertheless
to a Hamiltonian containing the various matrix ele-
ments Vy and Vy coupling bonds, which could be
diagonalized to obtain the eigenstates and their en-
ergies. However, we have noted that the unitary
transformation which diagonalizes this last matrix
does not modify the charge distribution. Therefore
in our calculation of the polarizability we may
simply add the contributions of the individual bond.

We gave in Eq. (17) the dipole moment which we
associate with an individual bond. The interaction
of an electric field with this dipole will give a
change in energy as a function of a u, and u„

P =+yed. S(u, —u, )/(u, +u, ) . (21)

The corresponding approximation in the Hamil-
tonian matrix is to replace the field seen by each
electron in the bond by a change in V, of
-&ed ~ h/2. Thus we may compute the change in
polarization of the bond by taking the derivative of
the dipole moment with respect to V& and multiply-
ing by -&ed ~ 8/2. The contribution of the bond in
question to the induced polarization is given by



BOND-ORBITAL MODEL AND THE PROPERTIES OF. ~ . 4493

We will follow the method used by Phillips to
relate the parameters of our theory to the measured
dielectric constant. In particular we will deter-
mine V~ for diamond and silicon from the measured
e, using Eq. (23). We then assume, as did Phil-
lips, that the V& for all other systems depends only
upon the bond length, using the formula

I.O

Qs

0.6

V~ = Cod', (26)
0.4

where Co and s are adjusted to fit diamond and sili-
con. This approach was motivated by the fact that
the measured ao of heavier e?ements has contribu-
tions from core polarization and relativistic effects
which have little relevance to the valence bands.
We see from Eq. (23) that eo —1 (for V, = 0) varies
as Vz'd i. The variation from Eq. (24) is as
E~ d . Equation (24) is essentially the Penn
formula used by Phillips. Thus where Phillips
found that E, varied as d ', we find V2 varies as
d ', a result noted first by Ciraci. "

This seems a very natural result; V~ is inversely
proportional to the volume. This finding, combined
with the expression in Eq. (23) for the dielectric
constant, explains why the use of the Penn dielec-
tric constant [Eq. (24) except for a small correc-
tion] leads to the rather peculiar dependence of
d . We obtain V~ for a material from the bond
length d,

V2 = 10.8(d~, /d) . (26)

E2 -E~ + C~ (27)

10.8 eV is the value of V~ for diamond and dd, ,
=1.54 A.

Given V2 from Eq. (26) we wish to use Eq. (23)
to obtain V3 from the measured dielectric constant
for any material. Of course the measured dielec-
tric constant for the nonelemental semiconductors
also has contributions from core polarization, etc. ,
and corrections must be made for these before V3

can be evaluated. These corrections should be
made with our model in mind, presumably by gen-
eralization of the corrections found for elemental
semiconductors, in analogy with the corrections
made by Van Vechten. ' However, for the purposes
of this preliminary study we may take the short
cut of adopting precisely the corrections which Van
Vechten used. Thus we could work backwards
from the Phillips-Van Vechten ionicities to obtain
the corrected dielectric constant, and then use it
to compute the polarity. In fact, if we neglect the
small difference (of the order of 10%%uo) between Eq.
(24) and the Penn formula, we can do this formally
and obtain a direct relation between polarity and
ionicity.

We first relate ionicity to the dielectric constant.
The gap is written in terms of homopolar (E„) and
ionic (C) contributions with Phillips's formula,

0.2

0.2 0,4
a

P

0.6 0$ 1.0

FIG. 4. Ionicity of Phillips and Van Vechten as a func-
tion of the square of polarity.

f; = 1 —(1 —n~)'i'. (29)

This is an approximate relation (because of small
corrections which Phillips and Van Vechten in-
cluded), but this provides us with a simple way of
obtaining polarities and covalencies directly from
the ionicities listed by Phillips. Equation (29) is
plotted in Fig. 4. In our model calculations we
may expect some properties to scale with n~.
From Fig. 3 we see that ionicity is very nearly
proportional to n~ over the range of ionicities less
than 0. 785, over which tetrahedrally coordinated
structures are found. Thus it is not surprising, in
the context of our model, that Phillips found a num-
ber of properties to scale approximately with his
ionicity. However, from the point of view of our
model, ionicity is not a very natural, nor a linear,
scale.

