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Rigorous lower bounds are established for the spin-relaxation function in kinetic Ising models. A
recently published estimate, based on Monte Carlo calculations, that the spin autocorrelation time is
proportional to [T —T |~! in two dimensions, near the critical temperature T, is shown to be incorrect

because it violates these inequalities.

One of the simplest models exhibiting nontrivial
time -dependent behavior near a second-order crit-
ical point is the kinetic Ising model, first intro-
duced by Glauber! in 1963 and later extended by
other authors to various cases. As a result of the
purely relaxational nature of the dynamics of this
kind of model, it has been possible to prove a num-
ber of useful rigorous inequalities concerning the
dynamic behavior of the system.?® In the present
note, we present some extensions of these results,
which may be helpful in understanding the behavior
of the kinetic Ising model near its critical point.

The kinetic Ising model is a system of “spins, ”
interacting with a heat bath that gives rise to spon-
taneous flips of spins.” The state of the system at
some instant of time is described by the values of
the N spin variables s; (i=1,...,N) with s;=%1,

In an infinitesimal time interval df, the system
may make a transition from a state {s,, ..., Sjyeee,
sy} to another state{s,, ..., -s,, ..., sy} which dif-
fers from the first only by having a single flipped
spin on site j. The probability of making such a
transition is proportional to df, and may be written
wy(sy, ..., Sy)dt. Let P(sy, ..., sy;t) be the proba-
bility of finding the system in the state {s, ..., sy}
at time . Then P evolves in time according to the
master equation

dP(sy, ..., sy;t)
dt

=-Zl)w,(sl, ceesSg e, Sy)

XP(S1y eevy Sgyenes Shit)
+ 2wy (S1y e ey =S4y eneySy)
s
XP(S1y eeny =S4y oueySyit) (1)

The law of detailed balance requires that

E)L(sb "°’sj-ly 1’ sjoly . 'ysh')
wj(sl; ---’sj—h —1,8,,1, --'9SN)

- e—ZBI/T, (2)

where T is the temperature, and - 2E, is the en-
ergy difference between the two states:

|

-2E;=E(sy,...,1,...,sy)=E(sy, ..., =1,...,sy).
()
If the energy E{s} is given by a nearest-neighbor
Ising Hamiltonian, then E; depends only on the ori-
entations of the spins adjacent to the site j.

The relation (2) assures that the thermal equi-
librium distribution, P{s}x e~518}/7  ig a steady-
state solution of (1). This relation does not com-
pletely determine the transition rates w,, however,
and a number of choices are possible. In Refs. 1
and 4-8, for example, the transition rates were

chosen to be
w;=syo[l - s, tanh(E,/T)], )

where vy, is a constant. In the Monte Carlo work
of Schneider et al., ? however, it was more conve-
nient to use

W;= Y, if s,E,;<0,

=ye~2E/T, if §,E,20. (5)

Our conclusions apply equally well to these two
cases.

The kinetic Ising model discussed by Kawasaki?
differs from the above, however, in that transitions
involve the interchange of a pair of spins in his
model, thus conserving the total magnetization.

We shall discuss this case at the end.

Let f be any function of the spin variables {s}
and let C,(t) denote the time-dependent autocorre-
lation function of f, in thermal equilibrium,

Cs(2)=(F*(0)(2)) . (6)

The master equation described by Eqs. (1)-(3) is
purely relaxational, in the sense that all the eigen-
values of the “transition matrix”’ are real.® For
any such system, the correlation function C, has a
spectral representation of the form

C,(t):f’ a;(v)e~'"tdy, (7a)
with
a,(v)=0 for all v ('7b)

(see, for example, Sec. 4 of Ref. 7). A represen-
tation such as (7) is not possible for more general
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dynamic systems, such as those describable by a
Hamiltonian, where oscillations may take place.

