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We consider a monatomic host lattice containing molecular impurity centers and find that even in the
harmonic approximation impurity modes can interact. This leads to an interference term in the scattering
cross section for lattice waves which may be of the same order as the direct terms. From a knowledge of the
nonvanishing elements of the scattering matrix, one can obtain all information on the possible scattering
mechanisms and acoustical activity (depolarization) of the modes involved. A model calculation reveals the
contribution to the forward-scattering cross section of the term due to the interference between a librational
mode and the motion of the center of mass. We also study the case where the symmetry at the defect site is
reduced. We conclude with a discussion of what we might expect in a more realistic situation and point out
that from corresponding experimental data it should be possible to obtain information about the extent to
which a molecular defect of lower symmetry affects the dynamics of the host lattice.

I. INTRODUCTION

A study of the dynamics of a molecule in a host
crystal based on group-theoretical methods was
presented in a previous paper! (I). As an example
of the practical value of symmetry arguments it
was demonstrated that an analysis of the dependence
of the infrared absorption on polarization relative
to the crystallographic axes already leads to spe-
cific information on the orientation of a polyatomic
molecule imbedded in a cubic crystal. As a second
example we shall now study the scattering of lattice
waves by a stereoscopic defect molecule in a sim-
ple cubic crystal in some detail.

In the harmonic approximation? it is possible to
transform the dynamical variables of the system
into a form in which there is no energy exchange
between the new variables. The description defined
this way in terms of normal modes or phonons is
equivalent to a quantum mechanical discussion.
Point defects, i.e., local changes of force constants
or mass differences at a point compared to the
ideal lattice, introduce either reasonances in the
quasicontinuous spectrum of lattice vibrations or
localized vibrations above the ideal band(s).

The scattering of lattice waves by point defects
is understood rather well.3!' The reason for the
considerable interest in this subject is due to the
experimental verification of resonances in the scat-
tering cross section from thermal-conductivity
measurements at low temperatures. 2

In Sec. II we refer to the extension of the
Green’s-function formalism of Lifshitz® to molec-
ular impurities with additional degrees of freedom
by Wagner!** and we give an expression for the
differential scattering cross section for lattice
waves. The scattering cross section contains two
terms, the direct one and an interference term,
which may be of the same order of magnitude and
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contribute appreciably to the scattering cross sec-
tion. This is a manifestation of the interaction of
impurity modes which we do not find in the case of
point defects. [We shall denote by impurity (or
defect) modes those excitations of the molecular
impurity center which are “normal modes” in the
defect space (but not, however, exact eigenstates
of the perturbed crystal); they are labeled by rows
of a certain irreducible representation of the ap-
propriate point group. ] In Sec. III we consider the
simple model of a spherical defect molecule and
calculate the different contributions to the scatter-
ing cross section. In Sec. IV we replace the
sphere by a rigid spheroid. This particular defect
results in a lower symmetry at the defect site. We
find that the number of nonvanishing matrix ele-
ments has increased, but there are no new scat-
tering mechanisms. Of course, the degenerate
modes may be partially split depending on the ori-
entation of the spheroid with respect to the crys-
tallographic axes. We conclude in Sec, V with a
summary of our results, discuss a more realistic
situation, and indicate the possibility of obtaining
information about the extent to which a molecular
defect of lower symmetry than the host crystal af-
fects the dynamics of the latter from correspond-
ing experimental data.

II. SCATTERING OF LATTICE WAVES

The Green’s-function formalism introduced by
Lifshitz® for the calculation of lattice vibrations in
impure crystals is restricted to perturbed lattices
with an unchanged number of particles (monatomic
impurity centers), i.e., to cases where there are
neither new degrees of freedom nor a change in
symmetry at this particular lattice site. Wag-
ner!®!* extended this method to molecular impurity
centers, and for details we refer to his work.

We are interested in the scattering of lattice

4475



4476

waves by molecular impurity centers and consider
the following system. A molecule replaces a reg-
ular lattice atom at a site, which we choose as ori-
gin of our coordinate system. We assume that the
disturbance extends only to a small number 7 of
lattice sites around the origin and treat the dynami-
cal problem in the harmonic approximation.

The theory of the scattering of lattice waves by
imperfections was first worked out rigorously by
Lifshitz. '® This theory has subsequently been de-
veloped further by Callaway, *® !¢ Klein, ! Krum-
hansl, ® Takeno, " and Ludwig. ®

We can write down a formally exact solution for
the scattered wave in terms of the so-called scat-
tering matrix #, which in turn is defined as the
solution of the equation

t=v -vgt=v -igv
=v(I+gv)!. (1)

Here g(w?) denotes the Green’s function of the un-
perturbed lattice and

v=d(w?) - by(w?)b, (2)

in analogy to the case of a point defect, is called
the effective perturbation. It contains, apart from
the rather smooth function d(w?) which character-
izes the perturbation of the lattice by the molecule
(difference in mass of the molecule and the re-
placed lattice atom, changes in the force constants
involved), the additional molecular term by(w?)b
which has voles [in the Green’s function of the
molecule y(w?)] at the eigenfrequencies of the mole-
cule w(k). Thus v cannot be treated as a perturba-
tion near these frequencies however small the cou-
pling b % being the transpose of ) may be. Molec-
ular frequencies lying within the band(s) of the un-
perturbed crystal exercise a great influence on the
scattering of lattice waves and give rise to reso-
nances in the scattering amplitudes.