V. COHESIVE ENERGY

Though calculating the cohesive energy is clearly
pushing the model very far we may hope for cor-
rect orders of magnitude and for meaningful trends.
To do this calculation we begin with two isolated
atoms which are to make up a primitive cell, each

Combined with Eq. (24) it follows that E ' is equal
to (eo —1)d times a universal constant. Further-
more with the definition of ionicity

fI=C /EE, (26)

we see that 1 f;=E„/E -is proportional to
(eo —1)d ', where we have used E„~d ". In a
similar way we relate o.~ to co —1 using Eq. (23).
We see that eo —1 is proportional to (1 —o.~)

i~d .
Equating the two expressions for 60 1, the d fac-
tors cancel. We note that both n~ and f; vanish for
an elemental semiconductor and find
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E =(4+hZ)V;+(4 —nZ)Vf (3O}

for ~Z equal to 0, I, and 2. For 4Z = 3, as in
sodium chloride, this value is to be reduced by
4Vj,' there is only a single s electron on the cation
to be promoted.

The next step is to transfer &Z electrons from
the anion (the nonmetallic ion) to the cation (the
metallic ion) in order to occupy equal numbers of
hybrid orbitals on the two atom types. This re-
quired an additional energy 2~ZV3. Next we form
bond orbitals, gaining an energy 8(V2+ V,}'+per
atom pair. In ionic crystals this will of course in-
volve transferring the electrons back to the anion.
Finally we broaden these levels into bands without
altering the total energy. Thus the cohesive energy
per atom pair becomes

E~„=8(V2+ V3) ~ —26ZV~ —E (31)

We first consider purely covalent systems, in
which V3 and ~Z are both zero. The cohesive en-
ergy per atom becomes

atom initially neutral. We then move step by step
to form the crystal keeping track of the change in

energy at each step. The most usual procedure for
doing this for polar crystals is to imagine forming
ions at large separations, requiring an energy equal
to the difference between cation ionization energy
and the anion electron affinity. The ions are then
brought to the equilibrium separation gaining an
electrostatic energy equal to the Madelung energy.
In order to make contact with the parameters of our
model and to be able to include also covalent mate-
rials we instead imagine bringing the neutral atoms
to their equilibrium positions before transforming
the electrons. Then both of the contributions de-
scribed above in the ionic crystal are incorporated
in a term, 2V3 times the number of electrons trans-
ferred. This makes clear the point that V, repre-
sents a difference in energy for electrons on dif-
ferent atoms within the crystal and explains also
why the Madelung energy does not appear explicitly
in our result.

The first step in constructing the states in the
crystal is to promote every electron from its
atomic orbital to a hybrid orbital. This requires
an energy 3V; or 3V; for every s state, and pro-
vides an energy V, or V& for every p state. We
may readily compute the promotion energy (which
reduces the cohesive energy) by considering the
starting configuration in each case. We obtain a
promotion energy per atom pair of

The first term is simply 2V, times the number of
electrons transferred from the metallic to the non-
metallic ion. The cohesive energy is this transfer
energy, reduced by the energy required to promote
the electrons to a full shell configuration in the
nonmetallic ion.

In the intermediate case it could be useful to
rewrite Eq. (31) by writing V, in terms of the
polarity. We obtain

8V~(1 ——,n~hZ)
ooh (1 oz)z/a ore .

P
(34)

We see that as we move from a covalent to a polar
material there are two competing factors in the
cohesive energy. By expanding all factors in n~
we see that the cohesive energy will drop with in-
creasing polarity if n~ is less than ~&Z but will in-
crease with e~ if it is greater. We have indicated
in fact that n~ is almost always greater than &4Z,
the metallic ion having net negative effective charge
if this is not the case. However, a survey of the
polarities listed in Table I indicates that they
are almost always less than &4Z, and therefore our
model predicts that the cohesive energy will de-
crease with polarity as is observed. It will in fact
tend to decrease with the square of polarity, or
with ionicity as indicated by Phillips. This is a
rather small effect, superimposed upon the much
larger effect of metallicity, which we have seen is
overestimated in our model, at l.east with the choice
of V, evaluated in terms of the atomic term values.

gradation of covalency in our model. This did not
occur as an effect of the band broadening in the
crystal, but as a result of the associated promotion
energy in the atom required in the formation of the
hybrid s.