A number of useful inequalities follow immediately
from this representation. For example, we have

C/(t)>0 for all ¢, (8)
dcy .
T 0 forall¢>0. (9)

Let us define the “characteristic time” 7, and the
“initial relaxation rate” v, for the variable f, ac-
cording to

7= [ C,(t)at/C,0)
= [+ a;wwtdv/C,(0), (10)
Vf - dc,/dt‘t.of/éf(o)

= f; ay(v)v dv/C,0), (11)
where
C,(t)=Cy(t) = C4l=) = Lj as(v)e™ dv. 12)

The quantity C,(~) is nonzero if o, contains a &-
function contribution at =0, which occurs when
the equilibrium expectation value (f) is nonzero.

By applying the Schwarz inequality to Eqs. (10)-
(12), one derives the relation

eV (13)

One also may show that

;:z InC,()= 0 for all ¢#0, (14)
and thus

-7 lnC,(t)< vy forall ¢>0, (15)

C(t)= C40)e™r"! for allt. (16)

[Slmllar relations hold for the function C,(t) ]
Consider the case where f is s(q ), the spin den-
sity at wave vector q:

s@)=NV2 g, )
i

Then for the equal-time correlation function we
have

0 (0)=Tx@), (18)

where x(@) is the static susceptibility describing
the linear response of the system to an applied
magnetic field of wave vector . Abe’ has shown
that

2 51(0)5,(0) | 1e0r= = RS, (19)
where
R=2{uwy(s1, ..., sx)). (20)

For transition probabilities given by (4) or (5), it
is easily seen that R is a finite, continuous, posi-
tive function of 7, and in fact R(T,) has been eval-
uated exactly for a number of two-dimensional lat-
tices.*" It follows that for any g,

TX(a)V.g(a)= “% <S*(§, 0)3(?1, t))‘ =0t =R , (21)
T = Tx@V/R. (22)

For g=0, N'/%s(q) is just the total magnetization
M, so that (22) is just the inequality proved by Abe
and Hitano for the relaxation rate of the uniform
magnetization,

74> Tx(d=0)/R. (23)
If 7, and x exhibit power-law divergences near T,

W~ | T-T.|"%, x(g=0)~|T-T|7, (24)
then (23) implies

A=y, (25)

Let us next consider the case where f is the spin
variable on a single site ;. The single-spin auto-
correlation time 7, = Ts, is of particular interest
because it is directly proportional to the linewidth
for nuclear magnetic resonance, under appropriate
circumstances.!® Note that

C,,00=1-N=%(M)?, (26)
so that
vy, =R/(1 =N~-2(M)?) (27)

is a continuous function of temperature. Conse-
quently, the direct application of (13) does not im-
ply any divergence for the single-spin autocorrela-
tion time 74.

A more interesting result is obtained if one uses
the relation

dq ~
634(t)= j(%a Cody (t), (28)

where the integration is over the Brillouin zone,

and d is the dimensionality of the lattice. From
(10), (18), (26) and (13), we have
(M)? dq
Ta (1 N = .“(217)” Tx(d)T Ts@ (292)
T
- [ @) (290)

Let us define the “reciprocal correlation length”
k as the largest value of | gl such that

x@")> 3x(g=0) for all |¢’| <|q]| . (30)

(This definition differs slightly from the more usu-
al definition of k, as will be discussed below.) If
we assume that near T,
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- 14
T2~ | T-T| ™4, «~|T-T,|, (31)
we find"
A, 2y —dv. (32)

For the three-dimensional Ising model, it is be-
lieved that y~1.25, v~0.64. Inequalities (25) and
(32) thus become

A21.25, (33)
5,20.58. (34)

For the two-dimensional Ising model, it is known
that y=1, v=1. Inequalities (25) and (32) then give

A=1.175, (35)
As=1.5, (36)

In Ref. 9, Schneider et al. have extracted values
of Ax1.75, A,=1 from their Monte Carlo calcula-
tions of a two-dimensional kinetic Ising model.

