Strong-Coupling Saturation of Superconductivity in Nb₃Al_{0.8}Ge_{0.2}

S. Barišić*

Laboratoire de Physique des Solides,[†] Université Paris-Sud, Centre d'Orsay, 91405-Orsay, France (Received 24 October 1972)

(Raceival 24 October 1972)

The recent suggestion, based on the tunneling experiments, that the superconducting transition temperature T_c of Nb₃Al₀₈Ge_{0.2} is saturated with respect to the variation of the phonon frequencies, is critically examined. This is first done within the McMillan set of ideas concerning the high T_c , which was used in formulating the suggestion. The suggestion is thus shown to be in contradiction with the known pressure dependence of T_c . The observed weak variation of T_c in the martensitic transition is not explained by the saturation effect but rather by the inefficiency of the low-frequency phonons in building up the superconductivity. It is further pointed out that the models of Nb₃X compounds, based on the singularity in the electron density of states, are not expected to yield a saturation of T_c with respect to the phonon frequencies.

In his now classical paper¹ on superconductivity, McMillan has shown that the decrease in the phonon frequencies, characterized, say, by ω_0 , leads to an increase in T_c but with an absolute upper limit, which is reached when $\lambda = C/M\omega_0^2$ is roughly $\lambda = 2$. The procedure of maximizing with respect to ω_0 has been carried out while keeping constant the character of the electron system, described by the parameter $C = n_F \langle I^2 \rangle$. Here n_F denotes the bare electron density of states at the Fermi level and $\langle I^2 \rangle$ is an average of the squared electronphonon matrix element, independent of the phonon spectrum. The maximum of T_c with respect to ω_0 is

$$T_{c \max} = (C/2M)^{1/2} e^{-3/2} \tag{1}$$

and depends in particular on C.

McMillan further suggested¹ that such an optimization actually occurs in nature, i.e., that some materials, forming what he calls a "class", have the same C while differing in ω_0 . This means, in particular, that within a given class C does not depend on the occupation of the superconducting band. According to Eq. (1), $T_{c \max}$ is not constant within a class, due to variation of the average mass M. Apparently, in most cases, McMillan had not considered his estimation to be accurate enough to take care of such a spread in $T_{c \text{ max}}$. However, he roughly distinguished the mass of the Nb₃Sn-like materials from that of the V₃Si-like materials. In the same way, $T_{c \max}$ of Nb₃Al_{0.8}Ge_{0.2} is about 10% larger than that of its heavier classmate Nb₃Sn. Such differences have to be taken into account in estimates claiming an accuracy better than McMillan's.

It was recently suggested,² on the basis of the determination of $T_{c\,max}$ in Nb₃Sn by tunneling experiments, that λ of the high- T_c Nb₃X compounds approach quite closely the $\lambda = 2$ limit; this limit being approached particularly closely for Nb₃Al_{0.8}Ge_{0.2}. Clearly, close to this limit T_c will

depend only weakly on the variation of ω_0 , such as that which may arise from the martensitic transformation. The crystal instability, which may increase ω_0 considerably in the lower-symmetry phase, would therefore not be an important limiting factor in T_c .

This suggestion is analyzed here, first within the McMillan class analysis used in its formulation. By establishing a correspondence between the effects of the critical shear deformation and of the simpler volume compression on T_c , it is shown that the known pressure variation of T_c contradicts the suggestion.

The McMillan equation for T_c establishes a relation between the logarithmic derivatives $\delta_c = \delta \ln T_c$, $\delta_{\lambda} = -\delta \ln C$, and $\gamma = -\delta \ln \omega_0$, namely³

$$(2-\lambda)\gamma = \lambda\delta_c + \delta_\lambda , \qquad (2)$$

whatever their origin. In Eq. (2), as well as in Eq. (1), we ignore the Coulomb pseudopotential μ^* , which is generally thought not to be essential for semiqualitative arguments. Equation (2) is valid as long as the relative variations δ , γ are reasonably small. This is the case not only for the usual volume deformations $\delta \ln \Omega$, but also for the critical⁴ shear ξ . The possible nonanalytical⁵ dependence of δ , γ on ξ does not invalidate Eq. (2), which thus describes the effect on both deformations on T_c .

