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%'e study the properties of transition-metal surfaces, with particular emphasis on Ni. Using the
renormalized-atom approach, it is argued that the d-state excitations are narrowed at the surface and
the d-hole count is reduced. The magnetic coupling of the surface layer to bulk is investigated in
detail. Spin-dependent surface resonances of the Friedel type can exist and in the magnetic metals, can
cause antiferromagnetic coupling of the surface moment to bulk. Model calculations are presented in an
attempt to describe Ni.

I. INTRODUCTION

Relatively little progress has been made towards
an understanding of the electronic states at the sur-
face of a d transition metal. These states are im-
portant for a determination of many surface proper-
ties, chemisorption, and catalysis. In addition,
recent electron-emission and tunneling experi-

ments~ designed to probe bulk-metal properties
have yieMed results which suggest some partici-
pation of surface states. It is the purpose of this
paper to discuss the eleetronie and magnetic prop-
erties of these states within the framework of ex-
isting theories of transition metals, with particular
emphasis on ¹i.

In See. II, the eleetronie properties of the para-
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magnetic region are studied using an extension of
renormalized-atom picture' to the surface problem.
We determine the position of the resonant d level
c, with respect to the bottom of the s continuum er
at a surface site. The change in e„- e~ gives rise
to a change in the hole count. For Ni, the d-band
hole count is found to be reduced from its bulk val-
ue of 0.3 per spin to - 0.2 at the surface.

Io these computations, it is found to be important
to include screening of the bare Coulomb integrals
as well as the changes caused by both d-d and s-d
Coulomb repulsion. Furthermore, the surface site
has a lower symmetry than its bulk counterpart,
which can lift the degeneracy of the bulk e, and t+
states. This results in a modification of the sur-
face density of states and we estimate that all of
the d-band holes at a (100) surface site reside in a
singlet. All of these effects are important for
magnetic properties, as well, and are omitted in
a recent treatment of transition-metal surfaces,
similarly based on the renormalized-atom picture.

The magnetic properties of the surface sites are
of interest for their relation to the polarized-elec-
tron-emission and tunneling measurements in Ni.
Interpreting some of these measurements in the
simplest fashion seems to require majority spin
density of states in bulk above the Fermi level, in
contrast to the Slater-Wohlfarth picture. How-

ever, these experiments are all sensitive to elec-
tronic states at the surface layer to some extent.
An understanding of the surface magnetic proper-
ties can thus be important for those experiments,
and are discussed in Sec. III.

There is a close analogy between the surface
problem and the more familiar magnetic impurity
problem. Extending models of transition- metal
impurities to our surface problem, we derive and
solve the self-consistent Hartree-Fock equations
for a surface site. In the first model, the d elec-
trons are treated in a tight-binding approximation,
with hopping between nearest neighbors on a sim-
ple cubic or face-centered-cubic lattice. The sur-
face is introduced by requiring that electrons may
not hop beyond a particular (100) plane. This mod-
el is solved exactly, and numerical results are
presented for special cases. We study, secondly,
an impurity model that treats a surface site as an
impurity in bulk. The latter model has the advan-
tage of using a more realistic density of states for
bulk Ni, but only approximates the surface effects.

The parameters in these models are chosen to
give agreement with the results of the renormalized-
atom calculations, which were limited to the para-
magnetic region. In the ferromagnetic region,
we find spin-dependent surface resonances can
exist, similar to Friedel resonances in bulk. This
leads to a local surface density of states that is
dominated by the majority spin at the Fermi level.

When these resonance states exist, the surface
magnetic moment is either antiparallel to the bulk
moment, or exhibits a sizeable reduction in its
magnitude. It does not vanish, unless the para-
magnetic surf ace hole count is reduced to essentially
zero, an assumption incompatible with the surface
of ¹i.

II. HOLE COUNT AND CHARGING AT THE SURFACE
OF NICKEL

Let us first consider the band properties of bulk
paramagnetic Ni. These are plotted in absolute
energy with respect to the vacuum zero and the
atomic 4s and 3d energies appropriate to a ¹

d's~
atom in Fig. 1. The X3 and X5 band levels have
been used as a measure of the extrema of the d
bands. e&, the bottom of the s-band continuum,
lies well below its atomic 4s counterpart because
of the Wigner-Seitz-boundary-condition aQowed
conduction bands in a periodic structure; i.e. , c&

is the energy at which the wave function is flat at
the Wigner-Seitz radius r», whereas the 4s func-
tion goes appropriately to zero at large r. The
position of the resonant d level, on the other hand,
is essentially atomic in character, depending on
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FIG. 1. Energy level diagram to illustrate changes
encountered for an "averaged" surface Ni site, in the re-
normalized-atom picture of Sec. II. Part (a) is the free
atom, part (b) shows the levels for bulk Ni, part (c) con-
tains the changes encountered at a neutral surface site,
and part (d) includes the charge transfer to the surface
site.
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the potential within the signer-Seitz cell and not
on boundary conditions. &„ lies considerably above
its atomic counterpart because of the charge com-
pression encountered in forming the metal. 3

There is a flow of charge of approximately one
electron into the volume appropriate to the sig-
ner-Seitz ceQ in order to maintain charge neutral-
ity. For atomic Ni in the 3d'4s' configuration
approximately three-fourths of this renormaliza-
tion charge flow is associated with the 4s electron
and one-fourth with the nine 3d electrons but, be-
cause of stronger d-d Coulomb interaction, the Sd
Coulomb contribution is as important as the 4s to
the shift of e~ from the free-atom value. The width

of the resonant level is determined by boundary
conditions with the X3 and Xs levels corresponding
to the energies (to -0.02 Ry) at which the d func-
tions are flat and noded at r„s, respectively.

The d bands plotted in Fig. 1(b) are the result of
a self-consistent band calculation employing Har-
tr ee Fock Vkgne r Se1tz potentials o The Ep pos 1

tion was adjusted (downwards) so that there are 0.3
holes per spin lying between E„and the top of the
d bands. Such a hole count is commonly attributed
to Ni. The resulting band structure lies, if any-
thing, low with respect to the vacuum zero and the
free-atom levels.