Because of the low rank 37 (the number of de-
grees of freedom in the crystal affected by the in-
troduction of the defect is 37), it is in general easy
to diagonalize the denominator as well as the nu-
merator of the f matrix [Eq. (1)] by symmetry con-
siderations. The eigenvectors are given by the in-
variant subspaces (composing the defect space) of
the corresponding proper or improper subgroups
of the symmetry group of the host crystal consis-
tent with the compatibility conditions (Paper I and
Appendix). With this information we can write
down the solutions immediately,

gve(v)=u(v)e(v)
and
ve(v)=v(¥)e(v).

Here e(v) is a column vector and v labels the row

of the irreducible representation according to which
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the eigenvectors transform. Thus we can write the
t matrix in the form

tE v(v)

Truly) CWEW) =2 TW), (3)

where we sum over all defect modes v. Thefactors

o)

) =10 1 +u(v) (4)

depend mainly on the Green’s functions which char-
acterize the dynamics of the system of the host lat-
tice and the molecular impurity center. The ma-
trices T(v)=e(v)é(v) reflect essentially the sym-
metry of the system. They are given by the outer
product of the invariant carrier (sub)spaces of the
rows of the irreducible representations of the sym-
metry group of the defect which are compatible
with the corresponding invariant subspaces of the
symmetry group of the unperturbed crystal.

As in the quantum mechanical theory of scatter-
ing, the differential scattering cross section and
the scattering amplitude are related® by

o, kK2 )= | £, kA2, (5)

However, the proof of an optical theorem does not
carry over directly to phonon scattering!® because
when changes in mass are involved, there is also
a change in the “effective metric tensor.” We use
a relation between the scattering matrix and the
scattering amplitude which was derived by Ludwig®
from an asymptotic expression for the scattered
wave. If we make the acoustic approximation

wEr) =) [k, (6)

¢(X) being the group velocity in the X branch, then
in our notation and introducing the symbol IkA) to
label a plane-wave state, the scattering amplitude
has the form

fli, k%)= -——%—)m'x']t]l?x),
where adenotes the lattice parameter. Hencethe dif-
ferential scattering cross section[Eq. (5)]is given by

- - 6
olir, k") = IE;Z?-(;TZ) £*()t(v)

x &N T(w) [RO)*E V| T) [RY) - (7)
using the decomposition (3). Terms which contrib-
ute with p=v we call divect terms, and those which
contribute with u #v we call interference terms,
for they are due to the interaction of the different
impurity modes labelled by u and v, respectively.
It should be emphasized that this interaction of im-
purity modes is in clear distinction from the situa-
tion in a molecular crystal where the normal modes
themselves are plane waves partly translational,
partly rotational in character.’

From this expression we see that resonances in
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the f matrix also introduce resonances in the scat-
tering cross section. The conditions for such reso-
nances to occur were discussed by Klein® and also
by Wagner.!* It was found that modes for which

the eigenvalues of the dynamical problem contain
the poles of the molecular Green’s function are
likely to satisfy the resonance condition

1+ Reu(y, w?)=0, (8)

i.e., the real part of one of the denominators of
Eq. (4) be zero.

We realize that the scattering of lattice waves
by an impurity is much more complicated than the
scattering of plane waves by a static potential in
quantum theory. The equation w?(kA)=w? which
determines the stationary points, can have solu-
tions in several branches of the function w?(k)).
This has the consequence that although the incom-
ing wave is in a definite branch of w?(k)), there
can be several scattered waves propagating in dif-
ferent directions with the same frequency but with
different group velocities and polarizations.

Even though it is not likely that a resonance in
the interference term [Eq. (7)] would be as pro-
nounced as one in a direct term, there still exists
the possibility that the two terms might be of equal
importance since the cross term does not enter
through a perturbation calculation. A pair of
modes, which transform according to rows of dif-
ferent irreducible representations, with eigenfre-
quencies in the same range and matrix elements
between appropriate states different from zero may
contribute appreciably to the scattering cross sec-
tion. This possibility exists for instance in the
combination of an in-band librational mode and the
motion of the center of mass of the molecular defect,
and we shall come backto this situation later on.

To calculate the structure and spectral position
of the resonances explicitly, we have to establish
a specific model for both the lattice and the molec-
ular defect.

III. SPHERICAL MOLECULES

We know that the internal binding in a molecule
is often much stronger than the binding to the host
lattice and it is practically unchanged when the
molecule is brought into the lattice.

If we assume such strong internal binding, we
can distinguish three types of motion for the molec-
ular defect.

