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A renormalization-group demonstration of the relation 0 = y is sketched for crossover with respect to
the anisotropy parameter R in systems with lattice anisotropy. Our work extends the existing
knowledge of the crossover phenomena to noninteger lattice dimensions.
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Here R is the ratio of nearest-neighbor (nn) cou-
pling strengths between planes and within a plane,
and J &0. The first sum is over all nn pairs within
a plane, while the second sum is over all pairs on
adjacent planes.

To study the crossover phenomena for general
lattice anisotropy in a d-dimensional lattice, we
apply Wilson's renormalization scheme in each d-
dimensional hyperplane and observe how the weak-
coupling terms between the hyperplanes grow with
the iteration procedure. We have, therefore, an
effective reduced Hamiltonian after l steps of itera-
tion in each hyperplane,
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where m labels the hyperplane and the integration

Wilson's renormalization-group procedure' has
not yet been applied to systems with lattice anisot-
ropy. The reason is that the recursion relations'
were derived by treating all lattice dimensions
equivalently. To understand the crossover phenom-
ena in systems with lattice anisotropy, we must ob-
serve how the weakly interacting dimensions mani-
fest themselves as the renormalization transforma-
tion is taking place in the strongly interacting di-
mensions. Following this procedure, we are able
to demonstrate that there is scaling with respect
to the anisotropy parameter R and to prove that
9& = y for all lattice dimensions including noninteger
dimensions. These ideas represent the first con-
crete results on systems with lattice anisotropy
using the renormalization-group approach.

Consider a system of d-dimensional "hyper-
planes" of ferromagnetically interacting Ising spins
which form a d-dimensional lattice by interacting
with adjacent hyperplanes. For example, the case
of d = 2, d = 3 is described by the Ising Hamiltonian

is carried out over the dimensionality d of each of
the strongly coupled hyperplanes.

It is known that'
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But the correlation length in each d-dimensional
hyperplane is $-2'. Thus, we have

( (n-2) (5)

Consider the critical temperature T,(R). We have
by definition

T —T,(0)- g

where v is the exponent for the correlation length
associated with each strongly coupled hyperplane.
Combining (5), (6), and the fa.ct that (2 —q) v = y
from the renormalization-group scheme, we have
for T= T,(R),

T,(R) —T,(0)-R'~" .

If we define a crossover exponent3 through

T,(R) —T,(0)- R '
(8)

then we have p = y. This result was previously ob-
tained independently of the renor malization-group
arguments for integer lattice dimensions. The
present result is also valid for noninteger dimensions
and may be generalized to arbitrary dimensional
spins.
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in each step of the iteration. Here g describes the
behavior of the d-dimensional correlation function.
Thus, the last term in (2) grows as

r
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after l iterations, where R is the anisotropy pa-
rameter. This term must be counted when it is of
similar magnitude to the other terms in (2), or
when R2' ""-constant or
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