Given an estimate of the bulk band behavior, let
us considex how it changes at the surface of the
metal. Three aspects of the prob1.em, important
to the sections which follow, are considered here.
First there is the shift of z~ relative to a& assum-
ing a neutrally charged surface atom at a "clean"
surface. There is some hope of making a reason-
able estimate of this shift since the motion of e~

dominates, and e„ is essentially a /Oea/ atomic
quantity. The shift, and the associated variation
in resonant level width, affect both the d-hole count
at the site and the local Fermi level. Secondly,
there must be charge flow to or from the site in
order to maintain the Fermi level at the bulk val-
ue. This charge flow and its effect on the band
structure is the second matter to concern us.
Thirdly, the fact that the potential at a surface
site is of lower than cubic symmetry has a variety
of implications. We consider the one of most im-
mediate importance, namely, that d-band degen-
eracies are lifted, changing the character of the
bands at and above the Fermi level.

A surface atom on a smooth (100), (110), or
(111)surface of fcc Ni has 8, 7, or 9 nearest
neighbors, respectively, or, on the average, two-
thirds of the 12 neighbors encountered in bulk. In
first approximation, the one-third of the surface
of the atomic cell that encounters no neighbors,
suffers no charge compression across it. The
spherical yotential arising from the reduced com-
pression results in a reduced upward shift of a„,

as is indicated in Fig. 1(c). One can trivially es-
timate how far the surface c~ lies below its bulk
counterpart if the d and non-d counts of electrons,
contributing to the potential, are heM at their bulk
metal values. With one-third the surface of the
atomic cell suffering no charge compression, one
would expect the upward shift of c„ to be approxi-
mately one-third less than that of the bulk. This
argument might seem satisfying for the d-charge
renormahzatjon, which xs responsible for approxi-
mately one-half the shift, but one might prefer al-
ternate estimates of the s-charge effect. Levin
eta/. ' have made a Thomas-Fermi estimate of the
s-band charge outside the surface plane and find it
very atomiclike in character, suggesting the above
renormalized-atom calculation is about right. This
implies that &~ at the surface lies -0.15 Ry lower
than the bulk, as is plotted in Fig. 1(c).

One expects the width of the resonant level to be
narrower at the surface as well. For a disordered
system in the near-neighbor tight-binding approxi-
mation, Cyrot-Lackmann has shown that the band-
width is roughly proportional to the square root of
the number of nearest neighbors. It is linear in
the ordered crystal and thus we expect

we, = 2 nn, [E'(d, d}—F'(d, s)] (2.2a)

(2. 2b)

here. Although changes in wave-function character
and potential modify this, we have taken 8' „„,
equa, l to two-thirds the bulk value.

One also requires the position of &~. The Thom-
as-Fermi estimate of Levin et a/. , places it
0.03 Ry above the bulk value and a shift in this di-
rection is to be expected: &r is relaxing back to-
wards its free-atom counterpart. The shift is
small on the scale of other uncertainties in the prob-
lem and we have set it equal to zero. Holding &r

fixed ean only lead to underestimates of the quanti-
ties of concern here.

Let us, for the moment, attribute to the surface
the density of states that would be obtained by a
bulk band calculation employing the spherical sur-
face potential. Given the band data summarized in
Fig. 1(c), this is readily done with an interpolation
scheme such as that of Hodges et al. 7 Because the
d bands l&e lower with respect to &~, the local d
count increases by -0.1 electrons per spin and lo-
cal d-hole count n„drops from 0.3 to 0.2.

The results are not self-consistent, for we as-
sumed the bulk d s ' count when estimating the
band changes and obtained d ' s ' " . By s we,
of course, mean non-d conduction bands. The
simplest estimate of the effect on the bands would
be
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where

F'(i,j ) = ff P, (r) (I/r&)P&(p)r drp'd p . (2.3)

2 4 q = AEr/U(d, d), (2.4)

where hE~ is the shift necessary to bring the local
level in agreement with the bulk. Admitting no
screening or relaxation, U(d, d) is the bare F (d, d)
integral of 1.9 Ry and one obtains ling-0. 05 elec-
trons per spin. The e& level also moves

her —2r4gU(s, d) . (2. 5)

If one either assumes that U's are unscreened or
equally screened, so that

U(s, d) F'(s, d)
U(d, d) F (d, d)

(2. 5)

we have er moving more slowly than the local E~
and we obtain the situation plotted in Fig. 1(d).
Actually, intra-atomic relaxation screens Sd-3d in-
teractions more severely than Sd-4s, as is docu-
mented in Appendix A. The ratio is closer to 1.0,
implying that the filling of d holes shifts c~ and er
upwards, almost rigidly together. With a screened
U(d, d) of 0.9-1.0 Ry and neglecting any effects as-

The P's are suitably chosen wave functions, nor-
malized either to the Wigner-Seitz radius r» or
to infinity, depending on whether F is being eval-
uated for renormalized- or free-atom charges.
Inspection of the F values tabulated in Appendix A
indicates that Eqs. (2} predict e~ moving upwards
substantially and er moving upwards a lesser
amount, increasing the e„- e& separation. Such
predictions are wrong: When estimating the Cou-
lomb effects associated with charge flow on or off
a site or with the change of wave function character
at a site, as we have here, we must replace the
bare Coulomb F integrals by effective Coulomb pa-
rameters U, which account for intra-atomic relaxa-
tion. Several estimates are made of U(d, d) —U(d, s}
and U(d, s) —U(s, s) in Appendix A, alternately em-
ploying renormalized- and free-atom calculations
and observed free-atom spectra. With ~„=0. 1
electrons per spin they yield as a body, shifts rel-
ative to &n~ =0, of Ee~-0. 02 Ry and Aje~ —er)
—0.04 Ry, i.e. , the c& —e„splitting is slightly in-
creased and ~, shifted about 10% back toward the
value appropriate to the bulk metal. These esti-
mates are crude but they are correct in their quali-
tative differences with Eqs. (2.2). It would therefore
seem that e~, as plotted in Fig. 1(c), is slightly
lower, and the &~- &„ splitting slightly reduced,
such that n, is still -0. 1 electrons per spin.

The local Fermi level of such an atom lies well
below the bulk value, implying a flow of charge onto
the surface site. The states being filled are of al-
most pure d character; hence the flow is crudely
given by

TABLE I. Decompositions appropriate to d orbitals at
a surface.

Orientation
of surface

(100)
(111)
(110)

Group

C4„
Csv

C2„

2+1
2+1

1+1+1

1+1
2

1+1

sociated with bandwidth changes, ~ becomes - 0. 1
electrons per spin and the d-hole count g„=0.1-
0. 15 electrons per spin. The situation is somewhat
like that of Pd: the Fermi level falls higher in the
d bands than it does in bulk Ni. In bulk Ni, EJ; falls
high in the high density of states peak of tz, char-
acter at the upper edge of the d bands. At the sur-
face, E+ falls about halfway down the slope on the
high-energy side of this peak. The Fermi level in
Pd lies on the same down slope and this seems to
be one of the most important factors contributing
to this metal's lack of ferromagnetism.