(a) One type of motion is internal vibrations,
which are practically the same as for the free
molecule. Some of their frequencies may lie far
above the phonon band(s) and are not likely to be
excited by phonon scattering. On the other hand,
there also might be low-frequency modes below the
maximum frequency of the host lattice. Such
modes usually are associated with the stretching
motion involving heavy atoms or bending modes.
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Bending vibrations have substantially lower fre-
quencies than stretching modes of the samé bonds
(approximately § or even less'®). The reason for
this is that bending motions primarily change an-
gles in the configuration of the participating points
which do not call for the same kind of restoring
force (electrostatic repulsion) as in the case of
stretching modes where the bond length changes.

(b) Another type of motion is translational
vibrations of the whole molecule, which are essen-
tially the same as if the molecule was a single
mass. The dynamical behavior of point defects is
quite well understood. *19=2! Also, the scattering
problem for this case has been treated al-
ready®"!1%:16,1%,20 44 we can take over the rele-
vant results from there.

(c) The third type is wotational vibrvations
(quasirotations, librations) of the whole molecule,
for which the molecule acts as a rigid body with
three moments of inertia. The coupling of this
type of motion to the host lattice will normally be
weak and the associated frequency is likely to be
found within the phonon band(s).

In many practical examples the frequencies as-
sociated with motions of type (a) lie above the fre-
quencies propagated by the host crystal and will not
affect the scattering cross section. Therefore we
shall restrict our attention to the latter two types
[types (b) and {c)]. Wagner, * in his analysis, left
out the motion of the center of mass. This we
shall not do here for the following reasons: First,
modes associated with this motion are most likely
to be inband modes. It is well known®%%20 that g
heavier isotopic mass or the weakening of the force
constants around a point defect give rise to reso-
nance (pseudolocalized) modes. Then to be consis -
tent with our model, where the center of mass of
the molecular defect belongs to the lattice system,
and with the assumption that the defect molecule
be only weakly bound to the host erystal, we have
to expect that the force constants describing the
links between the molecular center of mass and the
neighboring atoms are weaker than in the ideal
lattice. Second, as already mentioned in the dis-
cussion of the differential cross section, Eq. (7),
this mode might not only contribute directly to the
scattering cross section but also appreciably
through the interference term.

Let us now consider a rather simple model. As
host lattice we choose a monatomic (mass M) lat-
tice of simple cubic structure with radial force
constants o and tangential force constants 3. We
restrict the interaction among the lattice points to
nearest neighbors only. This crystal is elastically
stable as long as? 0<28<a and the highest fre-
quency propagated is

Wi, =4(a +2B8)/M= w3,
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FIG. 1. The molecular defect is represented by a uni-
form rigid sphere with moment of inertia 6 and mass M’
different from the mass M of the atom replaced by the
molecule. The sphere is coupled to the six nearest lat-

tice atoms by radial springs as well as tangential springs.

The axes indicated in the figure correspond to the three
orientations with respect to the crystallographic axes of
a nonspherical defect molecule as considered in Sec. 1V,

which defines the Debye frequency w,. We repre-
sent the molecular defect by a rigid sphere of a
single moment of inertia § and mass M’ which may
be different from that of the atom replaced by the
molecule. The sphere is coupled to the six near-
est lattice atoms by radial springs with constants
k and tangential springs with constants f (Fig. 1).
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Then the three remaining molecular coordinates
are degenerate and conveniently taken as rotations
around the three cubic axes. It is easy enough to
see that this model allows motions of type (b) as
well as of type (c).

For this model, the molecular Green’s function
is given by

1

2 . .
Y(w?) = m I (three dimensional),

where
W?(K) = 9—4/% .

There are 21 lattice coordinates involved in the
disturbance, namely, those to which the spherical
molecule is coupled complemented by the three
coordinates of the center of mass. Our dynamical
problem as well as the matrix ¢ are defined in this
21-dimensional defect space (matrix v). However,
group theory provides a powerful tool for reducing
the calculational effort, and we do not have to work
in this high-dimensional space. From the informa-
tion given in Table I (Appendix) we see that the
most that we must do is to solve a 3X3 secular de-
terminant for the modes transforming according to
the irreducible representation F,,. It is also easy
to see that only modes transforming either accord-
ing to the irreducible representation F,, or accord-
ing to F,, can induce dynamical effects in this mod-
el where we have replaced the molecular defect by
a rigid sphere. The former yield the librational
motion and the latter are connected with the motion
of the center of mass. The symmetry of the other
modes is such that they provide no coupling which
could lead to a net force or torque.