The conclusion of Ref. 2 amounts to saying that "whatever" γ^{ℓ} is, δ_{ℓ}^{ℓ} is small, because $|2-\lambda| \ll 1$, while δ_{λ}^{ℓ} is to be assumed small, in the spirit of the class analysis.

Turning to the noncritical volume deformation, note that here the possibility $|\gamma^{\Omega}| \gg |\delta_{\lambda}^{\Omega}|$ may reasonably be discarded. (This is discussed in more detail below.) With $|2 - \lambda| \ll 1$ the term $(2 - \lambda)\gamma^{\Omega}$ can be neglected in Eq. (2), with respect to $\delta_{\lambda}^{\Omega}$. δ_{c}^{Ω} is then entirely determined by $\delta_{\lambda}^{\Omega}$. In other words, the behavior of T_{c} under pressure should essentially be that of $T_{c \max}$, given by Eq. (1).

8

4441

But while all the McMillan-like interpretations^{3,6,8,9} of the pressure data in transition metals and their compounds agree that C, and thus T_{cmax} , increase under pressure p; T_c of Nb₃Al_{0,8}Ge_{0,2} has been shown to decrease.⁸ Contrary to what is expected from Eq. (1), δ_c^{Ω} and $\delta_{\lambda}^{\Omega}$ are of the same sign; thus $|2-\lambda|$ in the positive $(2-\lambda)\gamma^{\Omega}$ term must be large enough to satisfy the equality (2). (Two somewhat different roles may be ascribed to the γ term: It can cancel out the leading $\delta \ln\Omega$ term in $\delta_{\lambda}^{\Omega}$ and yield the recently proposed⁷ quadratic dependence of $\delta \ln T_c$ on $\delta \ln\Omega$. It can also overwhelm this term and give the correct sign to the linear dependence of $\delta \ln T_c$ on $\delta \ln\Omega$, claimed by other authors.⁸)

Equation (2) may serve for a determination of λ , if instead of the poorly known δ^{ℓ} , γ^{ℓ} , the better known δ^{Ω} , γ^{Ω} are used. In what follows, we adopt the usual³ definition of δ^{Ω} , γ^{Ω} , i.e., we divide the quantities δ , γ by the volume deformation $\delta \ln\Omega$. Note that $\delta \ln\Omega = -p/K$, K being the bulk modulus, is negative. First, let us briefly discuss the quantities involved in Eq. (2), starting with δ^{Ω}_{α} .

Concerning δ_c^{Ω} , the value of $\delta T_c / \delta p \times 10^{-5}$ °Kbar⁻¹, measured ⁸ up to 25kbar, is -1.4 and -0.2 for Nb₃Sn and Nb₃Al_{0.8}Ge_{0.2}, respectively. For Nb₃Sn this corresponds to $\delta_c^{\Omega} \approx 1.25$, while the value quoted for Nb₃Al_{0.8}Ge_{0.2} should rather be considered⁸ as corresponding to an upper limit of δ_c^{Ω} .

The typical values of $\delta_{\lambda}^{\Omega}$ are close to 2.³ This can be understood on applying the tight-binding argument^{6,9} to the McMillan C, which is to be considered independent of the band filing. Excluding, therefore, the possibility of the contribution to $\delta_{\lambda}^{\Omega}$ from the charge transfer among the *s*-*p* and *d* bands we have, from Refs. 6 or 9, $\delta_{\lambda}^{\Omega} \approx 1$. This is of the correct order of magnitude. [The terms of the higher order in $\delta \ln \Omega$ are generally negligible with respect to the leading one retained here. Thus, the appearance of the higher-order terms in δ_{c}^{Ω} in this model only results from such terms in γ^{Ω} , after a (partial) compensation⁷ of the leading terms among $\delta_{\lambda}^{\Omega}$ and γ^{Ω}].