The investigation to this point has concentrated
on the changes in band character associated with
modifications of the spherical potential (e. g. , the
F terms) at a site that has otherwise maintained
its cubic symmetry. The lower symmetry of the
surface introduces potential terms that partially
lift the orbital degeneracies which exist at high-
symmetry points, such as point I', for the bulk.
The decompositions appropriate to d orbitals' are
listed in Table I.

The tz decomposition is of particular importance
since Er and the hole states lie in a high-density-
of-states peak of states of almost pure tz, (xy, yx,
and zx} character. Consider a (100) face: The yz
orbital has the bulk of its charge density lying in
the face, while two of the four loops of charge in
the xy and zx stick out of the surface plane into,
and beyond, the region of the "uncompressed" one-
third of the atomic cell. Having charge lying in
this region implies that these states lie lower in
energy than does the yz orbital. It is plausible that
the splitting is something of the order of one-half
the orginal e~ shift [on going from Fig. 1(b) to 1(c)].
Putting such a splitting (0.075 Ry) into the interpo-
lation scheme yields several interesting results.
First, lifting the degeneracy breaks up the Ia, den-
sity-of-states peak, making it less pronounced.
much in the manner obtained by Haydock et a/. in
their calculations. Second, and far more impor-
tant, hole counts similar to the spherical-potential
estimates are obtained, but the holes are effective-
ly entirely of zy character. This situation is main-
tained if the yz —zx and xy splitting is reduced to
as little as - 0.05 Ry. It would seem that the one-
electron states of magnetic interest at a (100) face,
i.e. , those associated with holes, are of a single
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4 y P sf' y iy

~;,m, guy, m, o+ ~ ~m, a%,m, e ~ (S. I)

where the at, operator creates a d electron at
site i, in orbital state rn, with spina, and g,
= at. .a;, ... The quantity f is the hopping matrix
element between sites i and j, which are assumed
to be nearest neighbors, and E„,is the bulk Har-
tree-Fock energy. For fcc Ni, there are two rath-
er completely filled e orbitals and three $3, orbit-
als. For this situation the E„, are determined by

E, ,= U(2n. . .+ Sn~, ,) + U(n. ..+ Sn~, ,),
(S.2)

E~,= U(2n, ,+Sn, ,)+ U(2n~, +2n~ ~),
where the subscripts t and g label the g@, and e or-
bitals. %e have neglected the interelectronic in-
tra-atomic exchange energy here, because it is
small compared to the Coulomb energy U.

Several modifications arise because of the in-
troduction of the surface. The boundary condition
quite naturally changes the wave functions, but
changes in the hopping matrix element and Coulomb
energy may also occur. The discussion of Sec.
II would also indicate the possibility of level split-
ting due to the lifting of bulk symmetries. Ob-
viously, it is difficult to determine these changes
quantitatively, and we content ourselves here with
estimates of their consequences.

%e assume that the g@, orbitals are most impor-
tant for determining the magnetic structure of the
surface layer, since they are for bulk. At the
surface, these orbitals are expected to be split in--

symmetry and thus that a single-band model may
be adapted when treating the magnetic properties
of such a surface. This is important in the section
that follows.

The lower symmetry of the surface potential also
leads to induced dipole and higher multipole terms
in the associated one-electron densities, not pres-
ent in bulk. These terms have been neglected
and we expect this to be adequate for our purposes
here. This should be good for the d states, which
are localized, although quite inadequate for the
conduction- electron states. Of primary concern,
of course, are d-band position and width.

III. MAGNETIC PROPERTIES OF THE SURFACE

A. Hartree-Fock Equations at Surface

An interesting question concerns the magnetic
properties of the surface layer. It is difficult to
extend the considerations of Sec. II into the ferro-
magnetic region; hence we study here the proper-
ties of simplified models of the surface. %e then
choose the parameters of the models to give agree-
ment with our previous results for the paramagnet-
ic region. Following Moriyay the Hamiltonian
for bulk is taken to be

to a singlet and doublet. The Hartree-Foek equa-
tions for the surface sites can be written as

E~,,=Eg+ Ug(2nn, ,+n~, ,)+2Ugnp, ,—E, ,
E, .=E,+ U, (2.. .+.. .) (3.3)

x=Zx"'+f Z a', a,.
Here X'" is the Hamiltonian within one layer and
the sum over sites l, l' includes hopping between
nearest-neighbor sites in adjacent layers. The
operators a~-=at „,are creation operators for
electrons at site n, in layer l, in quantum states
m, o. Kt" is given by

(r& 7 tal yns afft ~ fyal ~ yfsffta. fy

ffyyf e lS t ff

+ Z, (E~, +5, OE, ~)n„. (3.5)

where 0 refers to the surface layer and the hopping
matrix elements are assumed to be the same as in
bulk. %hen l = 0, it is necessary to distinguish be-
tween the singlet and doublet parts of the ta orbit-
al; hence the m label. For l~ 0, these orbitals
are degenerate.

%e now wish to compute the Green's function
G„,(E, k„; I, /'), defined by

G,.(E, k„; I, I') =

0

dt Esg Qe4f(( R~
i

«[og... ,.(~), st;0. ..].) (S.6)

+ Ua(ng), ,+ng„) —E~,
where 8 and D refer to singlet and doublet occu-
pation numbers at the surface and U~ is the Cou-
lomb energy at the surface. F& and Ez are energy
shifts of the singlet and doublet, which include the
8 contributions, and are determined by requiring
the paramagnetic d-hole count to agree with the
estimates of Sec. II. In Sec. II, both s-d mixing
and charge transfer contributed to the reduction in
the surface d-hole count. The models discussed
here describe only the d electrons. Therefore, the
charge transfer to the surface d states here must
be chosen to given the correct total d-hole count.