TABLE I. Invariant subspaces of the full cubic group O,.
— Invariant subspaces

O, ml my mi 3 | 2 | 1 | 0 | 1 | 2 | 3
Ay 1 0 1 fo o % 10 5 0 l% 0 0 1o 0 0 % 0 0 |0 % 0 10 0 %}
E! 1 0 1 {o o 2%, 10 % 0 Ixy O 0 |
E? 1 0 1 {fo o 0 10 % 0 lxy 0 0 |
Fi, 0 1 1 o =z 0 10 0 z; 10 0 0 I
Fi, 0 1 1 {# o 0 10 0 0 10 0 z, |
F}, 0 1 1 fo o 0 15, 0 0 1o vy 0 |
F}, 1 0 1 {o =z 0 10 0 2z, 10 0 0 |
F3, 1 0 1 {z; o 0 10 0 0 10 0 2y |
F}, 1 0 1 {o o 0 Iy, 0 0 10 » 0 |
Fi, 2 0 3 {e, o0 0 Iz, © 0 Iy, 0 0 Iy 0 0 lxy, 0 0 Ix, O 0 lx, 0 o}
Fi, 2 0 3 {o 0 10 ¥, 0 10 y 0 10 yo O |
F}, 2 0 3 fo o z3 10 0 24 10 0 z;  JO 0 zy |
F}, 1 0 1 & o 0 Iz 0 0 1o 0 0 10 0 0 |
F, 1 0 1 {o 3 0 10 0 0 1o ¥y 0 10 0 0 |
F3, 1 0 1 {o o 0 10 0 Z 10 0 24 10 0 0 |
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In order to determine the individual contributions
to the scattering cross section [Eq. (7)] we need,
besides the ratios v(v)/[1+u(v)], the matrix ele-
ments of the form (k /I T(v)Ik\). From the in-
variant subspaces given in Table I (Appendix) it is
not difficult to construct the matrices T(v) (the
vectors spanning the stable subspaces have to be
normalized first) and to determine the nonvanishing
matrix elements for each row of the different irre-
ducible representations. From the matrix ele-
ments which are different from zero we get all the
information about the possible scattering process-
es. The results may be summarized as follows:

A,,: This mode scatters longitudinally polarized
phonons. It is acoustically active in the sense that
the scattered phonons may be either longitudinally
or transversely polarized.

E,: This mode also scatters longitudinally polar-
ized phonons only and is again acoustically active.

F,,: This mode scatters transversely polarized
phonons only and the acoustical activity is re-
stricted to transversely polarized final states, such
that propagation and polarization vectors of initial
and final states span the same plane.

F,,: Also this mode scatters transversely polar-
ized phonons only and has the same restricted
acoustical activity as Fh,.

F,,: This mode scatters any incident phonon re-
gardless of the polarization but does not change the
polarization.

F,,: This mode scatters transversely polarized
phonons only and maintains the polarization.

The mode which transforms according to the ir-
reducible representation F,, is associated with the
additional degrees of freedom introduced by the
molecular defect (librational motion) and the mode
transforming according to F,, corresponds to the
motion of the center of mass of the molecule.
From the results above it becomes clear that, for
example, the combination of the two modes men-
tioned above can give rise to a nonvanishing intevr-

J

fevence term in Eq. (7) which enhances the scatter-
ing cross section for lattice waves.

To proceed with the calculations we consider the
following particular situation which corresponds
essentially to that of an isotopic mass defect. We
take the defect molecule to have a mass M’ differ-
ent from that of the lattice atom that it replaces,
but assume that the force constants involved do not
change (a =%, PB=f). These assumptions are rea-
sonable and do not oversimplify in the sense that
besides the mode transforming according to the
irreducible representation F,,, which is associated
with one of the internal degrees of freedom of the
molecule, there is still one other mode (F,,) con-
tributing to the scattering cross section. They
also allow us to demonstrate the presence of the
interference term in the cross section. We solve
the dynamical problem associated with the motion
of the center of mass (defined in the three-dimen-
sional invariant subspace of F,,) using the values
for the Green’s functions as tabulated by Oitmaa®?
and obtain the eigenvalues v(F,,) and u(Fy,). Owing
to the fact that the coordinates associated with the
librational motion of the molecule are degenerate
(with one single moment of inertia only), the in-
variant subspace of F,, splits into one-dimensional
components and the eigenvalues v(F,,) and u(F,,)
can be read off immediately.

We recall that a consequence of the Debye ap-
proximation [Eq. (6)] is that® |k ’I=1kl, i.e., we
are dealing with elastic scattering.

As our main interest is to show the existence of
the interference term it is sufficient to limit our
considerations to the forward scattering cross sec-
tion. The assumptions wehave made sofar and the
structure of the matrix elements different from
zero as discussed above (F,, scatters transversely
polarized phonons only and propagation direction
and polarization are confined to a plane; F,, does
not change the polarization) allow us to write Eq.
(7) as

o(kx, forward)= W"—;(—Mz; 25 ()t W)EN | T(w) [Rx)*(RN | T(v) [Rn )

uy 2’

or in the more transparent form,

6
o(k), forward) =1—(;:3;4—(—)\—)§ <2lt(g)’a1('jh'| T(u)|kn) |2

where in our case u,v=F;,, F;,. The first term
represents the direct contributions to the scatter-
ing cross section of one of the modes and the sec-
ond term arises from the interaction between the
different modes.