This is an appealing picture and one which is
crudely in accord with experiment as indicated in
Table II. The computed cohesive energies are of
the correct order of magnitude and do in fact drop
off with increasing metallicity, though the decrease
in cohesion with increasing rom is much too great.
This is a result, at least for high metallicity, of
sensitivity to n, and suggests that the cohesive
energy itself might provide a good standard for de-
termining V, .

We next consider the cohesive energy of a strong-
ly ionic material. As the polarity approaches one,
V~ becomes negligible compared to V3, and the
cohesive energy per atom pair approaches

Eooh ——2Vs(4 —AZ) Eooo . —

E„„/ t aom4(V2 —V, ) =4V2(l —a ). (32) VI. STABILITY OF STRUCTURES

Thus V2 may be interpreted directly as a covalent
bonding energy per electron which is then reduced
by metallicity. It is remarkable that metallicity
as we have defined it provides such a direct de-

Of course when a material becomes sufficiently
polar, we expect that a closely packed structure,
such as the sodium chloride or cesium chloride
structure, will be favored. Phillips has in fact
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found that all materials with an ionicity greater
than 0. 785 form such structures. Since we have
found a monotonic relation between ionicity and
polarity, Eq. (29), that empirical result carries
over automatically to our model; the dividing line
occurs at a polarity of 0. 80. However it is worth
considering the relative stability of structures
more carefully in terms of our model. This study
is somewhat more intuitive than were the other
derivations.

In order to do this we must consider again the
origin of the matrix element V3. We indicated that
there were ultimately two contributions to V&, one
related to the energy required to transfer electrons
between the isolated metallic and nonmetallic
atoms. The second was an electrostatic energy
difference for an electron on each of the ions in the
crystal. Thus V3 will differ for different struc-
tures and the difference, 6V„may be evaluated
directly in terms of the Madelung constant o. . '
The contribution to V3 arising from this contribu-
tion to the energy may be estimated from

Z~e' g d Z*e'n
od ~ r~ &od

(35)

where Z* is the effectjve ionic charge given in Eq.
(16). The electrostatic potential is reduced by the
dielectric constant. The sum is over all neighbors
to an ion,' r; is the distance. The minus obtains if
the neighbors are of a different type, the plus if
they are the same.

We should also note that when we form an ionic
structure, with six to eight nearest neighbors, we
can no longer form orthogonal hybrid orbitals and
we may expect the covalent contribution V2 to the
energy to disappear. The promotion energy, Eq.
(30), is present in either case. Thus we may di-
rectly compare the energies in the tetrahedral and
ionic structures. The cohesive energy in the zinc-
blende structure minus that in the sodium chloride
structure is found to be

E zns ENacl 8(V2 V2)1/8 8(V + 5V ) + 2gZ5V
(36)

We expect the dividing line between structures to
occur when this is zero.

W'e may rewrite this criterion in approximate
form by estimating 5V3. The Madelung constant a
is approximately the same in the cesium chloride
and sodium chloride structures, 1.763 and 1.748,
respectively, and somewhat smaller in the zinc-
blende structure, 1.638. ' We take the difference
to be 0. 11 and neglect changes in d, Z*, and ao.
Thus the difference in V, is 5V, =O. 11Z~e /cod.
Thus ionic '-tructures are favored when

n~ &1 —0. 028Z*(4 —AZ)e /sod(V2+ V~)'~ (37)

which provides a crude criterion for predicting the

structure, the biggest error in going from Eq. (36)
to Eq. (37) being the neglect of the change in d.