It is now necessary to have equations for the oc-
cupation numbers nn, , (En, ,) and nz, (Ez ~,). Given
these two equations, together with Eq. (3.3), we
can solve for the magnetic properties of the sur-
face layer. For this purpose, we generalize the
work of previous authors~~'~ to include the Har-
tree-Fock energies of Eq. (3.3) and the fcc lattice
structure. It proves convenient to divide the solid
into layers parallel to the surface, and write the
Hamiltonian for bulk and surface as
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where 0„ is a vector in a layer of the lattice and

k„ is a vector- in the reciprocal lattice of the layer,
and where we have made use of translational in-
variance within a layer and used standard notation
for the Green's function. With these definitions,
it is possible to solve directly for G,QE, k„; 0, 0),
which determines the surface density of states
p „(E)through

p „(E)= Q Im G„„(E,fc„; 0, 0),
II

where N„ is the number of sites in a layer. The
occupation numbers at the surface are given by

n„„=f dEp „(E}

(3 7)

and Ez is the bulk Fermi energy.
It is straightforward to derive the equation for

the Green's function of Eq. (3. 6), for the Hamil-
tonian of Eq. (3. 4), and (3. 5). The result is

G z(E k2 ' l l ) = G~ z(E k2)51 1r + tG~ (E k2)

x Q G~,(E, k„; l", l')

+51 2E~„G~, (E, k„)G~,~(E, k„' 0, l'}, (3.8)

where G,(E k2) is the Green's function within a
bulk l~y~~, (E- ~; -E, ,)

' for an electron at en-
ergy &I-, propagating in that layer. The sum l"
runs over nearest-neighbor layers to l, terminat-
ing with but including the surface layer l"= 0. Set-
ting l' = 0, we can solve for G „(E,k„; 0, 0) using
the method of Mills et al. ,

' or simply by Fourier
transforming and using the function

N, Q e &'G~,(E, k„; l, 0),
l~o

Z ..(E, kii)

1+ k~,(E, k„)—E„, ~,(E, k„)
(3.9)

where

g~ g(Ey kg): N
g Q (E 'Ejrj' 2t cosk, —E, ,)

Ag

k~ +(E kg) =N
g Q (E e„„—2t cosk, —EB,) 1 cosk

kg

with 2tg =E —E,„-2t(cosk, + cosk„) In these ca.l-
culations, we have taken k', perpendicular to the
(100) surface of the sc lattice, k, and k, in the
other (100) directions, and defined 222 2t(cosk,
+cosk, ). Using Eq. (3.7) we find

where N& is the number of layers, the l sum runs
over all bulk layers including the surface, and we
take the lattice constant equal to unity. Both meth-
ods give the result

x[(A' B-)'~ +A —t 'E „]', (3. 10)

where A = (E —E, ,)(2t) —cosk„- cosk„and B = 1

for the sc lattice. The reason for writing Eq.
(3. 10) in terms of A and B, is that the result for
the (100) surface of the fcc lattice can also be
written in this form. Repeating the steps of Eqs.
(3. 8}-(3. 10) for this lattice, we find A = (E E, ,)—
x (2t) '- cosk, cosk„, and B= 2(cosk„+ cosk, ). In
both cases, we require Im(A'- B') ' '

& 0 for A'
&8, which specifies our convention for the branch
cut.

It is worth comparing Eq. (3. 10) with the ex-
pression for the bulk density of states p, „(E)writ-
ten as the same integral,

B (E} x f v (A2 B2)1/2Pt, e —
mt 2r 2m"-f w f

(3. 11)
Comparing with Eq. (3. 10) shows the modifications
due to the change in the Hartree-Fock energy at
the surface, the t E „term, and the boundary
condition, which introduces the extra A in the
bracket of (3. 10). When E,= 0, it is easy to ver-
ify that both p, (E) and p, ,(E) are nonzero only in
the same interval. Thus the continuum of states
at the surface overlaps the bulk density of states.
However, for sufficiently large IE „I, it is pos-
sible for the bracket in Eq. (3. 10) to vanish out-
side the bulk continuum. Such solutions are anal-
ogous to Tamm states, but here they would be
broadened by s-d hybridization as well as by the
integration over k„and k, . These states are sur-
face resonances, by analogy to Friedel reso-
nances, which are familiar in the impurity prob-
lem. For the sc lattice, the threshold for the ap-
pearance of these states is IE „I =t, which is
only $ of the bulk bandwidth 12t

It is also worth realizing that the surface prob-
lem is truly a one-dimensional scattering prob-
lem, with k, a conserved quantity. Thus the sur-
face resonance appears as a bound state of that
problem, with freely propagating solutions parallel
to the surface. Eventually these states decay
through the s-d hybridization —however, the two-
dimensional propagation parallel to the surface in-
troduces the two-dimensional density of states into
the p, (E) calculation, which we estimate to be
much broader than the hybridization width. Hence
we neglect the latter in subsequent calculations.

This completes the derivation of the equations
for n „which together with Eq. (3.3), permit
explicit solution for all occupation numbers at the
surface and the surface density of states. We now
proceed to study them for the special case of Ni.
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B. Solution of Surface Model
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I IG. 2. Surface site occupation number g~, as a func-
tion of the Eiartree-rock surface energy E~, (in units of
the bandwidth), appearing in Eq. (3.3) and discussed in
Appendix B.

Before evaluating the integrals in Eq. (3. 10}and

solving the Hartree-Fock equations, it is neces-
sary to discuss the approximations involved in ap-
plying this model to Ni. Although Eq. (3. 10) is
valid for both sc and fcc lattices, it will not repro-
duce the real Ni density of states. The sc lattice
with nearest-neighbor hopping has no density-of-
states peak, while the fcc result has a logarithmic
singularity at the band edge. Furthermore, it is
difficult to introduce a surface into a model that
does reproduce the bulk density of states, be-
cause &p and k, appear explicitly in the one-di-
mensional scattering equation. It is necessary to
have them both, as well as the correct boundary
condition, and an expression much more com-
plicated than Eq. (3. 10) is the result.

Because of this difficulty, we give here two sep-
arate calculations to illustrate separately the roles
of the surface and the Ni density of states. The
first of these is a solution of Eq. (3. 10) for the sc
lattice, to indicate how the surface density of states
and magnetization behave for this model. The sec-
ond treats the surface atom as an impurity in bulk,
permitting us to use a better model for the bulk

density of states. We argue that the latter ap-
proach should lead to an understanding of the oc-
cupation numbers at the surface, but is probably
not accurate for determining the shape of the sur-
face density of states.