2Re 20 t*()tW)(EN | T(w) [RA)* (kA | T(v) ]EA)) ,
ulv

-
The resulting individual contributions and the
total forward scattering cross section for three dif-
ferent choices of w(x) are shown in Figs. 2-4. The
difference in mass was chosen to be € =(M ' - M)/M
= 3. 0 and the moment of inertia of the spherical de-
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23 term depend very much on the relative position of
1.0F Ff the resonances due to the modes F,, and F,, and
i 9 also on their dependence on w. It is clear that the
contribution of this term to the scattering cross
08 section diminishes the further apart the two reso-
o L nances appear.
> We know from the case of point defects?* that
E 0.6f resonances are not exact eigenstates of the per-
S L turbed crystal. They occur at frequencies at which
2 q
= localized modes would tend to appear, but because
= 0. the density of in-band modes is finite at these fre-
S | —
=
b 02r
. s 1o} 1
o ,X ~ -] L qu
- r 08t
_02 1 L Il 1 1 ! 1 1 1 2 L
‘ 219 B
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FIG. 2. (a) The individual contributions to the for- § 06+
ward scattering cross section OFy ~~7s OFy! —~— "_'.
and op, Fy,; , respectively, as a function of the = I
normalized lattice wave frequency for w(k)/wp=0. 36. 8- 04}
The horizontal bar marks the height of the latter term. = ’
(b) The sum of the contributions above. b g
02t
fect molecule was taken as 6 =M ‘(a)?. The scaling I
parameter S in the figure is S = 167°c*(¢)/abw?. O0 . ‘2 0'4 : 06 08 0
We see not only that the interference term can be 0. g ’ ’ :
of the same order of magnitude as the direct terms w
and contribute appreciably to the scattering cross Wp
section, but also that the position of the maximum Lo .
FIG. 3. (a) The individual contributions to the forward

of the weaker resonance (F,,) can be shifted (Fig.
2). This could mean a change in the infrared prop-
erties, for as we know, infrared-active modes
transform according to the irreducible representa-
tion F,,. Magnitude and shape of the interference

scattering cross section op, ! ----, O} —-—, and
OFyg Fyy' , respectively, as a function of the nor-
malized lattice wave frequency for w(k)/wp=0.41. The
horizontal bar marks the height of the latter term, (b)
The sum of the contributions above.



8 DYNAMICS OF CRYSTALS WITH MOLECULAR...II...

1.0F
08
2 -
o
8 o06r
] L
2 b
e i i
5 o2 I
Fu
i
O L/ -
_0.2 1 i 1 1 1 1 1 1 1
1.0r
© 08
=4
g L
2 o8
;. -
S 04
b L
0.2r
Og—02 04 06 08 10
W
Wp
FIG. 4. (a) The individual contributions to the for-

ward scattering cross section opy,: ----, OFy,: -—
and OF, Fyy' , respectively, as a function of the
normalized lattice wave frequency for w(k)/wp=0. 50.
The horizontal bar marks the height of the latter term.

(b) The sum of the contributions above.

quencies, they can decay into the quasicontinuum

of wavelike modes and acquire a width, or lifetime.

We note that the resonance character of the con-
tribution from the librational motion is much more
pronounced than that of the contribution due to the
motion of the center of mass (F,,). This is even
more true if the resonance appears in a region
where the density of states of the ideal crystal is
low, reflecting the increasing lifetime of the F,,
mode with decreasing density of states of the host

’
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crystal. This property is known® in the case of a
point defect, and it was to be expected to find it
also in the case of a molecular defect. The fact
that the librational mode introduces a stronger
resonance than the translational motion of the cen-
ter of mass can be understood as follows. In the
first instance the mode has a different character
(rotational) from the wavelike modes of the host
crystal, whereas in the second case the motion of
the center of mass is of the same translational
type as the eigenstates of the host crystal. This
situation has a parallel in the case of molecular
crystals with impurities. The detailed Green’s-
function analysis of Dettmann and Ludwig® showed
that there can be localized librational modes within
the quasicontinuum of translational states. Hence
by this analogy, in the case of the resonances due
to the librational modes we are dealing with fruly
localized modes rather than with pseudolocalized
modes as occurs for the motion of the center of
mass.

IV. SPHEROIDAL MOLECULES

We now replace in our model the rigid sphere by
a rigid spheroid with two equal moments of inertia
(different from the third one). As we are mostly
interested in the dynamical behavior of the libra-
tional modes in this case, we assume the coupling
to the lattice to be the same as in the spherical
case. Introducing this particular defect into the
host lattice results in a lower symmetry at the de-
fect site depending upon the orientation of the mole-
cule with respect to the crystallographic axes. We
shall consider the following three situations (Fig.
1). The defect molecule is oriented along one of
the axes of the cube. In this case the symmetry of
the dynamical problem is D,,. If the molecular de-
fect is oriented along a body diagonal, then we are
dealing with the symmetry group Dy,. The appro-
priate symmetry group for the molecule with its
third axis parallel to one of the face diagonals is
Dsp.