We may estimate the right side approximately
by noting that the dividing line will occur at rather
high polarity where 4 —~Z and Z* are approximate-
ly equal to the valence Z and Eo is near 1. Then
the right-hand side becomes 1 —0. 028Z e /d(V2
+ V',)'~'. Taking Z = 1 and typical values of d = 2 A

and (V,'+ V', )'~' = 4 eV, we obtain a polarity 0. 95, of
the same order as the experimental Q. 8. This
criterion is qualitatively correct and can provide a
guide to the influence of factors other than the
polarity in determining structures. We have not
yet explored the reliability of Eq. (36) for a range
of materials.

We may make a similar analysis with respect to
metallicity. Note in Eq. (32), for elemental semi-
conductors, that the promotion energy tended to
cancel the energy gain in forming the bond and that
at a metallicity of one they exactly canceled; no
net energy was gained in promoting the electrons
and forming the bonds. Thus we may regard the
energy of the covalent structure with n = 1 as
being comparable to that of a metal with the te-
trahedral structure. In a metal no promotion oc-
curs and the electrons are broadened into bands
with no energy gap. In such a state the ions may
be expected to rearrange themselves to minimize
their electrostatic energy of interaction; the ener-
gy is lower in the close-packed metallic structure
than in the zinc-blende or diamond structure. The
electrostatic energy per atom in the case of the
metal is written'

E"= —(Z e /2ro)n, (38)

n &1 —0. 11Z'e /Va&0. (4o)

In the elemental semiconductors Z = 4 and taking

where ro is the radius of the sphere with volume
equal to the atomic volume. This is approximately
equal to the energy of an ionic charge in a uniform
compensating charge distribution of radius ro.
Thus it contains an estimate of the binding energy
of the electrons to the atom and is more appropri-
ately compl. red at constant volume than at constant
d. a takes the value 1.79 for the three common
metallic structures and the value 1.67 for the dia-
mond structure. ' The difference may be written
0.45Z e /&od, where this rearrangement energy,
as in the polar case, has been reduced by the di-
electric constant for the tetravalent structure. d
is again the separation in the tetrahedral structure.
Thus the energy in the diamond structure minus
that in the metallic structure is given by

E~b E„„'=4V2(1—n ) —0.45Z—e /cod. (39)

We conclude that a metallic structure is favored
when
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V~, d, and co from tin we obtain a critical metal-
licity of 0. 79. This is a reasonable figure, par-
ticularly when we note that the metallicity, in con-
trast to the polarity, is not restricted to the range
0 to l. We noted in Table I that the metallicity of
tin was 0. 92 putting it on the metallic side of the
critical value.

Note that both in the formulas (37) and (40) one
should evaluate both sides of the equation for the
material in question in order to see which struc-
ture has lower energy. In our model there does
not exist a true critical polarity or critical metal-
jicity because other variables have been included.
Note in particular the sensitivity of the right-hand
side of Eqs. (37) and (40) to the dielectric constant,
which varies from 6. 7 to 24 from diamond to tin.

The criterion for the formation of a metallic
structure can be directly generalized to nonele-
mental materials simply by using the appropriate
electrostatic energy. Of course the degree of re-
liability of these criteria will only be learned by a
rather extensive comparison of a wide variety of
materials. Such a study has been undertaken by
Ciraci. "

VII. COMPARISON WITH OTHER APPROACHES

It is apparent that we have drawn heavily on the
work of Pauling who postulated an ionicity scale
to classify the properties of partially covalent
materials. We have drawn also heavily on the
work of Phillips and Van Vechten' who redefined
and evaluated ionicity on the basis of the dielectric
constant. It may be helpful to comment specifical-
ly also on some of the differences in these ap-
proaches.