The quoted value for A, violates (36), and clearly
is in error. In a more recent preprint, }? Stoll ef
al. have carefully reanalyzed their Monte Carlo
calculations, taking into account the inequalities
derived in the present paper. In this new analysis,
the values of the exponents have been revised to

A=1.90+0.10, A,=1.60+0.10,

which is consistent with inequalities (35) and (36),
and with the dynamic scaling equation (38). The
value of A may be compared with the estimate from
high-temperature series expansions, A=2.0+0.05,
given in Refs. 6 and 8. The value of &, quoted in
Ref. 9 is thus identified as an “effective” exponent,
valid in a region not too near 7,. Stoll et al. have
also obtained exponents for the energy-energy and
energy -spin correlation functions, and have shown
these to be consistent with rigorous inequalities
derived by Schneider!® and by Suzuki.?

It should be noted that the autocorrelation time
T4 is very much longer, near 7., than would be
predicted from the initial decay rate v, of the auto-
correlation function. Thus in obtaining 7, from
calculated forms of the autocorrelation function
C, ‘(t), one must be careful to integrate for suffi-
ciently large values of . A useful check on calcu-
lated forms of C, (¢), for finite times ¢, may be had
by combining (28) with (16) and (21), employing an
appropriate calculated form for x(q). Similar
checks have indeed been employed by Stoll et al. in
the recent work referred to above. 2

The inequality (29) may also be applied directly
to check calculated values of 7, at any temperature.
For this purpose it is useful to note that the inte-
gral on the right-hand side of (29) may be written

Tzf(gf)d (x@)*= ? ((sys,) - N=2( MR (37)

RIGOROUS INEQUALITIES FOR THE SPIN-RELAXATION .
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In calculations based on high-temperature series
expansions, or on Monte Carlo calculations, it is
usually easier to calculate correlation functions in
real space than in Fourier space.

Some additional remarks may help clarify the
relationship of the present observations to previous
work.

According to the “conventional” (Van Hove) theo-
ry of critical slowing down, expression (25) should
hold as an equality, A=y, Evidence based on Wil-
son-type expansion methods, 14 a5 well as the earl-
ier high-temperature series calculations, ®® sug-
gests that in fact A is greater than v,

The dynamic scaling hypothesis!® predicts

Ag=A+y—dv . (38)

This is, of course, consistent with the inequali-
ties (25) and (32), but is not in any way required by
these inequalities.

The model considered by Kawasaki in Ref. 2 dif-
fers from the present model in that transitions con-
serve the total magnetization M, as was mentioned
above. Since Kawasaki’s model also comes from
a master equation with a Hermitian transition ma-
trix, 3 the general relations (7)-(16) apply in his
case, as he noted in Ref, 2, Instead of Egqs. (21)
and (22) however, Kawasaki has

2 %@, 05 @, e =re? (39)

Ts@ = Tx(9)/q%r, (40)

where 7 is a continuous function of d and T, whose
value remains finite and positive at =0, and T=17,.
In two dimensions, it is seen from Eq. (29a) that
the single-spin autocorrelation time 7, must be in-
finite at any temperature 7, for Kawasaki’s model.
In three dimensions 7, will exist for any T other
than 7., and the divergence of 7, near T, must sat-
isfy

Ay, =2y -v. 41)

The same results apply to the first of the two mod-
els considered by Kadanoff and Swift.3

Finally, we comment on the definition of the re-
ciprocal correlation length « [Eq. (30)] used in the
present paper. A number of different definitions
are commonly employed for .!¢ For example, k
is frequently defined to be the rate of exponential
decay of the spin-spin correlation function at large
separations of the two spins. A second common
choice is to define k=2 as the ratio of the second
and zeroth spatial moments of the correlation func-
tion. If static scaling holds, these definitions dif-
fer from each other and from the present definition
only by a factor of order unity, so that the exponent
v is the same for all definitions. The static scal-
ing laws are known to hold in two dimensions, and
in fact there is no evidence in any system for
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breakdown of the weak form of static scaling re-
quired here. If one wishes nevertheless to enter-
tain the possibility of more than one exponent v in,
say, the three-dimensional Ising system, then of
course one must consider that inequalities (32) and
(41) may hold for some definitions of v but not oth-

|
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