We are primarily interested in seeing if there
are any new scattering mechanisms (different ini-
tial and final states) associated with the librational
motion which are introduced by the nonspherical
defect molecule. This is conveniently done by
looking at the elements of the scattering matrix.
The necessary information for constructing the
corresponding T(v) matrices is contained in Tables
II-VII (see Appendix). In all three cases the anal-
ysis shows that the number of matrix elements dif-
ferent from zero increases considerably, but there
is the same feature as for the spherical defect,
namely, that only transversely polarized phonons
are scattered into transversely polarized final
states. However, phonons propagating parallel to
the distinguished orientation of the molecule are
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TABLE II. Invariant subspaces of the subgroup Dy,.
_ Iilvariant subspaces
Dy mt mE my 3 I 2 [ 1 I 0 I 1 I 2 I 3
Ay, 2 0 2 {o 0 =z 10 x 0 Ixx 0 0 10 0 0 Ix 0 0 10 % O |0 O Z}
Ay O 1 1 {0 o o Iy 0 o 10 y O |
By, 1 0 1 o 0o o 10 % 0 Ixg O 0 |
By, 1 0 1 {0 0 o0 Iy 0 10 3 0 |
E! 1 1 2 {x5 0 0 10 o 1o o0 z |
E% 1 1 2 {0 y; 0 10 0 2z 10 o o |
Ay, 2 0 3 {0 0 =z 10 0 =z 10 0 =z 10 0 2z 10 0 =z 10 0 =z |0 0 2}
B,, 1 0 1 {o o o o o z 10 0 2z 10 0 o0 |
E! 3 0 4 {x3 0 0 lx, 0 0 Ix 0 0 Ix 0 0 |
E? 3 0 4 {0 9y; 0 10 3 0 10 y 0 10 9y, O |

not affected by the libration mode which is asso-
ciated with the other moment of inertia. (4,, in
case of D,,, A, in case of Dy, and B,, in case of
D,,, respectively. In the latter case we assumed
the spheroidal defect to be oriented along the [110]
direction.) Of course, degenerate modes may be
partially split depending on the orientation of the
spheroid.

V. SUMMARY AND DISCUSSION

Using the results in a previous paper (I) we have
analyzed the scattering of lattice waves by a stereo-

scopic defect molecule in a simple cubic crystal.

Assuming that the internal binding in a molecule is

much stronger than the binding to the host lattice,
we considered the simple model of a rigid sphere
coupled to a simple cubic lattice with tangential as
well as radial springs. The nonvanishing matrix

elements in the expression for the differential scat-

tering cross section provide information on the

possible scattering mechanisms and we found that
all the even modes are acoustically active and that
some of the modes interact with longitudinally or
with transversely polarized phonons only.

In a model calculation using the Green’s functions
given by Oitmaa?® we determined the individual con-
tributions to the scattering cross section and found
an interference term, representing the interaction
of the librational motion and the motion of the cen-
ter of mass. This is in contrast to the case of
point defects where in the harmonic approximation
defect modes do not interact. This has the follow-
ing consequence. It is conjectured that this inter-
action in reality would be femperature dependent
and that only an anharmonic treatment could reveal
all the requisite details. The possibility that owing

to the presence of the interference term the position
of the weaker resonance (i.e., F,,, according to

which the infrared active modes transform) may be
shifted is of practical importance as it is a common

TABLE IlI. Invariant subspaces of the subgroup Dg,.

Invariant subspaces

Dy mY mt  my 3 I 2 I 1 [ 0 [ 1 I 2 [E]

A, 2 0 2 {yy » % Iy xm ¥ Ixm oy oy 10 0 0 1% ¥ 3 N
Ay 0 1 1 oy 0 Iy 0 3 10 5 gy |

El 2 1 3 {xf af 2% Iy, % 2z lx vy oz |

EZ 2 1 3 {5 x5 13 % 7 lxg oy oz |

Ay 10 1 By 0 Iy 0 3 10 % 3 10 0 o 10 % lys 0 % I3 3 0}
Ay 2 0 3 oy oxm oIy oxm oy 1% oy oy Ix o x x [

E}‘ 3 0 4 {x} x5 2% lyy % 2z lx v 2z |lxg x 2%, |

E:L 3 o0 4 {5 x3 0 1y ®m 7 lxy 3w 2z 1% x O I

== (2 £ 1)
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TABLE IV, Invariant subspaces of the subgroup Dy,.

_ Invariant subspaces

Dy, mbt  m¥  mh 3 2 I 1 I 0 [ 1 I 2 I 3
Ay 3 0 3 {0 0 =25 Iy, x 0 lxg v 0 10 0 0 I%x % O Iy % O |0 0 zy
By 1 1 2 {% x3 0 10 0 z 10 0 =z |
By, 1 1 2 {x; x3 0 10 ze 10 0 2z |
By 1 1 2 {o o 0o Iy % O lx y O |
Ay 1 0 1 o o o 1o Z 10 0o 2z 10 o o 0 0 2z 10 o Z lo o o}
By, 3 0 4 {x3 x3 0 lyy % O lx 9y 0 lxg x 0 |
By, 3 0 4 %5 x3 0 197 % 0 lxy 9 0 1% xy O |
By, 2 0 3 {0 0 2z 10 0 =z 10 0 2z 10 0 2z |

technique to record infrared spectra of molecules
by introducing the molecule of interest in a crystal
matrix (usually an alkali halide). It was pointed
out that in our case the librational mode is a lo-
calized mode rather than a resonance (pseudolocal-
ized) mode. This fact justifies Wagner’s deriva-
tion of the phonon scattering relaxation time for the
in-band librational mode?®?” which was questioned
by Maradudin. 28

In the next section we replaced the rigid sphere
by a rigid ellipsoid with two equal moments of iner-
tia, but different from the third one. In all cases
we found basically the same matrix elements as for

the spherical defect molecule.