The distinction between our model and the work
of Pauling is perhaps the sharpest. The conception
of ionicity, a number to be associated with each
material, and, the finding that a wide range of
properties depended principally on that number,
provided a great conceptual simplification and a
codifying of a wide range of experimental data. It
allowed also a prediction of those properties for
materials for which they have not been measured,
this prediction being ultimately based on the mea-
surements on other materials. For many purposes
one need ask no more of a theory. It is however
an interPretive theory; without looking at experi-
ment we do not know for example if cohesion should
scale with ionicity or with the square root of ioni-
city or in some other way. In contrast, our model
is an attempt at a predictive theory. Knowing only
the definition of the model, given in Sec. I, we may
predict the cohesive energy. That prediction does
not depend upon the measurement of other cohesive
energies, only upon the atomic term values, the
dielectric constant, or other properties with no
immediate relation to cohesion. Some might re-

gard this as a step backward since the predicted
cohesive energy is very inaccurate in comparison
to that obtained from the ionicity and an empirical
cohesive-energy curve; to others, a predictive
theory is the essence of understanding. In addi-
tion, it is always possible that a predictive theory
will provide a more complete and accurate inter-
pretive theory. Much of the difference is in what
we seek to accomplish. The same contrast be-
tween the bond-orbital model and the discussions of
metalization by Mooser and Pearson' reflects the
contrast between predictive and interpretive ap-
proaches.

There are two features of the Phillips-Van
Vechten work on ionicity which we should mention
and compare with: First, was the modified choice
of the standard for determining ionicity. We have
discussed at various stages in this article the
selection of standards for the evaluation of the pa-
rameters of the bond orbital model. With respect
to the choice of covalent energy V~ and polar ener-
gy V„we have adopted precisely the standards
used by Phillips and Van Vechten to obtain the cor-
responding parameters in their approach. We are
uncertain of the standard which might best be
chosen for the metallic energy V, . For the purpose
of this article, we have used the atomic term
values, though our preliminary results would sug-
gest that the cohesive energy itself would provide
a better choice. Perhaps some other property
would do even better, it does not affect the main
features nor the importance of the model.

The second aspect of the Phillips-Van Vechten
approach, which was based upon pseudopotentials,
is a closer identification of the parameters of the
model with the fundamental parameters of the elec-
tronic structure than that provided by the Pauling
theory. However, even in the Phillips-Van Vechten
approach the connection with the electronic struc-
ture is quite tenuous. It is based upon the Penn
formula which relates the dielectric constant to
the average band gap on the Jones zone face. How-
ever, Heine and Jones ' pointed out that the band
gap is not expected to be related to the even and
odd parts of the pseudopotential through Eq. (27)
as assumed by Phillips and Van Vechten. On the
other hand, the use of the formulas expected on
the basis of our knowledge of the electronic struc-
ture did not lead to an ionicity which suitably scales
the experiments. Thus experiment required the
use of Eq. (27) but the clear connection with the
electronic structure was lost.

One might ask why the very plausible formulation
of the dielectric constant by Penn, combined with
our knowledge of electronic structure, failed to
produce a suitable scale of ionicity. The answer
may be that it does when the ionicity and the band
gaps are sufficiently small. Then in almost any
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model the dielectric constant will vary as the
square of the asymmetry in the potential (V, or C)
and, except for a scale factor, all scales are the
same. If, however, the band gap and the ionicity
become large, it may be necessary to use a model,
such as the bond-orbital model, which provides a
good description even in the extreme ionic limit;
in that limit we expect a full rare-gas configuration
on the anion. The Penn model does not do that.
Thus it may have been necessary to use a formula,
such as Eq. (27), which we have seen provides an

ionicity very nearly linear in n~ over the range of
interest.

Another difficulty in the pseudopotential-based
model, which arises from the absence of a clear
relation with electronic structure, is that we can-
not calculate properties directly in terms of the
ionicity parameter. Thus it becomes difficult to
use it as a predictive theory.

A very important feature of the bond-orbital
model is the use of two parameters to characterize
a material. We could of course use as many pa-
rameters as we wish to distinguish materials; it is
a. tradeoff between simplicity and accuracy. How-

ever, the two parameters, polarity and metallicity,
which are basically the same two characteristics
used by Mooser and Pearson, ' provide the criteria
for choosing among the three natural classes of
bonding: covalent, ionic, and metallic. They also
seem, as we have found in our discussion here,
to describe the two major trends which are appar-
ent in the properties of partially covalent materials.