We now proceed to solve the Hartree-Fock equa-
tions (3. 3) together with (3. 10) for the occupation
numbers. For the sake of continuity the actual
computation of n, is given in Appendix B. The
results are presented in Fig. 2. If this model is
applied to Ni, it is appropriate for the bulk density
of states to represent one of the three degenerate

t+ electron bands, since the e, states are nearly
filled. From the discussion of Sec. II, we take

bulk Ni to have 0. 6 holes. The bulk Stoner crite-
rion for this situation is U = 1.3, where our energy
unit is the bandwidth 12t. Strong ferromagnetism
(n, , -n, , =0.2) occurs when U~1. 5, the majority
spin band is completely filled and the minority spin
band is filled to an energy of 0. 7, corresponding
to 0. 2 holes in each band, as indicated in Fig. 4.
It is now necessary to make assumptions about the
paramagnetic properties of the surface atom. We

discuss several cases, based on the treatment of

Sec. II.
The simplest situation neglects the splitting of

the three t„orbitals at the surface, and takes
Us= U= 1. 5. Although we consider this situation
to be unlikely, it is nonetheless useful for com-
parison with the results of Ref. 4. Solving Eq.
(3. 3} and using E,=Es and ns„=nD „, together with

Fig. (2), leads to

ns, t=1 4Q & —0. 25

n s, , = 0. 80+ 2. 2~Q, &Q & 0. 091

4Q &0. 091,

(3. 12)

Es,~-Es = 3Us(ns, ns)+ 2U-s(ns, &
—ns)+0. 1 U„

(3. 13)
where the superscript P indicates paramagnetic
values, and we have used n, , , -n~= —(n, ~, -nf)=0. 1
for the bulk occupation numbers. The bulk term,
in the far right-hand side of Eq. (3. 13}gives an

antiferromagnetic coupling, in opposition to the
intrinsically ferromagnetic terms containing the
Us. The authors of Ref. 4 do not solve the Har-
tree-Pock equations, but argue that the surface
moment vanishes because it does not satisfy the

where 3&Q is the total charge transfer to the sur-
face in the paramagnetic region. Taking 34Q.
=0. 15-0.2 electrons per spin, from Sec. II, leads
to a ferromagnetic surface moment of 0. 27
—0. 15',~. For very large charge transfer, 3&Q
&0. 27, the moment is entirely quenched. For very
large charge repulsion from the surface, &Q &

—0. 25, we find additional solutions of the Hartree-
Fock equations (3. 3). These solutions correspond
to antiferromagnetic coupling. However, they oc-
cur at such large values of ) &Q I that they are not
of interest here.

Solving Eq. (3. 3) in the paramagnetic region, we

find the Wolff criterion to be given by Us =-,'. Thus
the present case corresponds to a magnetic sur-
face atom. However, even if the surface atom
does not satisfy the Wolff criterion, we expect the
strong exchange field of the bulk to induce a mag-
netic moment at the surface. That can be seen by
subtracting from Eq. (3. 3) the same equation, but
evaluated in the paramagnetic regime, to find:
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Wolff criterion. This ignores the exchange cou-
pling to bulk which will induce a moment. Only if
the charge transfer is made improbably large can
the surface moment vanish.

Proceeding with our discussion, we next include
the possible splitting between the singlet and dou-
blet. As discussed in Sec. II, the doublet is ex-
pected to be lower, corresponding to an attractive
E2. We assume that it is completely filled, imply-
ing that ATE& I is large, which requires that the
charge transfer to or from the surface resides in
the singlet. The estimated surface hole. count thus
requires a repulsion of 0. 15 electrons per spin
from the singlet.

We solve Eq. (3. 3) for three different situations,
(U~ = l. 5; U= 1. 5), (U~ = 2; U= 2), and (U~ = 0. 75;
U= 1. 5), as a function of charge transfer 4Q to
the singlet, keeping the doublet filled. The re-
sults for the magnetization are shown in Fig. 3.
The interesting new feature is the appearance of
multiple solutions, which pose a problem in the
determination of the ground state. The estimated
value of &Q= —0. 15+0.05 can lie in this region,
depending on the assumptions made about the Cou-
lomb parameters.

It is interesting to consider the surface density
of states corresponding to the antiferromagnetic
solution at (Uz= 0. 75, U= l. 5) and dQ= —0. 1. For
this case, we find E~, = 0. 35 and E~, = —0. 15,
which provide an expression for P z,(E) when sub-
stituted into Eq. (3. 10). The results are shown

in Fig. 4 along with the bulk density of states in
this model. A surface resonance has formed at
the majority-spin Fermi level, indicated by the
arrow in Fig. 4, which produces a large majority-
spin density of states. It is this resonance that is
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responsible for the magnetization reversal and
provides a source of majority-spin electrons at
the surface.

This result could have been anticipated directly
from Eq. (3. 13). If we set Uz= 0, there remains
only an antiferromagnetic coupling to bulk. De-
creasing U~ thus tends to favor the single antifer-
romagnetic solution, if the other parameters are
held constant.

I I

0 0.5
ENERGY

FIG. 4. Local surface density of states for paramag-
netic charge transfer of —0.1, U= 2, and Uz ——4. The
zero of energy is the bottom of the corresponding bulk
band, and the Fermi level is indicated by the arrow.
Dashed line indicates bulk density of states. The energy
is measured in units of the bandwidth and the density of
states in terms of its reciprocal.
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FIG. 3. Allowed solutions to the Hartree-Fock equa-

tions for the surface magnetization as a function of the
paramagnetic charge transfer. Curve A, assumes U= U~
=2, in units of the bandwidth, curve B is for U= U&= 2,
and curve C takes U= 2 and U~ = ~. The strong ferromag-
netism condition is U= 2.

C. Impurity Model of Surface

As mentioned previously, Eq. (3. 10) has the dis-
advantage of giving an unrealistic bulk density of
states for Ni. If we consider the surface atom to
be an impurity in bulk, it is possible to solve the
Hartree-Fock equations using a more realistic
model for bulk Ni. Although this procedure cannot
be expected to give good results for the surface
density of states, it can be a good approximation
for the occupation number which is an integral
over that function. This single- impurity problem
has been studied in detail by Moriya.

Concentrating on the singlet part of the t2, states
at the surface, we have the following equations to
solve:

nz„——f dep, (e)I]1—Ez„F,(e)] +[vEz, p, (e)]g ',
(3. 14)

with Ez, given by Eq. (3. 3) and

F,(e)=p f„d(op, (u)) (e —(o) '.
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p, (&u) is taken as the steeple model density of states:

P, (u&)= 1.64(ur-E~„), 0«u —E, , &0. 90

= l. 48+ 89. 0((u —E~,), 0. 90 & (o —E~, & 0. 95

= 5. 93—118.6(&u —E t, ), 0. 95 & e —E, & l. 00

(3. 15)

As in the previous model, we take 0. 3 holes per
spin for bulk Ni. The Stoner criterion is U= 0. 2
and strong ferromagnetism occurs for U= 0. 3, in
units of the bandwidth.