We start the discussion of what we might expect
in a more realistic situation with a reminder of the
approximations which we have made. All calcula-
tions were performed within the harmonic approxi-
mation which limits our study to situations where
it can be assumed that the amplitudes of all the
modes involved are small. Our expression for the
differential scattering cross section [Eq. (7)] was
based on the acoustic approximation and the correct
form would contain second derivatives of the sur-
faces of constant square modulus of the frequency
in k space as well as an energy conservation factor.

TAB’LE V. Compatibility conditions for the subgroup Dy, with the four-fold rotation axis along the [001] direction of

the cube,

Compatibility conditions

B,
»

1
E(
2y X3

14

£
23

E‘Z

u
¥ Y2

El

u
X X

A2u
2y

B,
2

Y3 2o 23 X9 X3 Yo Y3

Ay

A2u+Eu

1u

BZu+Eu
Fiu

!
|
,i%';w DI
%
|

||
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Depending on the size of the defect molecule we
must expect structural changes as well as altera-
tions in the force constants in the neighborhood of
the defect, which might even lead to a local in-
stability of the lattice. The defect may take an in-
terstitial equilibrium position which could give
rise to tunneling between equivalent positions. A
different equilibrium position has a greater effect
on the librational than the translational motion, for
the librational frequencies are highly sensitive to
the crystal field at the given equilibrium position.
These effects were not included in the model and
for this aspect we refer to the reports of Krum-
hans1?® and Imry®® as well as the review article by
Narayanamurti and Pohl. 3!

In our study of the librational motion of the
spheroidal defect molecule we assumed the force
constants to be the same as in the case of the
spherical molecule. We now drop this assumption
and ask if there could now be a coupling of the li-
brational motion to longitudinally polarized lattice
waves. The necessary condition is that in the de-
composition of the modes A,,, E,, and F,, due to
the lower symmetry, there must be at least one ir-
reducible representation in common. This is in-
deed the case if the molecule is oriented either
along a body diagonal (Table VI, E,) or parallel to
a face diagonal (Table VI, B,,). However, the
above-mentioned condition is not sufficient, and
indeed from the compatibility conditions it follows

HANS R. FANKHAUSER 8

that the corresponding invariant subspaces (carrier
spaces of the irreducible representations) are in
fact mutually exclusive. Yet there may be reasons
to relax these compatibility conditions, for example
if the defect is no longer assumed to be rigid. Then
there exists a possibility that it would be energeti-
cally favorable for the neighboring atoms to follow
the internal motion of lower symmetry of the de-
fect, and no longer to be governed by the over-all
cubic symmetry of the crystal. This means that
from corresponding experimental results one could
conclude to what extent a molecular defect which
leads to a lower symmetry at the defect site affects
the dynamics of the host lattice.

Indeed, Pohl* found that the low-temperature
heat conductivity of alkali-halide crystals contain-
ing molecular impurities decreases below the value
characteristic for heat transfer by longitudinal
phonons alone. He interpreted the fact that longi-
tudinal phonons get scattered as well as transverse
ones by noting that boundary scattering could mix
longitudinal and transverse phonons continuously
and hence be responsible for the unexpected result.
As we have seen, there is also the possibility that
the molecular defect governs the dynamics of the
crystal at the defect site to a larger extent than
anticipated, having the consequence that longitudi-
nal phonons as well are scattered by the librational
mode due to the additional degrees of freedom of
the defect molecule.

TABLE VI. Compatibility conditions for the subgroup Dj; with the three-fold rotation axis along the [111] direction of

the cube.
Compatibility conditions
7
Ay Ay E; E; Ay, Ay, E! El
Oy Dy By M WM Y 2 %X ¥ 2 Y X X ¥y X X Y 2 X X Y &
Ay Ay, a 0
E! a 0 0 - - -

Y
8|
8|

A21+E:

Do
|
(=}
(=}
¥ ¥
o © (=3 Q
[\
)
|

N
)
|

Fi » A+E, 0 2a 0 22 a 0 0 3a
F3, 0 a 0 2 @ - - -
Fl

1u

1u A2u+Eu

3
Flu

F2

2u

F3

2u

A t+E,

%]
SN
Ly
N, N, N ~— N — ™
(=}
[\
)
(=}
[\
||
|
(=}
(=}
&

2a 2b 2¢ a b ¢ 2c¢ 3@ 3b 3c O

2a 2¢ 206 a ¢ b 2b 3a 3¢ 3 0

a ¢ b a ¢ b 2 - - - -
2a 0 0 3a 0O 0 0 a 2a
2a 0 0 3a 0 0 0 a 2a
a - - - - 0 0 a 2a
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TABLE VII. Compatibility conditions for the subgroup D,, with the two-fold rotation axis oriented along the [110]

direction of the cube.