VIII. EXTENSIONS OF THE METHOD

Sta,rting with the bond-orbital model, as de-
scribed here, there are four natural directions to
go: The first is in the application of the model to
the complete range of tetrahedrally bonded mate-
rials. In doing this we would hope to learn the best
criteria to the use in the selection of the param-
eters, particularly the V', and the V', . In addition,
we should learn the extent of the reliability of the
method for the particular properties we have dis-
cussed.

A second activity would be the application to sys-
tems other than tetrahedral solids; in a number of
cases the extension is most natural. In the trigo-
nally bonded graphite, for example, sp hybrids
may be constructed directly and are known to pro-
vide a meaningful description of the 0 bands. The
definition of V& and V2 is immediate as well as a
choice of V, for a partially polar counterpart. The
~ states are quite separate. Though they do not fit
in the same category, in the spirit of the bond-
orbital method we would characterize them by the
smallest number of parameters possible, pre-
sumably the position of the band in comparison to

the v bands, and a single overlap integral. Simi-
larly, the extension to transition metal compounds,
in which hybrids are constructed with 4 states,
as well as s-P states, is quite natural. It does not

appear at this stage fruitful to carry over this
tight-binding approach to the simple metals. When

a system has formed the metallic structure cova-
lency, in the sense we have used it in this paper,
becomes a small correction. The system is in
essence a free-electron gas, and corrections
should be made on that description, presumably
using pseudopotentials. Similarly, in an ionic
structure it appears appropriate to use the fully
ionized state as the starting description.

A third extension of the system is the study of
properties other than those considered here. One
class of properties which may be considered are
those which involve the deviation of the system
from tetrahedral arrangement; the elastic shear
constants are such a property. It is not clear that
these can be meaningfully treated without the intro-
duction of an additional parameter. Certainly an
understanding of the equilibrium spacing will re-
quire terms in the energy which were not included
in the model described in Sec. I. The properties
for which the extension seems the least appropriate,
are those which involve the conduction bands, such
as transport properties in n-type semiconductors.

A fourth activity in relation to this model might
be the refinement of the model. This could be done

by the introduction of additional parameters, though
we indicated in Sec. VII we feel that in some sense
the number introduced here is optimum. Another
refinement could be the addition of corrections to
the model in a perturbative scheme. The tradition-
al method for doing this is based upon the configu-
ration interaction in which excited configurations
are added to the starting ground state. Such an ap-
proach seems quite inappropriate in the context of
the bond-orbital model, which does not provide a
meaningful description of those excited configura-
tions. A much more natural refinement of the
bond-orbital model is provided by the orbital cor-
rection method. ' In this method starting orbitals
are defined, and the difference between the true
eigenstate and the starting states is called the or-
bital correction. The energy is computed system-
atically in an expansion in that correction. It is
frequently useful, though not necessary, to expand
the orbital correction in a complete set, such as
plane waves or plane waves orthogonalized to the
starting state. Thus the method does not require
any detailed knowledge of the excited states, it re-
quires only a reasonable description of the ground
state. An extremely important feature of the
method is that it is possible to calculate the energy
to second order in the orbital correction without
ever performing the diagonalization which specifies
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the particular linear combination of orbitals which
makes up the true eigenstate. It was the corre-
sponding feature of the bond-orbital method which
enabled us to obtain the total energy and the charge
distributions without ever diagonalizing with respect
to the matrix elements V„ that is, without ever
performing a band calculation. In the bond-orbital
model this feature arose from the unitarity of the
transformation, In the orbital correction method
the transformation is not necessarily unitary since
the starting orbitals may not be orthogonal. (In
particular if the bond orientations are not exactly
tetrahedral, the bond orbitals will not be orthog-
onal. ) In addition, there is an energy dependence

which spoils this feature even if the orbitals are
orthogonal. However, we succeeded in overcoming
that problem formally. This leads to extra terms
in the result [Eq. (33) of Ref. 3] but ones which can
be evaluated without the diagonalization.

Our experience with the orbital correction meth-
od, and related methods, would suggest that the
rewards are not so great in seeking small correc-
tions where the zero-order theory is meaningful
but that the orbital correction method is an appro-
priate vehicle when the essential features are not
contained in the zero-order theory. It appears at
present that the elastic shear constants may be
such a case.
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