The first case of interest assumes there to be
no charge transfer in the paramagnetic region,
leaving 0. 3 holes per spin in the singlet, and takes
U= U8= 0. 3. The doublet is assumed to be filled.
Numerical solution of Eg. (3.3) and Eg. (3.14)
leads to three possible values for the surface oc-
cupation numbers: (n~ ~, , n~ ~,)=(1.00; 0.47), (0.46;
0. 92), and (0.65; 0. 78). The Wolff criterion for
this impurity is given by U, =0.6. We assume"
that the solution with the smallest impurity mo-
ment corresponds to the nonmagnetic solution in
paramagnetic ¹i.Since the impurity is intrinsical-
ly nonmagnetic, this solution is expected to have
the lowest energy, and is seen to be antiferromag-
netically coupled to bulk.

The sign of the surface-bulk coupling does depend
on U. For example, with U= U~ = 0. 5, the numeri-
cal solutions are (s~, , ; n, ~, )=(1; 0.40), (0.28;
0. 98), and (0. 77; 0. 69). As above, the assump-
tions of Ref. 10 indicate the last solution to be the

ground state that is weakly ferromagnetic. In both
of these cases, however, the majority-spin oc-
cupation number is less than unity. This can only
occur if some density of states has been pushed
above the top of the Fermi level. But the Fermi
level is above the bulk majority-spin continuum,
therefore this depletion implies the existence of
a majority-spin surface resonance above the Fermi
level, as found in the previous model.

Introducing the charge transfer of somewhat less
than 0. 1 electron per spin to the surface, estimated
in Sec. II, modifies the above solution. We believe
that this situation most closely corresponds to ¹i,
and for completeness we consider both singlet and
doublet parts of the t, triplet. From the argu-
ments of Sec. II, the singlet is higher, and the
doublet filled, requiring 0.2 holes yex spin in the
singlet. The surface atoms are intrinsically mag-
netic for all values of U= U~ &0.3. For U= 0.3,
there is only one solution: n&, , =1, n&, , =0. 59.
Laxgex U leads to three solutions, as before. For
ff = 0. 5, the three solutions are (n~, ; nz, ) = (1,
0. 54), (0.43), (0.99), and (0. 83, 0.82). Since the
surface atoms are intxinsieally magnetic, the
previous argument favoring the minimum moment
does not apply, although this solution is closest to
the paramagnetic value of the charge transfer.

The computation of the ground-state energy is
somewhat more sensitive to the detailed shaye of
the density of states than is the occupation number.
It is thus uncertain whether the impurity model
can be trusted to predict the proper ground state
when the solutions lie close in energy, which is
the case here.

If the doublet is higher in energy at the surface,
we assume that the singlet is filled, and 4 Q =+0.1.
The number of holes in the doublet is then the same
as in bulk Ni. This holds true for the ferromag-
netic as well as the paramagnetic state of bulk¹.

IV. DISCUSSION AND CONCLUSIONS

One purpose of this paper has been to make
reasonable estimates of the electronic properties
at transition-metal surfaces, based on the renor-
malized- atom picture. The many assumptions
that were necessary are indicative of the infancy
of this field. Important experimental and theo-
retical questions remain unresolved. It is quite
clear, however, that Coulomb screening must be
included, as attempted here. Our reasoning makes
the charge transfer of approximately 0. 1 elec-
trons per spin to a Ni surface site plausible, in-
dicates a d-hole count less than 0. 2 per spin, and

suggests that the splitting of the t+ electrons at the
surface is significant. However, we know of no
experiment which unambiguously confirms or con-
tradicts these results.

%e also proposed and solved an extension of the
magnetic impurity model to surfaces. Here, the
results depend on the assumptions made about the
surface site, such as the yaxamagnetic charge
transfer, splitting of the g+ states, and Coulomb
parameters. For appropriate choices of the model
parameters, a spin-dependent surface resonance
exists in the ferromagnetic region. The local sur-
face density of states then differs drastically from
bulk, and the surface magnetic moment can be cou-
pled antiferromagnetically to bulk. Nonmagnetic
surface resonance states have been considered
previously'3 and evidence found for their existence
in tungsten. ~4 To our knowledge, however, this
is the first time the importance of spin-dependent
surface resonances for magnetic properties has
been discussed.

The possibility of magnetic surface resonances
leads to a tempting interpretation of the spin polar-
ization measured in recent tunneling and photo-
emission experiments in ¹i.It is plausible that
both are sensitive, to some degree, to the surface
wave function. The escape depth of photoelectrons
in these experiments ls 5-].0 A while the tun-
neling wave function is determined by the boundary
condition at the surface. A surface resonance of
majority spins at the Fermi level would provide
a source of majority spin electrons capable of in-
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fluencing the emitted electron polarization. One

requires better evaluation of the model and a better
understanding of the photoemission process for any
quantitative comparison of theory and experiment.

There are, of course, other proposals for inter-
preting these experiments. In addition, field-
emission experiments, which also should be sensi-
tive to surface properties, complicate this inter-
pretation. They yield the opposite sense of polar-
ization to that found in the other experiments, e.g. ,
on the (100) surface. No description concentrating
solely on the surface or on bulk has to date led to
a satisfactory explanation of all these measurements. 1B

Regardless of the resolution of this experimen-
tal contradiction in Ni, our model does suggest a
variety of new magnetic phenomena associated with
a surface. In general, the rules for obtaining anti-
ferromagnetic impurities in bulk can be expected
to hold here. An analysis of other transition-metal
surfaces could provide other situations favorable
to spin-dependent surface resonance states and
antif erromagnetic coupling.

Note added in Proof. In a recent letter, Houston
et al. ' compare experimental electron-excited and

phonon-excited appearance potential results and

from these conclude that the core 2P levels of Ni

(and Ti and Cr) lie higher at the surface than in

bulk, consistent with our d-level results of Sec. II.
Houston et al. rationalize their results in terms of
a set of (uncharged site) calculations which place
the free-atom levels higher than those in bulk. This
is opposite to what we predicts [see Figs. 1(a) and

1(b)]. Experimental evidence, which supports our
view of the relative positions of such levels, will be
reviewed in a future publication. The requirement
that the local Fermi level at the surface matches
that of the bulk implies that the center of gravity of
the (narrower) d levels lies higher at the surface.
The core 2P level suffers quantitatively similar
Coulomb shifts to that of M and hence is expected
to also lie higher at the surface than in bulk by
about —,

' eV, in semiquantitative agreement with ex-
periment. The pinning of the Fermi level taken
with the narrowing of the d bands generally implies
shallower levels at the surface of the heavy high

p(E») transition metals, no matter where the free-
atom level lies relative to bulk.
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APPENDIX A: EFFECTIVE COULOMB PARAMETERS

This appendix is concerned with estimating the
various effective Coulomb parameters U(i, j) ap-

U(d, d) (d -d") = 0. 92 Ry,

U(d, d) (ds- d') = 1.07 Ry.
(As)

'1'hus relaxation effects yield a shift in &„ which is
approximately one-half that predicted with bare
Coulomb integrals. These values were obtained
with the integrals of Table II, which assume atomic
charge distributions that are renormalized to the
Ni Wigner-Seitz cell and the renormalization im-
pedes the relaxation process. Free-atom esti-
mates place U between 0.4 and 0. 8 Ry.