Compatibility conditions

Al; Bl; BZ; BS: Alu Blu BZu BSu
Oy Dy, X Y1 23 2y X3 2y X3 %X Y Zy X X Yy X3 Xo X Y X3 2 2y 23
Ay, Aq, a 0 a
E, a 0 2a - -
A +B

E? 1™ %% - - - a o
Fi, a a a @ - -
Ff‘ By, + By, + By, a a a a - -
Fj, - - - - 0 a
F;, - - - a a a a
Fiy ¢ A+By+By, - - - a @ a a
F3, 0 a 0 - - - -
F}u a b ¢ ¢ a b © © - - -
F}, (¢ By, +By,+By, a ¢ b b a © b b - - -
Fi’u - - - - - - - - a b c
Fi, - 0 0 a @a 0 0 @ a
F%u A1u+Blu+BZu - 0 0 a a 0 0 a a

3
Fy, a - - = = - - - -

In the classical thermal-conductivity experiment12 to Dr. M. Boon for a critical reading of the manu-
it is more difficult to detect the narrow resonance script.

associated with the librational mode (hence also
the interference term) even if its magnitude is sub-
stancially larger than that of the broad resonance
due to the motion of the center of mass. However,
there are good reasons to believe that due to the
modulation of the magnitude of the moment of iner-
tia 6 by the other internal motions of the molecule,
the former resonance will not be as sharp as shown
in the model calculation (rigid sphere). Further-
more, the new heat-pulse technique (phonon gener-
ation by tunneling in superconductors)®*~* prom-
ises to provide a powerful tool not only in regard
to sensitivity but also in the possibility of separat-
ing the contributions to the scattering cross section
with respect to polarization.

ACKNOWLEDGMENTS

The author wishes to express his sincere grati-
tude to Professor Frank J. Blatt for the kind hos-
pitality extended to him during his stay at Michigan
State University as well as for many discussions
and much encouragement throughout the course of
this work. Concerning the lattice dynamics aspect,
the author benefited from the experience of Dr. W.
M. Hartmann. Thanks are also due to Dr. B. I.
Lundqvist for making the author familar with the
experimental results of Professor Pohl’s group and

APPENDIX

To solve the dynamical problem it is not neces-
sary to work in the whole (often high dimension)
defect space. From group-theoretical theorems
we conclude (see Paper I) that this space can be
decomposed into smaller subspaces, i.e., the
carrier spaces of the irreducible representations
into which the total representation splits. There
is a natural way of obtaining the correct dynamical
eigenvectors belonging to each invariant subspace.
[By invariant subspace we mean the maximal part
of the whole space which carries (a multiple of)
some irreducible representation of the group. ] One
uses the symmetry elements of the group®® to de-
compose the total space into its invariant constitu-
ents. In Tables I-IV the invariant subspaces of in-
terest for the simple cubic structure are listed,
giving the decomposition of the 21-dimensional
total space according to the irreducible representa-
tions for the full cubic group O, as well as for the
subgroups Dy,, Ds;, and D,,. In the first column
only those irreducible representations of the (sub)-
group are listed which are part of the total repre-
sentation. In the next three columns the multiplic-
ities m} of the corresponding irreducible repre-
sentations are given. The first of these is for the
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case where we allow for vibrations only; the next
corresponds to librational (quasirotational) mo-
tions only; and the last includes all degrees of
freedom. Clearly, the difference m}=mf% - (m}
+m})') is associated with the translational degrees
of freedom, and the translation of the center of
mass has to be excluded explicitly. The remaining
columns give the components of the displacements
€7 (for the numbering of the lattice points see Fig.
1) which span the m's-dimensional invariant sub-
space associated with the pth irreducible repre-
sentation. The entries left blank in the tables can
be filled in using the relations between the displace-
ment at a point #: €}, and that of the inverted point
n: E’,T (j=g:even, u:odd): =€}, €;=¢€;. A bar
above any entry (e.g., 1, ¥) denotes the inverse or
negative of the unbarred quantity (1, x).

If one introduces a molecule into a crystal lat-
tice, then in general the symmetry of the system
is reduced depending on the shape of the molecule

HANS R. FRANKHAUSER

|

and its orientation with respect to the crystallo-
graphic axes. This leads to relations between the
free parameters of the invariant subspaces involved
(see Paper I), since the invariant subspaces of a
subgroup frequently have a higher dimension that
the corresponding invariant subspaces of the group
of higher order. These conditions are what we
call compatibility conditions. They are given in
Tables V-VII for the cases considered in Sec. IV.
In the first column the irreducible representations
of the full cubic group are listed and in the next
column the correlation table® of the respective
subgroup is reproduced. For all components of
the invariant subspaces of the subgroup, the rela-
tions imposed by the group of higher symmetry are
tabulated under the appropriate heading. A bar

(-) means that the particular invariant subspace is
not contained in the subspace carrying a certain
row of the irreducible representation given at the
left.
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