The coefficient γ^{Ω} is similar in nature to the Grüneisen constant $\gamma_{C}(k, \nu)$. For long-wavelength (1-w) shear phonons, $\gamma_{G}(1-w,\xi)$ was found¹⁰ to be negative. This can be understood from the pressure enhancement of the phonon frequency renormaliz-tion, arising from the same effect⁶ as the positive $\delta_{\lambda}^{\Omega}$. In the case of V₃Si, this led to the proposals that $\gamma^{\Omega} \approx 0^{9}$ or $\gamma^{\Omega} < 0.^{7}$ However, the tunneling data do not attribute any special role to the extremely long -wavelength shear phonons, in agreement with the previous theoretical suggestion^{6,11} that due to the retardation effects the (critical) phonons with $\omega \leq 2k_BT_c$ (\approx 3 meV in Nb₃Sn) do not contribute significantly to λ , whatever it is. The electron renormalization of the lowest important phonons, at

9 meV in Nb₃Sn, is considerably weaker^{12,13} than in the extreme 1-w limit, even for the shear branch. It thus seems reasonable to think that $0 < \gamma^{\Omega} < \gamma^{\Omega}_{Gth}$, where γ^{Ω}_{Gth} is the high-temperature thermal Grüneisen constant, typically¹⁰ equal to 1.5 for the compounds under consideration. However, only the upper limit on γ^{Ω} is important for the conclusion which follows; the weaker assumption $|\gamma^{\Omega}|$ $< \gamma^{\Omega}_{Gth}$ works as well.

The conclusion is that both Nb₃Sn and Nb₃Al_{0.8}Ge_{0.2} fall rather far from the saturation limit. Equation (2), with $\delta_{\lambda}^{\Omega} \approx 2$ and $|\gamma^{\Omega}| \leq 2$, yields for Nb₃Sn $2 - \lambda \gtrsim 1.5$ if $\gamma^{\Omega} > 0$ and $\lambda - 2\gtrsim 6$ if $\gamma^{\Omega} < 0$. For Nb₃Al_{0.8}Ge_{0.2} it gives roughly $|2 - \lambda| \gtrsim 1$. The unphysically large values of λ , associated with $\lambda^{\Omega} < 0$, together with the above-mentioned argument against $\gamma^{\Omega} < 0$ itself, suggest that this possibility does not occur in the present case. These conclusions remain essentially unchanged when the Coulomb pseudopotential μ^* is taken into account, especially as far as the estimate of the distance from the saturation value of λ is concerned.

It should be noted that the above type of reasoning cannot be extended to the materials with $\delta_{\lambda}^{\Omega} \ll -\lambda \delta_{c}^{\Omega}$ and thus to V₃Si and V₃Ge, which have a large and negative δ_{c}^{Ω} . Unlike the favorable situation discussed above, Eq. (2) is then of no help in putting the limits on $|2 - \lambda|$ or in choosing the sign of γ^{Ω} .

However, it seems well established now^{14,15} that T_c is roughly the same in the cubic (nonsheared) and tetragonal (sheared) phase of Nb₃Sn, although the Grüneisen constant with respect to the shear ξ , $\gamma_G^{\xi}(k, \xi)$ is large for the l-w shear phonons, both experimentally¹⁷ and theoretically.^{6,10,16} Such behavior of T_c is not explained here by $\lambda \approx 2$ arguments but, rather, consistently with the unimportance of the large negative $\gamma_G^{\alpha}(l-w, \xi)$, by the exclusion^{6,12} of the l-w shear phonons with $\omega \gtrsim 2 k_B T_c$ from λ , and thus from γ^{ξ} . Still, T_c may be further increased by decreasing ω_0 through other phonons.

It is finally argued that these conclusions remain essentially correct for the models based on the sharp peak in the density of electron states, and currently used for explaining the crystal instability. With the Fermi level close to sufficiently isolated Van Hove points^{6,11} on the energy surface, $\lambda \text{ equals } n_F V^{sp} \text{ with } V^{sp} (\sim \omega_0^{-2}) \text{ possibly de-}$ pendent on the band filling, but only through the dependence of ω_0 , which is already described by γ . However, because of the factor n_F , such a λ is strongly dependent on the band filling, i.e., on the charge transfer s - p - d. The McMillan class analysis has to be abandoned. But a new possibility appears - that of saturation with respect to the band occupation at "constant" V^{sp} – and does occur^{17,18} in the Labbé-Friedel model,¹⁹ while the saturation with respect to ω_0 is pushed to the

large, generally unphysical values of λ . In an alternate model,²⁰ which is much less singular than the Labbé-Friedel one, this latter saturation occurs for $\lambda \approx 4$ provided that the corresponding ω_0 is still larger than E_F counted with respect to the singularity. The evidence²¹ for the pronounced peaks of T_c in the ternary $A_3B_xB_{1-x}$ compounds, such as the $peak^{21}$ at Nb₃Al_{0.8}Ge_{0.2}, agrees with the idea of a maximum of such a nature, since the variation of x leads, in the first place, to the variation of the band occupation. The pressure dependence of the $T_{c \max}$ so defined was previously examined^{8,9} and led to an equation similar to Eq. (2) taken far below the $\lambda = 2$ limit. Everything that was said above about such an equation for the McMillan analysis thus remains qualitatively unaltered.

8

Obviously, further careful measurements and

- *Present address: Institute of Physics, University of Zagreb, Croatia, Yugoslavia.
- [†]Laboratoire associé au Centre Naciónal de la Recherche Scientifique.
- ¹W. L. McMillan, Phys. Rev. 167, 331 (1968).
- ²L. Y. L. Shen, Phys. Rev. Lett. 29, 1082 (1972).
- ³An analogous expression was used in the study of the pressure dependence of T_c by J. W. Garland and K. H. Bennemann, in Proceedings of the Conference on Superconductivity in dand f- Band Metals, edited by D. H. Douglass, Rochester, 1971 (unpublished).
- ⁴L. R. Testardi, T. B. Bateman, A. Reed, and W. G. Chirba, Phys. Rev. Lett. 19, 1038 (1965).
- ⁵M. Weger, G. B. Silbernagel, and E. S. Greiner, Phys. Rev. Lett. 13, 521 (1965).
- 6S. Barišić, Ann. Phys. (Paris) 7, 23 (1972).
- ⁷L. R. Testardi, Phys. Rev. B 3, 95 (1971); L. R. Testardi, in Physical Acoustics, edited by W. P. Mason and R. N. Thurston (Academic, New York, 1973), Vol. 10.
- ⁸The known data are reviewed by T. F. Smith, J. Low Temp. Phys. 6, 171 (1972); the author is checking these data in the light of the T_c measurements of the Ref. 15 (private communication).
- ⁹S. Barišić, Phys. Lett. A 34, 188 (1971).

analyses of both the pressure dependence of T_c and the tunneling characteristics, are necessary to resolve the discrepancy between the values of λ deduced from the two types of data. These analysis should be combined with the neutron determination of the phonon density of states $F(\omega)$, in order to distinguish between the electron and the phonon features of the tunneling function^{1,2} $\alpha^2(\omega)F(\omega)$, since certain classes of phonon may be favored^{6,11} by the anisotropy of the electron spectrum. The possibility that the 9-meV anomaly observed² in the function $\alpha^2 F$ of Nb₃Sn is of such a nature and is currently under theoretical investigation.

Some useful suggestions by Professor J. Friedel and Professor S. Alexander and the correspondence with Dr. L. Y. L. Shen and Dr. T. F. Smith are gratefully acknowledged.

- ¹⁰P. F. Garcia, G. R. Barsch, and L. R. Testardi, Phys. Rev. Lett. 27, 944 (1971).
- ¹¹The theoretical support to the original semiempirical argument by J. Labbé and S. Barišić (report of work prior to publication), excluding these phonons, was given by S. Barišić,
- [Phys. Rev. B 5, 932 (1972)].
- ¹²G. Shirane and J. D. Axe, Phys. Rev. Lett. 27, 1803 (1971).
- ¹³K. Šaub and S. Barišić, Phys. Lett. A 40, 415 (1972). ¹⁴L. J. Vieland and A. W. Wicklund, Phys. Lett. A 34, 43 (1971).
- ¹⁵R. Viswanathan and H. Luo, Solid State Commun. 9, 1733 (1971).
- ¹⁶W. Rehwald, Phys. Lett. A 27, 287 (1968).
- ¹⁷J. Labbé, S. Barišić, and J. Friedel, Phys. Rev. Lett. 19, 1038 (1968).
- ¹⁸S. Barišić, thesis (Orsay, 1968) (unpublished).
- ¹⁹J. Labbé and J. Friedel J. Phys. Chem. 27, 153 (1966); J. Phys. Chem. 27, 303 (1966).
- ²⁰ R. W. Cohen, G. D. Cody, and L. J. Vieland, in Proceedings of the Third International Magnetic Resonance Symposium, Electronic Density of States, Natl. Bur. Std. Spec. Publ. No. 323 (U. S. GPO, Washington, D. C, 1970). ²¹ J. K. Hulm and R. D. Blaughter, in Ref. 3.