The U considered above is important in the deter-
mination of the charge necessary to bring the local
Fermi level into agreement with that of the bulk.
Prior to this, however, one must consider the ef-
fect of changing s and d count on going from the
bulk [Fig. 1(b)] to the uncharged surface [Fig.

TABLE II. Slater E integrals obtained from Hartree-
Fock calculations for configurations of Ni, where the re-
sulting Sd and 4s functions were renormalized to the %sig-
ner-Seitz cell of metallic Ni (all integrals in Ry).

Ni

Ni'
Ni

dio

d's
d s
ds
ds

S'(d, g
1.77
1.87
1.97
1.88
1.99

&'(s, g

1.05
1.07

S'(s, s)

0.90

propriate to the charging question considered in
Sec. II. Of particular interest will be how much
the U differ from bare Coulomb (E ) integrals.

Let us first consider how the position of the d
resonance e~ is affected by the addition of 4n elec-
tron's worth of d charge to an atomic site. In this
appendix, it is convenient to work with units of
total charge 6 N. Setting U equal to the bare inte-
gral, we obtain

b ez/d, N= U(d, d)-5 (d, d)=1.8-1.9 Ry, (Al)

using the renormalized atom integrals of Table II.
Now the addition of the d charge causes the d shell
to relax outwards thus reducing the average d-d
interaction. The effect of this on the d-d Coulomb
contribution to c, can be estimated:

U(d, d) (d d ~~ »)

[(n+dN-1)E (d, d)]~~»- [(n —1)F (d, d)]„
b, N

(A2}
where the F integrals in the brackets are evaluated
in the cP' "and d" configurations, respectively.
Each bracket represents the d-d Coulomb interac-
tion of one d electron with all the others. Using
Table II, we can evaluate this for Ll N= 1, obtain-
ing
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1(c)]density of states. The simple shifted-band
estimates of Sec. II showed e~ lying closer to cI,
causing an increase in d and decxease in s count
of about 0.2e. This implies additional shifts in

6g and 61 of

de„=0.2[U(d, d)- U(d, s)]

acr =O. 2[U(d, s) —U(s, s)] .
Using bare renormalized-atom integrals, we find

[U(d, d)- U(d, s)]=F'(d, d)-F'(d, s) =O. 8-O. Q Ry
(As)

[U(d, s)- U(s, s)]=F (d, s)-F (s, s}-O.2 R;.
(A6)

If correct, such values would imply that &„, and
hence the local surface Fermi level move back
close to the bulk-metal levels. Relaxation effects
may be estimated in the manner of Eq. (A2) by
taking d-d (and s) Coulomb energy differences be-
tween d"s' and d"' s' states. For the term im-
yortant to Ae~ we have

[U(d, d) —U(d, s)],o, bio= [9F (d, d)] io

—[F'(s, d) + 8 F'(d, d)]22,

= —0.09(- 0. 16) Ry, (AV)

[U(d, d) —U(d, s)],2, 2 2, = [F (s, d)+ 8F {d, d)] 2,

—[2F'(s, d)+7F'(d, d)],s,2

=o. 11(o.ops) Ry, (A8)

[U(s, d) —U(s, s)]22,2 22, = [95 (s, d)]22,

—[F (s, s) + 8 F (8, d)] go~2

=-0.06(-0.64) Ry, (AQ)

where the number preceding the parentheses is the
renormalized-atom estimate and that inside is ob-
tained with free-atom intggrals. The negative
signs seen in Eqs. (AV) and (AQ) imply that the Cou-
lomb effects are ueakex in the configuration having
more d electrons, contrary to what is suggested by
bare integral considerations [Eqs. (As) and (A6}].

An independent estimate can be made for the
free-ion case employing experimental free-atom
spectra. A difference in ionization energies I
provides a measure of the difference in effective
Coulomb terms, e.g. ,

[U(d, d) - U(d, s)]2o, ,io= —I(d' -d') +I(d s- d s).
(Alo)

Such a quantity measures any effect due to the
spatial change of the d orbital in question, i.e. ,

U(d, d) —U(d, s) = 0. 1+ 0. 2 Ry {A12)

is an appropriate estimate for use in Sec. II. In

any case it is substantially smaller than estimates
omitting screening [i.e. , Eq, (As)]. Of equal con-
cern is the shift of eI relative to ~„which is
governed by

[U(s, d) —U(s, s)]—[U(d, d) —U{d, s)]-—O. 2 Ry.
(A18)

These values are employed in Sec. II.
The small values of the above parameters im-

plies that the local Fermi level of an uncharged
surface atom would lie well below that of the bulk
in the manner pictured in Figs. 1(b) and 1(c). The
charge flow, necessary to raise the surface level,
will be into the d holes at the surface sites. To
estimate the effect of the flow on z, and ~1, we
require U(d, d) and U(d, s), respectively. U(d, d)
was estimated with Eq. (A2) at the beginning of
this appendix. Unfortunately, lacking a set of
¹i'd s wave functions, we cannot make a similar
estimate for U(d, s). Using the dos atom inte-
grals, we can make the crude estimate

U(s, d) = [9F'(s, d)],o, —[8F'(s, d) ] 2, = 0. 84 Ry,
(A14)

a value that is probably too large because of the
integral employed in the second term. This esti-
mate is to be compared with bare F (s, d) of
-1.05 Ry and with the U(d, d) of 0.9-1.0 Ry.

Atomic spectra can also be used to estimate
the U by comparison of successive ionization ener-
gies y namely

U(d, d) =I(¹i'd'-
¹

do}

—I(Ni d - Ni' d )- 1.0 Ry,

U(d, d) =I(Ni'd's- ¹"d's)

—I(¹ds-Ni'd s)-1.0 Ry,

U(s, d) = I(¹i'd s-¹"d )

changes in kinetic, nuclear, and core potential
energy, in addition to the change in d-d and s-d
terms. [The apparent reversal in signs of the
term of Eq. (A10) as compared with Eq. (A V} is
due to taking the ionization energies I as positive
quantities. ] Employing the average of the experi-
mental multiplet energies of any give d" s» con-
figuration, Eq. (Alo) yields 0. 8 Ry and similarly
one Ilas

[U(d, s) —U(s, s)]o2,2.22, =-I(d s-d )+I(d s -d s)

=0. 1 Ry (A11)

It is quite clear that considerable uncertainty
must be attached to any estimate of these quantities
but it would appear that
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-I(Nid s-Ni'd')-0. 7 Ry, (A16)

where we have again employed the average energy
of a d" s" configuration. These, taken with the
earlier estimates, suggest that

U(d, d) =0.9 —1.0 Ry (A17}

is appropriate to the calculations of Sec. II (note
that we are primarily interested in the shift of a
d orbital that lies largely within the surface of the
metal). Secondly, we require

U(s, d)/U(d, d}= 0. 7- 0. 8 . (A18)

APPENDIX B: COMPUTATION OF SURFACE OCCUPATION

NUMBER

We give here the details of the computation of
the surface occupation number n, as a function
of E „appearing in Eq. (3.3). This occupation
number is determined by

n„,.=f. d~p„.(a&),

where, for the sc lattice,

( )
—Im ':dk,P,

4-r4 g

x [($,—1) + g —t E,], (Bl,)

2t(, = &o —E~, —er„,
and

sf =2t(cos.k, +cos k„)

in the approximation of nearest-neighbor hopping
parallel to the (100) surface. The integral over
k, and k„, can be converted into an integral over
the two-dimensional density of states ps(E}. How-
ever, this density of states has a logarithmic sin-
gularity at zero energy, a property of nearest-
neighbor hopping. A more realistic approximation

for our purposes is the choice of an energy-in-
dependent two-dimensional density of states of the
same width 8t. We still have a maximum of one
electron per spin in each orbital, which determines
ps(E}= (8t) ', —4t& E&4t, and p2(E) =0 elsewhere.
Equation (B1) can then be written

4 ~0t

dE
St

4 4t

&[((, —I)+ +t,—t E,] . (B2)

The integrals in Eq. (B2) are straightforward to
evaluate, and have a simple physical interpretation.
The term in parenthesis has resulted from solving
a one-dimensional scattering problem. Its imag-
inary part exists within the one-dimensional con-
tinuum of states —1 & $,(+1, and atdiscretepoints
outside their continuum, given by &o —E= (t +E„,,)/
(E„,), whenever I E, I ) t Th.e latter correspond
to "bound" states, that is, states trapped at the
surface. These states can propagate parallel to the
surface, so that the integration over E smears out
their contribution to the total density of states.

The curves plotted in Fig. 2 result from choos-
ing E~ to give a bulk hole count of 0. 1 per spin per
orbital, corresponding to Ni. We choose the two-
dimensional density of states in bulk to be the same
as at the surface. Using Eq. (3.11) then gives the
bulk density of states of Fig. (4), thereby deter-
mining E„=O.78, in units of the total bandwidth
12t.

We need also n ~,(E,) with the bulk in the strong
ferromagnetic region. This requires the majority-
spin band to be completely filled, and the minority-
spin band to be higher in energy by 0. 2U, when
U) 1.6 (12t). For convenience, we have shifted
the minority-spin band by this amount when plotting
Fig. (4). E~ lies 0. 7 (12t) above the bottom of the
minority- spin band.
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The electronic structure of stoichiometric vanadium carbide has been computed using the

augmented-plane-wave (APW) method and the energy bands for nonstoichiometric phases have been

determined with the APW —virtual-crystal approximation. The energy bands exhibit a very strong

dependence on the relative sizes of the assumed APW-sphere radii for vanadium and carbon. Bands for

the nonstoichiometric phases show a marked deviation from a rigid-band behavior as the composition is

varied. The results of x-ray-emission, heat-capacity, magnetic-susceptibility, and Hall-effect measurements

are discussed in terms of the computed bands.

I. INTRODUCTION

Transition-meta}. carbides such as VC1 pos-
sess seemingly contradictory properties. These
phases have several properties which indicate
strong covalent bonds between carbon and the tran-
sition atom: for example, high melting points
ranging to 3983 C for TaC, 1 hardness values
which lie between those of alumina and diamond, ~

and values of Young's modulus that are double those
of the pure transition metals. ' The electrical, rgag-
netic, and optical properties of these phases, how-
ever, are often typically metallic and not much dif-
fexent frow those of the parent transition metal. '
In addition, nearly stoichiometric NbC, TaC, MoC,
and WC are superconducting, with transition tem-
peratures ranging from 10 to 14 K. '

Previous theories of the electronic structure and
discussions of the relative importance of covalent
and metallic bonding in carbides have been re-
viewed by Toth et al. ~ and Lye. Several workers
emphasized the importance of metal-metal bond-
ing, 5 '.while others have declared that metal-non-
metal interactions are more important. 6' The la-
test band-structure calculations and electron
spectroscopy and x-ray emission and absorption
measurements'6 indicate that there is a mixture of
metal-metal, metal-nonmetal, and possibly even
ionic bonding.

In this paper, the electronic structures of stoi-
chiometric and nonstoichiometric phases in the
vanadium-carbon system are studied with the aid of

augmented-plane-wave (APW) band-structure cal-
culations. The calculations for the stoichiometric
composition were performed using the perf ect-crys-
tal APVf method due to Slater. '7 Theband structures
of several nonstoichiometric phases were complted
using the augmented-plane-wave- virtual- crystal ap-
proximation (APW-VCA) method of Schoen. ' '"

II. COMPUTATIONAL RESULTS AND DISCUSSIONS

A. AP Vf Calculations for Stoichiometric VC

As a first step in the investigation of the energy
bands of the vanadium-carbide system we calculat-
ed the band structure for stoichiometric VC with
the NaC1 crystal structure. VC phases can be pre-
pared in the composition range from VCO ~ to
VC0.65. ' Even though stoichiometric VC does not
exist, these calculations will be used as a starting
point for the calculations on the nonstoichiometric
phases.

In the APW scheme, ~ ~ the one-electron crystal
potential has a muffin-tin form; that is, the poten-
tial is spherically symmetric within spheres cen-
tered on the various atomic positions and constant
in the interstitial volume. In each region, the po-
tential is assumed to be the sum of two terms, one
term which is purely electrostatic due to the nuclei
and the charge density of all the electrons, and an
exchange term. The Slater approximation was
used for the exchange potential~:


