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UP, UAs, NpC, and crystals of other actinide compounds have metallic conductivity and are magnetically
ordered. They exhibit discontinuous changes in the magnetic moment per actinide ion as a function of
temperature. These are accompanied by large changes of the specific heat, magnetic susceptibility, and
electrical conductivity, as well as in some cases by changes in the magnetic symmetry. The transition at the
Neel temperature may also be of first order. A theory is developed that explains these phenomena
quantitatively. Abandoning the concept of a specific configuration (valency) of the actinide ion, we show
that the transition Sf" -+ 5f" ' (6d —7s)' occurs for a certain fraction of the ions at different temperatures.
The transition is induced by the combined effect of a small energy gap (or overlap) between the Sf localized
and 6d —7s band states, the shielded and therefore short-range Coulomb interaction between band and
localized electrons, and the variation of the exchange interaction between ions with the occupation of the
band. The free energy is miminized with respect to the occupation numbers of the band states and of the
magnetic sublevels of the ions in the two different configurations. This yields the temperature dependence of
the band occupation and sublattice magnetization. The other observables are calculated from these quantities
and fit the experimental data well.

I. INTRODUCTION

The metallic compounds of actinide (A) elements
with elements of group V and VI of the Periodic Ta-
ble exhibit a wide variety of unexplained first-order
magnetic and electronic phase transitions, a pre-
liminary theory of which was presented previous-
ly. The experimental data of Figs. 6, 7, and
12 are typical examples.

First examine the temperature dependence of the
relative ordered moment per U ion of the antiferro-
magnet UP (Fig. 6). As the temperature T is in-
creased from 0 'K, the moment drops sharply by
about 10%%uq at T = 22. 5 'K (see Fig. 6). ' There is
no change at T in the AFM-I-type ordering de-
fined in Fig. 1.

Next, looking at the relative ordered moment per
Np ion in NpC, one observes4 a moment drop at Tc
=—220 "K (see Fig. 12). At this temperature, the
ferromagnetic (FM) ordering transforms to the
AFM-I-type structure.

The following characteristics are common to
many metallic binary and ternary compounds of ac-
tinides with group-IV, -V, and -VI elements.

(i) The spatial ordering is of NaC1 type.
(ii) The (presumably) first-order magnetic tran-

sitions are not accompanied by detectable changes
in lattice structure or volume. 4'~

(iii) The magnetic ordering is of the type FM,
AFM-I, AFM-IA (see Fig. 1), or of intermediate
type 1t4g5

(iv) The sublattice magnetization as a function of
temperature does not in general follow a Brillouin-
type curve, particularly in the neighborhood of the
Neel temperature T„(see Figs. 6 and 12).

(v) Moment-jump" transitions may occur at T~
and also at lower temperatures T'.

(a) FM (b) AFM- I

(c) AFM - IA

FIG. 1. Three types of magnetic order found experi-
mentally in the NaCl-type metallic actinide compounds.
The dots are the actinide ions, with the directions of
their magnetic moments indicated by the arrows. The
circles represent anions. (a) Ferromagnetic (FM). (b)
Antiferromagnetic type I (AFM-I). (c) Antiferromagnetic
type IA (AFM-IA).

(vi) The moment-jump transition is, in some but

definitely not all cases, accompanied by a change
in the type of magnetic ordering.

(vii) The magnetic powder susceptibility' usually
increases steeply by a factor of about 2 at the tran-
sitions at T= T and T= T„.

(viii) The moment-jump transition is accompanied
by a sudden increase in resitivity p, shown in Fig.
12. The usual change in p at T& is observed for
these compounds as well.

As a further example we mention UAs. This
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TABLE I. Physical properties of selected NaC1-type metallic actinide compounds. ao is the lattice constant. The
types of magnetic order found with increasing temperature are listed under "Order" and are defined in Fig. 1. T& is a
magnetic transition temperature; po is the ordered moment per A ion at T = O'K; p& is the paramagnetic moment; 9 is
the Curie-Weiss constant; p is the resistivity at T= 200'K; P is the band electronic specific heat coefficient.

AX a, (A) Order T, ( K) p&(us) 8( K) p(pQ cm)
10 4 cal

mole 'K Refs.

UAs
UN

USb
UP
US

Npc
Npsb

5. 779
4. 890
6. 191
5. 589
5. 489
4. 992

?

AFM-I, -L4
AFM-I
AFM-I
AFM-I
FM
FM; AFM-I
AFM

66; 127
50

246
22. 5; 121

180
220; 310

205

2. 24
0. 75
2. 64
1.95

1.2 —1.6
2. 1

?

3. 54
3. 11
3. 85
3. 15
2. 25
3.22
2. 3

32
—325

95
00

185
225
?

238
160
357
370
328
200

?

?
96

23
49

?
?

a, b
b

b, c
d

b

~Reference 9.
~Reference 32 and references cited therein.
'C. E. Olsen and W. C. Koehler, J. Appl. Phys. 40,

1135 (1969).

References 7 and 2.
'References 4, 8, and 33.
~Reference 8.

compound will be treated in a forthcoming publica-
tion by the present authors (henceforth referred to
as II). It should suffice to point out here the
similarity of the dependence of its ordered mo-
ment9' and of its magnetic susceptibility" to that
of UP. A difference is that while UP does not
change magnetic ordering at T ' = 22. 5 'K, UAs
changes from AFM-IA-type {T& 63 'K) to AFM-I-
type structure (see Fig. 1) at its moment-jump
transition temperature T = 63 K. ' Other physi-
cal properties of these compounds are summarized
in Table I.

Previous theories' ' have assumed a well-de-
fined integral number of magnetic 5f electrons lo-
calized on each actinide ion. The ion, in turn, was
assumed to be located in the customary crystal
field. " These theories have not conclusively estab-
lished the mechanism of the first-order transitions
(except perhaps for the insulating compound UQ,")
since magnetization and susceptibility data were
not simultaneously accounted for.

Furthermore, much recent experimental evi-
dence' as well as calculations indicate that at
least some of the energy levels of the 5f electrons
primarily responsible for the magnetic properties
overlap those of the itinerant 6d-Vs band electrons,
as Fig. 2 shows. Given this overlap, one expects
a temperature dependent distribution of electrons
between f levels and the conduction band; i.e. , the
thermal average number of f electrons per ion will
be a function of temperature. Not only will this ef-
fect be taken into account in the theory here de-
scribed, but it will prove to be the decisive factor
in explaining the phenomena listed in (i)-(viii).

Let us review some of the experimental evidence
for the closeness or overlap of the 5f and 6d-7s lev-
els, and for the resulting temperature dependence
of the average number of f electrons per A ion.

The proximity of the Fermi level to the energy of

5f
D(e)

6d
(I

p il
)I
II
&I

gl~

FIG. 2. Schematic
representation of electronic
density of states D(&) as a
function of electronic
energy & proposed for
NaC1-type metallic actinide
compounds. The Fermi
level is denoted by fo.
Solid lines: after a calcu-
lation of Davis (Ref. 25);
dashed lines: location of
5f levels, according to
Grunzweig-Genossar et al.
(Ref. 32).

the narrow 5f-6d band correlates well with the high
values of the low-temperature electronic specific
heat y listed in Table I. (For comparison, y= 3.3
X 10 ' cal/mole 'K2 for sodium metal. 26) This effect
has been connected with the observed temperature
dependence of galvanomagnetic measurements on
US "'6 PuC, PuP, and PuS '~

More recently, the anomalous maxima of the re-
sistivity as a function of temperature found in Pu,
Np, and PuAl~ have also been explained' as result-
ing from the existence of both localized and itiner-
ant states for the 5f electrons. For T&100'K, the
5f electrons in these materials are thought to occu-
py mostly localized or virtually bound" states. At
lower temperatures, these electrons occupy itiner-
ant bandlike states. '9

The experiments of Matthias20 have shown that the
5f electron can also be easily delocalized by the
application of pressure on ferromagnetic and super-
conducting uranium compounds.

Sharp maxima in the electronic specific heat and
electrical resistivity as functions of composition x
of the solid solutions UP, „S„'and U„Th, „S' have
been observed. Fisk and Coles~2 explained these
maxima as resulting from the proximity in energy
of virtually bound f levels to the Fermi surface of



THEORY OF MAGNETIC PROPERTIES OF ACTINIDE COMPOUNDS. I 4335

the band states.
The observations showing the "lability"~o or in-

stability of the electronic configuration of the acti-
nide ions cast serious doubt on the validity of the
crystal field approach of previous theories. In Sec.
II, a new model is proposed and the physical cause
of the moment-jurnp transitions in the magnetically
ordered state is explained as a partial delocaliza-
tion of 5f electrons with decreasing temperature.
In Sec. III, the mathematical details of the theory
are developed. The model is specialized to the
metallic actinide compounds in Sec. IV, followed by
quantitative applications to UP and NpC. In publi-
cation II further applications to UAs, US, and
the solid solutions UPg S UAS, S„, and UP, As„
are made.

II. PHYSICAL ORIGIN OF DELOCALIZATION TRANSITION

The discussion of Sec. I suggests the following
simple model of the electronic states in the metallic
actinide compounds.

(a) There are itinerant electronic states described
by band theory. Let D(&) be the density of states of
the band as a function of ener~ e (see Fig. 3).

(b) There are highly correlated, localized elec-
tronic states derived from the 5f actinide orbitals
and described for a given ionic configuration {e.g. ,
5f') as crystal field states of the ion.

(c) Each of the actinide (A) ions may be in one of
two possible configurations. In one configuration
there are M f electrons localized on the A ion,
where M is a positive integer; and in the other con-
figuration there are M —1 f electrons on the A ion,
one f electron having 'jumped" to an unfilled band
state.

(d) There is a Coulomb repulsion between a local-
ized electron and a band electron. We adopt the
reasoning of Falicov et al. ,

'~ according to which
the interaction energy is t" if the localized and
band electrons are in the same atomic {or Wigner-
Seitz) cell and zero otherwise.

As a purely illustrative example of how a system
described by the above assumptions can undergo a
first-order phase transition, let us consider the
case M= 1, so that we allow either one or no 5f
electron to be attached to each of the N actinide
ions. The energy of the corresponding localized
level is taken to be ~' above the bottom of the band
(see Fig. 5). We assume for the moment that this
level is nondegenerate {as would be the case if, for
example, it were the lowest component of an ex-
change split magnetic multiplet in the ordered
state). The number of localized f electrons in the
solid is given by N(1 -p), where p (0 ~p ~ 1) is the
time-averaged probability that an actinide ion has

lost one f electron to the band. The quantity P is
determined for a given temperature T by minimiz-
ing the free energy I" of the solid, given by

where U and S are the internal energy and entropy,
respectively. The internal energy is given by

U(P) = U, (P)+X(1 —P) ~'+ U, (P) . (2)

Localized Phase

t
D(e)

E 0
(a-G)

g=g(t) (b, +G)

Delocalized Phase

(a) G=Q (bj G ~ 6
FIG. 3. Equilibrium distributions at T= O'K of N elec-

trons among N localized levels (vertical dashed lines) of
energy b, ' and a band. D(&) is the band density of states
as a function of energy & (continuous curve). The dots
represent localized electrons, and the hatched regions
are occupied band states. The short-range Coulomb inter-
action between band electrons and localized electrons is
G, and f is the equilibrium Fermi level, which would
equal f(1) if all N electrons were in the band. (a) If
G =0, there is only one equilibrium electronic distribu-
tion, or phase. (b) If G «6', there are (as shown in the
text) two possible stable equilibrium phases, called the
localized and delocalized phases. The localized levels
are shifted in energy by the Coulomb interaction, giving
rise to the energy gaps Eo and E& as shown.

The first and second terms are the internal ener-
gies of the system of band and localized electrons,
respectively; and Uo(P) is the total repulsive Cou-
lomb interaction energy between the band and local-
ized electrons: The quantity U, (P) depends on the
density of states D(a) of the band, but we can deter-
mine the qualitative features of the thermodynamic
behavior without specifying D(&).

We consider the case r„(1)»', where g(p) is the
Fermi energy of the band at T= 0 'K when occupied
by Np electrons; and we assume for simplicity that
t'(0) =0. We treat two situations.

G = 0(Fig. 3(a))

In this case, there is one physical solution of 6I'
= 0, 5 I' &0 at T= 0 'K, and the corresponding value
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If G is finite, there may occur two solutions of
5F = 0, 5~F &0 as can be demonstrated by a simple
argument. First, let us consider at T=O oK astate
with all the electrons localized (P = 0), and calcu-
late the energy Eo required to excite a localized
electron into the bottom of the empty band at e = 0.
In the band state the electron has a probability N
of being found in the Wigner-Seitz cell of any par-
ticular one of the (N —1) actinide ions which are oc-
cupied by localized electrons. Thus the average
value of the short-range Coulomb interaction in this
state with one delocalized electron is N '(N —1)G
—= G. Since the solid loses the energy ~' in trans-
ferring the electron to the bottom of. the band, the
result for Eo is

Eo= G —& (3)

If the condition ED~0 holds, the localized state is
stable with respect to single particle excitations
and is therefore a possible physical solution of 6I"

=0, 5E&0.
Next, we imagine a state with all the electrons in

the band (p = 1) called the 'delocalized" phase. The
excitation of minimum energy is to bring one elec-
tron from the Fermi level [losing energy g(1)] and
localize it (gaining energy 0 '). Just as before, the
Coulomb interaction between the localized and band
electrons contributes G, so that we have

of p is determined by the equation g (p) = n', ob-
tained from differentiating Eq. (2) with Uo = 0 with
respect to p and setting the result equal to zero.
[Note that dU, (p)/dp=g(p). ] We see that the band
is filled up to the energy 4, and the remaining
electrons occupy the localized levels. The mini-
mum energy of a single particle excitation, in which
either a band electron at the Fermi energy local-
izes or a localized electron "jumps" to a band state
(i.e. , "delocalizes") is zero in this case (there is
no energy gap).

2. G & 0 (Fig. 3(b))

NE~= Ug(1) —Nn &0, (5)

where use has been made of the relation U~(0)
= Uo(l) = 0. As T is increased, there arise thermal
excitations of electrons across the gap E, [Fig.
3(b), lower diagram], resulting in a few electrons
occupying localized states in the lattice of other-
wise empty electron sites, or holes. " This in-
creases the entropy S, because there are more mi-
crostates (or distinguishable distributions) corre
sponding to a lattice with two different kinds of ions
than to a lattice of only one type of ion. If, how-
ever, there holds the condition

E &)E (6)

the entropy of the metastable localized solution will
rise much more rapidly as a function of T for k&T
=Eo than will the entropy of the delocalized ground
state. The excitations in the latter phase will have
their probabilities reduced by the Boltzmann factor
e" ~ "~ . Thus, the free energy U —TS of the local-
ized solution falls rapidly with increasing T and
may cross below that of the delocalized phase at a
finite temperature T, assuming that the initialsep-
aration E„given by Eq. (5), is smaller than ks T '.
At the temperature T the system will undergo a
first-order phase transition, the f electrons "con-
densing" from band or itinerant states into local-
ized or ionic states. We have neglected here the
excitation in which a band electron jumps from a
state within or at the Fermi surface to an unoccu-
pied band state. Because of the Pauli principle,
these excitations play a negligible role as long as
Ks T « f (1).

For concreteness, we show that the conditions for
the transition can be satisfied in the case of a para-
bolic dispersion curve E„~k for the band elec-
trons. For this case, U, (1)= SNf(1)/5, and Eqs.
(3)-(5) become

E~= G+ 4 —f( )I. (4)
(6)

If E, ~0, the delocalized" phase is also stablewith
respect to single particle excitations and is there-
fore also a possible physical solution of 6I" = 0,
6 I" &0 at T=O 'K.

In Fig. 3(b) the localized levels have been shifted
in energy by the interaction G so as to give the cor-
rect excitation energies (3) and (4) with respect to
the band. We now determine the conditions under
which a first-order phase transition between the
two phases is possible as T is increased from T
=0 'K to T= T . First, we assume that the inter-
nal energy U(p= 1) of the delocalized phase is lower
than that of the localized phase at T=O 'K, so that
the former phase is the physical ground state. This
yields the condition

Eo ——G —4' . (9)

A reasonable value for f(1) is 1.0 eV (or about
104'K). For UP, ksT =0.002 eV, which we
equate to E~. From the discussion pertaining to
Eq. (6) we assume ED=0. Inserting these values
into Eqs. (V)-(9), one finds G= 6 =0.602 eV and
E, =0.204 eV. Thus, the crucia1. condition Eo
&k~T'«E, is satisfied.

There is yet another mechanism which can lead
to a first-order phase transition similar to that de-
scribed above. If the localized level has a (24+1)-
fold magnetic degeneracy, the corresponding en-
tropy Nks ln(2 J+ 1) will favor a transition to the lo-
calized phase with increasing temperature. This
mechanism is in fact the one proposed by Falicov
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III. THEORETICAL MODEL

A. Hamiltonian and Assumptions of the Model

In generalizing the model of the previous section
we begin with a Hamiltonian H, given by

N N

H = Q Z &,L&" +Z e „c~fcf + 2 5 f V,'~ L-pc f + H. c.)
i=1 q k i~1 qtk

qt+ZQ U~fjeLf cjtcf+H~~
i qt kk~

(10)

The quantities L~' are the Hubbard-Haley ' opera-
tors, which cause a transition of the actinide ion at
site i from the state t to the state q. Note that the
states q and t may differ in the number (n, and n„

et al. ~~ to explain the first-order a-y phase transi-
tion observed in metallic cerium. However, it can
hardly play a significant role at the moment-jump
transitions of UP and UAs, because the exchange
field in the magnetically ordered state lifts the de-
generacy of the magnetic sublevels both before and
after the transition. From the flatness" of the
magnetization versus T curves below and just above
the transition at T ' in UP and UAs one may also in-
fer the absence of magnetic excitations near T= T,
which if present would decrease the magnetization
smoothly with increasing T in each phase. The
corresponding entropy of magnetic disorder is thus
mostly suppressed and is apparently not the driving
force for the moment-jump transitions. The
transition discussed earlier in this section, in
which the entropy of electronic excitations be-
tween localized and itinerant states plays the
dominant role, is seen to have a fundamentally
different origin from that proposed by Falicov
et al. , even though it occurs within the framework
of a similar model. An assumption of a small gap
for localized-to-itinerant electronic transitions was
also made by Nickerson et al. in their theory of
SmBS, but they did not consider the Coulomb inter-
action G. That the entropy associated with elec-
tronic transitions between available states could be
important at magnetic phase transitions was also
suggested by Counsell et al. as a result of their
thermodynamic experiments on UN.

The main purpose of this section has been to show
very qualitatively how the current view of narrow,
mostly localized or virtually bound" levels for the
5f electrons lying near the Fermi level of an over-
lapping band of itinerant electronic states can lead
to first-order phase transitions, if the Coulomb in-
teraction between electrons in the two types of
states is taken into account. For the purposes of
quantitative comparison to experiment, the model
must clearly be generalized to include magnetic
ordering and exchange interactions. This is done
in Sec. III.

respectively) of f electrons localized at the site.
To each n&(n; =0, 1, 2, . . . ) there corresponds a set
of discrete levels, obtained by the usual prescrip-
tion of applying the crystal field of the surrounding
ions as a perturbation on the states of the isolated
actinide ion with n& f electrons. The indices q and
f in (10) run over all the levels resulting from con-
sidering each possible n;. The operators ck and ck
are creation and destruction operators for the Bloch
wave functions of the itinerant states. The third
term is the hybridization between the localized and
band electrons, the quantity V'k- being a hopping
matrix element for an ion in the state t at lattice
site i to give up an electron to the band state k and
go over to the ionic state q. The next to the last
term in Eq. (10) is the Coulomb intera. ction between
the band and localized electrons. The last term
H ~ represents the exchange interactions coupling
the actinide ions on different sites and in different
magnetic sublevels and is discussed later. At this
point, the following approximations (whose validity
is discussed in Sec. IV) are made in the treatment
of H.

(a) The ionic" states q in the first term of Eq.
(10) are restricted to those pairs of configurations
which differ by unity in the number of localized
electrons (e.g. , in the case of UP these might rea-
sonably be the 5f2 and 5f' configurations. ) The en-
ergies &, of other configurations are assumed to be
too large to be of physical interest.

(b) For each of the two configurations only the
crystal field sublevel of lowest energy is consid-
ered. The configuration having M localized elec-
trons (i.e. , the lower valent" state) is assumed to
have an energy &o, a magnetic degeneracy of Mo
= 2so+1, and a magnetic moment po. The ionic
state with M-1 localized electrons has energy &„
degeneracy M, = 2s~+1, and magnetic moment p,

(c) The quantum-mechanical admixture of the
band and localized states caused bythehybridization
term in Eq. (10) is neglected.

(d) The Coulomb interaction between an ion and a
band electron in a %annier orbital centered on the
site of the ion is Go if the ion has M localized elec-
trons and G& if the ion has M —1 localized electrons.
This is just a slight generalization of the short-
range Coulomb interaction discussed in Sec. II.
Furthermore, in what follows a Hartree approxima-
tion for this interaction is made, in which the oper-
ators c„c„and L" are replaced by their quantum
statistical averages.

(e) The magnetic interactions H ~ are treated in
the effective or molecular field approximation, in
which a given magnetic ion interacts with an effec-
tive field XM proportional to the sublattice magne-
tization M. Only the magnetization due to the local-
ized f electrons is considered; spin polarization of
the itinerant electrons is neglected. The phenome-
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nological coupling constant X is allowed to depend
on the occupation of the band and localized states
and on the type of magnetic ordering, as discussed
in Sec. IV.

8. Free Energy

We now derive the free energy E= U —TS in terms
of the occupation numbers of the localized and band
states. The number of higher valent ions in the
magnetic sublevel m, (m& ranges over the values
mg sf sf + 1, . . . , s, ) is denoted by n(m, ), and
the number of lower valent ions in the sublevel mp
{ma= so~ -so+1, .. . , so) by p(mo). The occupa-
tion of a band state of energy z is f(z). The occupa-
tion numbers are subject to the following con-
straints:

o(m~) = Np,
myn-Sg

S

p(mo) = N{l —p),
mp Sp

Jo D(z)f {z)«=N(z+p),
where zN (a constant for a given material) is the
number of band electrons in the localized" phase
(p=0).

First, we work out the internal energy U by tak-
ing the average value of the Hamiltonian Eq. (10) in
a state with fixed values of the occupation numbers

p, a(m, ), p(mo), and f (z). Note that the neglect of
hybridization and the approximate treatment of the
Coulomb interaction mean that the original set of
localized and band states are still eigenstates. In
other words, an eigenfunction (or microstate) of the
solid is written as the direct product of eigenfunc-
tions Iq(i)) of the ions, specified by giving the ionic
state q(i) of magnetic lattice site i, and of eigen-
functions l{nf})of the electrons, specified by
giving the occupation n„-(n;= 0 or 1) of every band
state k. The operators cf and Lf' operate indepen-
dently on the band and ionic states, respectively.
The ionic and band eigenfunctions are assumed tobe
orthonormal with respect to their quantum num-
bers. There are many microstates corresponding
to given values of p, a(m, ), p(mo), and f (e), but it
will be seen that under our assumptions the internal
energy U is independent of the particular micro-
state. An expectation value in a particular micro-
state is denoted by brackets (()).

The first term of Eq. (10) gives for the energy
U& of the localized electrons

U) =Z A~Pi(Lp) = N [40(1 -p)+ hqp],

where assumptions (a) and (b) have been invoked.
The second term of Eq. (10) yields the internal en-
ergy U& of the band electrons

U, =Re;(c';c;)= zf(z)D(z)« . (15)

Only the diagonal terms k=k' and q = t are retained
in the Coulomb interaction [fourth term in Eq.
(10)]. The quantity U&~ff is the interaction energy
between an ion at lattice site i in the state q and a
band electron in the state k. By assumption (d),
this interaction equals N Gp if q corresponds to the
5f' configuration and N ' G, for the 5fz configura-
tion, independently of k and i.

The factor N ' arises because an electron in a
state with Bloch wave vector k has probability N '
of being found in the atomic cell of the ion at site i.
The expectation value U~ of the Coulomb interaction
of the solid is then

Uc =Z Z(Lg') UPZ(cicf)

= N[p(G, /N)+ (1 -p) (Go/N)]N (p+z) . (16)

The magnetic internal energy U ~ is (in the effec-
tive-field approximation) given by

U = ——,
' XM'= ——, X (N!I /VP, (17)

where the moment p, per magnetic ion is written in
terms of the magnetic occupation numbers as fol-
lows:

Sg Sp

Np= p, E ma(m)+ po Z mP(m) . (18)
mn-5

y Sp

We are assuming here that the symmetry of the
magnetic lattice is sufficiently high so that the ef-
fective fields at the sites of the magnetic ions are
equal in magnitude though not necessarily in sign,
and therefore we do not need to introduce separate
occupation numbers for each sublattice. This con-
dition is satisfied for the FM, AFM-I and AFM-IA
types of magnetic order (see Fig. 1) in the NaC1
lattice. The internal energy U of the system is the
sum of Eqs. (14)-(17).

The entropy S is calculated from the Boltzmann
formula S = k& ln W', where 5' is the total number of
microstates corresponding to fixed values of the oc-
cupation numbers p, n(m~), p(mo), and f (E'). The
entropy S„,due to the ionic states is given by

Sp Sj wj

S„,= k in%~, ——k lnN! Q P(mo)! Q n(m~)!
mph Sp myn~S

y

(»)
The quantity 8'&„ is derived by calculating the total
number of ways of distributing iV distinguishable ob-
jects (the lattice sites) among (2so+1) (2s&+ 1) cells
(the magnetic sublevels of the ions) such that the
occupation numbers of the cells are specified by the

a(m, ) and P(m, ). The entropy S& of the band elec-
trons is given by the well-known expression~

S, = —ks J D(z)( f(e)lnf(e)
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+[1 -f (z)] in[1 -f (z)]jdz . (20)

Talting into account the constraints (11)-(13)by
introducing Lagrange multipliers p, v, and X, we
can now write the free energy F as

F= Up —TSp+N(1 —P) & —N(1 —P) G —8NJo'
Sy

—TN +p„, ) a(, ) —N)I
my -8y

Sp

+r ) (((,) —N tl &))-
fffp~mgp

(21)

G= Gp —Gj,
&a = (ap —4( —Gp+ G(z+ 2),
J = )(. (Np, /V)z,

&= p/p( .

C. Magnetization and Band Occupation

(22)

(23)

(24)

(25)

Minimizing F with respect to o((m() and t}(mp)
yields the systems of equations

eF0= dern—&+kz Tine((m()+ p,so((m, )

+g (zN+pN JD—(z)f (z)dz)+K
&

where K [K= Z)(+ (z+1)G(] is an unimportant con-
stant. Here G, 4, J, and o are defined by the re-
lations

ting the functional derivative of F [Eq. (21)] with
respect to f (&) equal to zero yields

(ep(s p)-+ 1)-) (s5)

D. Magnetic Susceptibility

where f is determined as a function of p and T by
substituting (35) into the constraint equation (13):

f, D(e) (e"' "+-1) 'd-e =N(z+ p) . (s6)

Finally, minimizing E with respect to P gives the
equation

1 —z) + 2G (1 —p) ——,&z' d d/d)p+ r p= 0-. (37)

Using Eqs. (30) and (31) one obtains from (37) the
result

p = 1 + Zp Z) eXp p [f(p) —n+ 2G (1 —p) —8 o d (p)]
(s8)

where J =dd/dp. The three equations (34), (36),
and (38) are three self-consistent equations int,
p, and o for a fixed temperature T. The physical
solution is that solution associated with the lowest
free energy F [Eq. (21)]. The parameters of the
theory are 4, G, p„r, J(p), D(&), and z and are
characteristics of the substances under considera-
tion. These parameters may be taken from experi-
ment, calculated from another theory, or used as
disposable f itting parameters.

Sg . . . S

8F0=
8P(mp)

= —dromp+kz TlnP(mp)+7,

Alp spy ~ ~ ~
p SQ j

where r= pp/p, . From (26) and (27) one finds

) ep(Z(»mP)& m = —S, . . . , S

(26)

(27)

(28)

(29)

The magnetic susceptibility X of a powder sample
of an antiferromagnet is written as

1 2
X = ~ X ()+ 3 X~+X~y ~

Here X„ is the isotropic Pauli susceptibility of the
band electrons, and X and X, are the susceptibili-
ties of the localized 5f electrons for the test field
h applied parallel and perpendicular, respectively,
to the unique axis of the AFM-I or AFM-IA mag-
netic structures depicted in Fig. 1. The quantity

is defined by the expression

where P=(kzT) '. Substituting Eqs. (28) and (29)
into the constraint equations (ll) and (12) yields

-gp ~Z-1

e~' = (1 —)p) Z()',

where

(30)

(»)

Zg— e BZffl
7 (32)

Sp

Z Q e81
Sp

Now, inserting Eqs. (28)-(31) into Eq. (18), one
obtains

(33)

(34)o=f&B, (x)+ r(1 —p)B, (rx),
where x= P Jo and J3z is the Brillouin function. Set-

(7'(T) -o (T)
M ~' 2h0

where N& =6. 023X10 and M is the gram-molecu-
lar weight of the sample. The terms 0' and 0 are
the magnitudes of the thermal average moments in
units of p, , per ion of the sublattice whose moments
are parallel or antiparallel, respectively, to the
test field h. There should arise also a small dif-
ference 6P in the time-averaged delocalization
probability P for the two sublattices if r& 1. This
is because the ions of the "up" sublattice can lower
their interaction with the applied field h by ionizing
to the state of higher magnetic moment, which is
in this case the higher valent configuration. The
resulting contribution os to the thermal average
magnetization is expected to be small if the mo-
ments JL(. 0 and p. , of the two ionic configurations are
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UP NpC

Z

m*/m
z(0)

(o)

0. 515
0. 211

0. 89

0. 1

6. 85
0. 018
0. 0

—0. 029

0. 421
0. 145

0. 89

0 2

8. 40
0. 025
0. 0

—0. 020

—0. 029

same
as B

0. 011
same
as 8

—0. 12G

O. 255

0. 707

0. 7

0. 7
1. 7G

0. 04:&

l. 00
0. 263

0. 7
5. 76
0. 047

0. 717
0. 214

0. 28

0. 5
7 4
O. 017

nea. rly equal, i. e. , if r = l. 0 as for UP (see dis-
cussion of Sec. IV and Table II) and UAs (see paper
II). It is a useful simplification to neglect the in-
fluence of the test field on P, as an exact solution
of the model of Sec. III in an app)ied field is quite
difficult.

We first consider Eq. (34) (with s, = 1 and so= —,

as discussed in Sec. IV) for the average moment
of the "up" sublattice, obtaining

c'(&) =p&, ( V) + ~(I p)&i&(y~),- (41)
where

y =P[u h+J (P)c' J(p)o ]-. (42}

Here p is considered fixed at its thermal equilibri-
um value for h = 0. The exchange interaction J(p)
has been separated into its two components J,(p)
and —J,(p), the former representing the interac-
tion of an ion of one sublattice with all the ions of
that same sublattice and the latter representing the
interaction with the other sublattice in the AFM
state. We next replace o' in Eqs. (41) and (42) by
0+do, where 0 is the equilibrium solution for the
ordered moment in no applied field, and expand the
resulting expression to first order in h and der.

Substituting the result for dc into Eq. (40) yields

x„=& M 'u'[J (1 —&)] ' (43)

where

@ = Jr„p{r'(I -p)[1-t h'(am@)]+3PZ, +PZ, '),
(44)
(45)(P) = J (P)+J (P) .

The perpendicular susceptibility X, can be calcu-
lated by treating the thermal average magnetic mo-
ments as classical vectors26 (note that there is no
change in the magnitude of cr to first order in h),
and one obtains

X.= &sf' 'ui I J(P) - Jm(p)] ', T —7'»

TABLE II. Parameters (in eV, except r, z, and m~/m,
which are dimensionless} of the electron delocalization
theory of the magnetic actinide compounds UP and NpC
used in fitting Figs. 6 and 12. Models A-F are ex-
plained in the text.

XL Xtt(o 0)p 7 +T». (46)

The band susceptibility X„ is given by'

X„=N.M 'u'. ("P)'"[3"(Nlv)] "'(2 /h'),
(47)

and is usually small compared to X„or XJ.
Equations (39) and (43)-(47) are the desired re-

sults for the magnetic susceptibility X in the special
form implied by the model outlined in Sec. IV for
the case r = 1. The quantity JF„(p) appearing in
the above formulas is the q = 0 (or FM) Fourier
component of the exchange interaction, i. e. , the
interaction of a moment ]LL, with a lattice of similar
moments all aligned parallel to the first. In the
Ruderman-Kittel-Kasuya-Yosida (RKKY) calcula-
tion Jr„(P) would correspond to the curve marked
FM in Fig. 5. Note that Jr„(p) does not arise in
the theory of the magnetization in the AFM state,
and is unknown if the RKKY theory is not valid for
its prediction. In this case, there is no unique
prediction for the susceptibility corresponding to a
calculation of the magnetization in the ordered
state, and the function J»M(P) must be parameter-
ized in the same way as mill be discussed in Sec.
IV for the exchange J(p) which occurs in Eqs. (34)
and (36).

IV. APPLICATION OF THEORY TO UP AND NpC

A. Ionic Levels, Band Density of States, and Exchange
Interactions

We now investigate the as yet unspecified ionic
levels, band density of states D(e), and magnetic
exchange interaction J(p) in the light of the known
facts concerning UP, UAs, and NpC.

First, the two ionic configurations will be chosen
to correspond to the 5f' and 5

f' configurations of
the actinide ions. This choice is primarily justified
by the fact that the predicted paramagnetic moment

p~ for the lowest Russell-Saunders J multiplets of
the 5f' (u~=3. 6lu») and 5f (u~=3. 57u») states
are nearly equal and in good agreement with the ex-
perimental results for UP (u~= 3.45u»), ' UAs (u~
= 3. 15 —3. 56us), and NpC (u~ = 3.22u»). The
neutron diffraction work is also unable to definitely
distinguish between the two configurations. ' '
The lowest crystal field level of the 5f' configura-
tion is assumed to be the E,' (or I'~) doublet (so= —,)
with a, magnetic moment u, . The 5f' configura-
tion, which characterizes all the ions in the de-
localized phase at T= 0'K, is treated as an F2 (or
I', ) magnetic triplet (s, = 1}having a theoretical
moment uq=2. 0u» (see Fig. 4). This agrees
with the ordered magnetic moment p.„at T = 0 'K
deduced from neutron diffraction experiments on
UP [u„=(1.95 + 0. 05) u. s], UAs [u„=(2. 2
+0. 05)u»], "and NpC [u„=(2.1+0.1)u»]. ' The
above choices for the localized levels are not
unique but are the simplest assumptions compatible
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FIG. 4. Energy levels in the electron delocalization
model of UP, UAs, and NpC. The symbols 6, po, p&, (T,

&(m~), P (mo) and && are explained in the text, and H, &z is
the molecular field, proportional to 0.

with the observed magnetic moments and the crys-
tal symmetry in the metallic actinide compounds.
We recall also from the discussion in Sec. II that
the low-temperature moment-jump transition is not
expected to depend much on the multiplicities of the
magnetic manifolds, at least for UP and UAs. The
parameter r = go/p. , is allowed to vary within rea-
sonable limits as crystal field theory is not com-
pletely reliable for its prediction (see Sec. VI B).
The neglect of crystal field levels of higher energy
also restricts us to low-temperature applications.
For example, the paramagnetic susceptibility will
not be treated under the present approximations.

Note that the localized "ionic" levels described
above are here used as basic states, the occupation
numbers of which determine thermodynamic prop-
erties in the mean-field approximation. Because
of the neglect of the hybridization term in the
Hamiltonian (10) these ionic states are not the
exact electronic eigenstates of the solid. In fact,
if the energies of the f electrons lie in the continu-
um of the band energies as shown in Figs. 2 and 3
there can be no truly bound or localized states.
If the hybridization is weak, however, electrons in
the narrow f levels may be viewed as "virtually
bound" in the sense of remaining on the actinide
ion for a period which is very long compared to
that of a band electron. In such a case, it is a
reasonable approximation to treat the localized f
levels for each configuration in the crystal field
scheme as done here. This view of the f levels in
the metallic NaCl-type actinide compounds was
also proposed by Wedgwood ' 4 and by Fisk and
Coles as a result of their experiments. The as-
sumption of a weak hybridization is also supported
by the fact that the magnitudes (-2.Ops) of the
ordered magnetic moments in UP, UAs, and NpC
agree well with the predictions of the crystal field
theory. As shown by Anderson a strong hybrid-
ization would have the effect of reducing the local
moment or eliminating it, as is believed to be the
case for the lighter actinide metals. ' The neglect
of the magnetic moments of the itinerant electrons

=0, ~~0 (49)

where no "cutoff" has been taken at high energy.
The effects of such a cutoff should be negligible for
partially filled bands (t &0) at the low tempera-
tures (T~ 10' 'K) of interest here, because the
distribution function f(e) falls off exponentially for
e &t For the .same reasons, Eq. (36) may be
solved for g(P) as follows:

&(P)=& (P)[1- v'(& T/to(P)}'+ . ],
where

(50)

$0(p) = (8' /2m*)[3v (N/V)] (s +p) (51)

With Eq. (50) substituted for f(P), we have two
self-consistent equations (34) and (38} to solve for
o and P. The free energy at equilibrium is now

E= F~ +Nb(1-p)+ , NJa —N(1 -P}G-

-Nk, Tln{(Z,/p)'[(1 p)/&, ]' 'j, -
where

F~= 'N( +p)s& (p) &01
—~i2 v'[&sT/&0(p}l'+

The parameters of the model are now z, &, G,

(52)

is also supported by the neutron diffraction experi-
ment of Wedgwood on monocrystalline US, in
which only a small negative spin polarization of the
6d and 7s electrons was found in the ordered state.

Our assumptions are, however, not adequate for
calculating quantities, such as electronic charge
density, which are sensitively dependent upon the
hybridization and the band structure. When an
electron is "delocalized", its charge density prob-
ably remains mostly concentrated on the actinide
lattice sites, because the band states are primarily
derived from the 6d and 7s (and possibly even 5f)
actinide atomic orbitals. This is evidenced by the
fact that no significant volume change at T = T ' is
experimentally found for UP or NpC. That such
changes need not necessarily accompany electron
delocalization transitions is illustrated by the
examples of Fe,04, '" Ti,O„' and several rare-
earth cobaltates (RCoO, ),

"'"all of which exhibit
first-order localized-to-itinerant electronic tran-
sitions with small ( 0. 1%}or unobservably small
volume discontinuities.

The density of states D(e) of the band is not
known accurately for the actinide compounds. In

all subsequent applications, we assume for sim-
plicity a quadratic dispersion for the itinerant elec-
trons:

eg= (h '/2m~) k',

where m~ is the "effective mass. " Now D(e) be-
comes simply

D(e) = (V/2v')(2m*/8')'~'e'+, e &0
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FIG. 5. RKKY exchange
interaction energy &z (in
arbitrary units) of a mag-
netic ion at a given lattice
site with all other magnetic
ions in the NaC1 lattice.
FR is plotted as a function
of the number of conduc-
tion electrons zo per mag-
netic ion and for various
types of magnetic order.
The types II and III (Ref.
32) are not observed ex-
perimentally in the actinide
compounds. AFM-L4, this
work; other curves, Ref.
32.

m"/m, r, and J(P).
The effective exchange interaction Z(P) is due to

two sources in the metallic actinide compounds.
One source is the (short-range} direct or super-
change interactions between the localized 5f elec-
trons of different actinide ions. This exchange is
expected to depend upon the time-averaged number
of localized 5f electrons and therefore upon P but
should be independent of z. A second source of
exchange is the indirect exchange, coupling local-
ized moments via exchange with conduction elec-
trons. In the RKKY theory, the resulting effec-
tive exchange interaction J,&

between two magnetic
ions i and j has the same form J~S, ~ S~ as the direct
or superexchange, but the coupling J,&

is of long
range and depends on the occupation uN of the band
(Here, m = z+p). The resulting interaction Es
= (g&Z, &S, ~ S&) is shown in Fig. 5 in arbitrary energy
units as a function of the total band occupation soN

for various types of magnetic orderings in the
NaCl-type lattice. ' If only this RKKY exchange
were present, the magnetic ground state for a
given value of zo would be that type of order having
the lowest energy in Fig. 5, and the p dependence
of J and J' occurringinEqs. (34) and (38) would be
completely specified. The presence of direct ex-
change of comparable magnitude and the probable
complexity of the actual band structure of the
metallic actinides render the calculation which led
to Fig. 5 of only qualitative significance. How-
ever, two very important conclusions may still be
drawn from the inspection of the curves in Fig. 5.

(a) At an electron delocalization transition at
T= T' in the magnetically ordered state, where
there is a discontinuous change in P, the type of
magnetic order either changes (as observed for
NpC and UAs}, if the magnetic phases of lowest en-
ergy for the values of ao above and below T = T ' are
different, or does not change (example: UP), if
the two phases are the same.

(b) The continuous increase of P with tempera-

The experimental sublattice magnetization and
powder susceptibility of UP are shown in Fig. 6.

0.8- UP

0.6-

0.4- &

0.2-
O.o,l
40-

&0- X(10 crn/g)
1, ,

20-

10~, T( Kj
T

0 l
40 80 120 160 200

FIG. 6. Relative sublattice magnetization IT (top dia-
gram) and magnetic powder susceptibility y of UP as
functions of temperature T. T'=22. O'K and T&=121'K,
in agreement with the data of Fig. 7. Top: Circles, NMR
experiment of Carr et al. , Ref. 3; dashed curve, theory,
with parameters from column A of Table II: solid curve,
theory, with parameters from columns B or C of Table
II. Bottom: triangles, experiment of Gulick and Moulton,
Ref. 7; dashed curve, theory, column A of Table II;
dash-dotted curve, theory, column B of Table II; solid
curve, theory, column C of Table II.

ture above T= T' in the localized phase (see Sec.
II) will cause the exchange Z(P) in Eq. (34) to be
temperature dependent, so that the resulting o(T)
function for the sublattice magnetization will in
general be a non-Brillouin curve. In particular if
dZ/dP is large in magnitude and negative, o(T) is
expected to fall steeply as T approaches T„, as is
observed in UP and UAs.

Thus, the magnetic exchange J(p) provides the
last element needed in our theory to explain all
aspects of the magnetic transitions observed in UP,
UAs, and NpC. The qualitative features of the cal-
culation of Fig. 5 are in agreement with experi-
ments on solid solutions UP, „S„, 6 UAs~ „S„,
UP, „As„,' and UAs, Pe„' where changes of the
magnetic phase with x can be related to changes in
the number of band electrons~~ ' (see also paper
II).

A computer program was written which, for
fixed values of the parameters z, 4, G, m*/m,
and r and for any specified function J(p), finds all
of the solutions of Eqs. (34) and (38) at a particular
temperature T. Each solution yields a pair of
numbers for P and o in the interval [0, I], which is
then substituted into Eq. (52) to find the solution of
lowest free energy I for the given value of T.

B. Uranium Monophosphide (UP}
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FIG. 7. The molar heat capacity c& of UP as a func-
tion of temperature T according to the experiment of
Counsell et al. Note the unusually sharp singularities at
T ' =22. 5'K and at Tz ——121'K.

We note that the value for the Neel temperature is
best determined from the data of Counsell et al. ,
who find an almost vertical ascent of the specific
heat c~ upon cooling to T= T„=121 'K (see Fig. 'I).
This determination of T„ is also consistent with the
temperature of steepest descent of the magnetic
susceptibility, as discussed in Ref. 7. The even
more dramatic singularity in c~ at T=22. 5'K also
agrees very well with the NMR data of Ref. 7. The
neutron diffraction data, ~6 on the other hand, are
less accurate for the exact determination of the
transition temperatures. The details of the mag-
netization curve near T= T„cannot be ascertained
from the experiments, but from examining the
NMR data of Fig. 6 up to 115 'K it can be seen that
the fall-off of the magnetization near T„must be
quite rapid if not discontinuous. Furthermore,
from Fig. 7 it appears that most of the entropy of
magnetic disordering is generated within 10-15 'K
of the Nee& temperature, also indicating a sharp
transition.

Now let us estimate the values of the parameters
m~, g, y, G, d, and JQ) appropriate for UP. Ex-
periments on spin-disorder scatterings~ and low-
temperature electronic heat capacity~ suggest the
range of values m~/m =5.0-9.0 for the effective
mass m~ (m =free electronic mass). The estimate
zoo =1.05 for the number of conduction electrons
per U ion at T = 0 K has been deduced from experi-
ments+ ~ on solid solutions. From the condition
that the AFM-I magnetic ordering be the magnetic
phase of lowest energy the RKKY calculation (Fig.
5) requires 0.O'I & guo& 1.33. Since as discussed
earlier we expect the ground state at T=0 'K to be
the delocalized phase for which p = 1, we have the
result ggo=1+z. From this and the preceding dis-
cussion we see that the range of values z ~0.0-0.3
is reasonable for the parameter z. The quantity r
can be calculated from crystal field theory, but the

~(f ) =~(I), p —1

=Z( )0+/( )Op+ J "(0)p', p«1. (54)

In the calculation of Fig. 6 (solid curve), the num-
ber of additional parameters so introduced was re-
duced to one [J (0)] by the assumptions J(1)=Z(0)
and J (0) =0. In this way, good agreementbetween
the experimental and theoretical magnetization
curves was finally obtained. The ferromagnetic
component JrM(p) of the exchange needed for the
susceptibility derived in Sec. V was also written
as in Eq. (54), and the assumptions Jp„(0)= Jr„(0)
=0 were made in the calculations of Fig. 6(b) (Table
II, columns A and B). It was necessary to invoke
the full variational freedom of Eq. (54) for Jr„(P)
to obtain the good agreement shown by the solid
line in Fig. 6(b) (see Table II, column C). In these
models, the sharp increase i.n the exchange Zr„(P)

results depend on the details of the calculation.
The values &=0.67, 0.85, and 0.92 have been
obtained. The Coulomb interaction G is not known
for the actinide compounds. For the 4f electrons
of Ce metal Hamirez and Falicov find G=0. 44 eV.37

There is also no known estimate for 4, but the
conditions derived in Sec. II for a fi.rst-order tran-
sition allow it to be approximately determined,
once G is specified.

It is instructive to first consider the case J(p)
= J; a constant independent of p. Values for the
remaining parameters compatible with the above
estimates were selected as listed in Table II, col-
umn A, and the resulting reduced magnetization
o(T) and susceptibility X(T) are plotted in Fig. 6
(dashed curves). As expected, the magnetization
does not fall off sharply enough near T= T„, but
the moment-jump transition at T= T is very well
explained. The internal energy U, the quantity
—TS (S= entropy) and the free energy E are shown

as functions of p for two values of T in Fig. 8.
There are two minima in F(p), indicating two pos-
sible physical phases, and the transition results
from a shift in the absolute minimum from p =-1.0
for T& T to p:-0.0 for T& T . The free energy F
as a function of T for the two phases in Fig. 9
shows the transition at T= T . The corresponding
contributions —TS of the entropy S of magnetic and
electronic excitations to the free energy F are
shown in Fig. 10. It is seen that the analysis of
Sec. II is confirmed in that the entropy of thermally
created holes in the localized phase is the main
"driving force" for the transition at T= T . The
behavior of the band occupation u = z+ p as a func-
tion of T (Fig. 11) shows that only values of p near
p = 1 and p = 0 physically occur for T & T„and sug-
gests a convenient approximation for taking into
account the important p-dependence of the exchange
~(p):
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ment of Counsell et a/. ' in Table GI and good agree-
ment is found in the case of the latter model. Note
that because the theory of model A is not adequate
near T= T„, there is no entry for T&S at T = T„
for this model.

Quite recently, Troc" sent us some preliminary
unpublished experimental data on arcmelted sam-
ples of UP which show a sudden increase in the
electrical resistivity p(T) on heating through the
transition at T= T . These data lend further sup-
port to the model herein presented.
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FIG. 8. The internal energy U, the quantity —TS (S
=entropy) and free energy I' of UP for the parameters of
Table II, column A as functions of the delocalization
parameter p for two different temperatures T. z+p is
the average number of band electrons per actinide ion,
where z = 0. 1. For each value of p, the renormalized
magnetization o is taken from that solution of Eq. (34)
which has the lowest free energy. The unlabeled arrows
indicate minima in the function F. The absolute minimum
shifts from p =—1.0 at low T (upper drawing) to p = 0. 1 at
higher T (lower drawing), indicating a first-order transi-
tion at some intermediate temperature. The Fermi-
energy when there is 1 electron per U atom in the band
is &0=0.444 eV.

C. Neptunium Monocarbide (NpC)

The compound NpC exists only as a NaCl-type
"defect structure" (i.e. , having vacancies at some
carbon sites) described by NpC„, where values of
x from x= 0.82 to x= 0.96 are experimentally re-
alized. ' The Neel temperature is strongly depen-
dent on g but not the FM- AFM-I transition tem-
perature T .' In the present theory of the data of
Fig. 12, the effects of the carbon vacancies are
not explicitly considered. No experiments concern-
ing z, m*, the electronic specific heat, or theheats
of transition are known to the authors at present,
so that widely differing sets of parameters provide
reasonable "fits" to the data. Three such param-
eter sets (models D, E, and F) are listed in Table
II and the corresponding predictions for the re-
normalized sublattice magnetization o(T) and the
band occupation w(T) are displayed in Fig. 12. In
the first two models (columns D and E of Table II)
the p dependence of J(p) is neglected (as in model
A for UP, Table II), and in the third model (column
F of Table II) the RKKY calculation is used for
Z(p). Comparing the values of w(T) for T just be-
low and just above T= T = 220 'K to the RKKY cal-
culation of Fig. 5, we see that the latter theory

as T is lowered below the transition at T= T is
primarily responsible for the observed sharp de-
cline of y(T). That such a change in J'(p) is not un-
reasonable is seen from Fig. 5.

We note that the minimum value of go= z+p oc-
curring in the best fit (models B or C) is w ~0.25,
outside the regime of the AFM-I ordering calcu-
lated by the RKKY theory, which thus wrongly pre-
dicts a change in the spin structure at T= T . How-
ever, the presence of competing antiferromagnetic
direct exchange or superexchange could broaden
the region of stability of the AFM-I phase, as is
discussed in Sec. IV.

The predictions of models A and B (or C) for the
heat of transition T&S of the transitions at T= T
and T= T~ and the low-temperature (T& T ) elec-
tronic specific heat are compared to the experi-
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12

FIG. 9. The free energy F as a function of temperature
T for the localized (dashed curve) and delocalized (solid
curve) phases, showing the transition at T= T' of UP
for the theoretical model of Table II, column A. The
Fermi energy of the band when occupied by one electron
per U ion is &0 = 0.444 eV in this model.
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TABLE III. Theoretical and experimental values for
electronic specific heat coefficient p and heats of transi-
tion H& and H2 of UP. Theories A, B, and C represent
three sets of parameters of the electron delocalization
model (see also Table II and Figs. 6-11).
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"8 ~4

creases (on the average) with w, dominates the di-
rect exchange or superexchange in the former com-
pound, making the RKKY predictions more reliable.
The sharp decrease in the occupation of the band
as T increases above T calculated by the three
models (Fig. 12) correlates well with the observed
rapid increase in the electrical resistivity p(T),
assuming that the change in p(T) is roughly pro-
portional to the change in band occupancy. A more

FIG. 10. Theoretical entropy contributions —TS(T) of
three types of excitations to the free energy F = U —TS
of UP (see Fig. 9) for the delocalized (upper diagram)
and localized (lower diagram) phases. The parameters
of the calculation are those of Table II, column A. The
arrow marks the transition temperature T'= 0. 0044&p/kg,
and the Fermi energy of the band when occupied by one
electron per U ion is &0=0. 444 eV. Solid curves, exci-
tations of electrons between the band and localized states;
dashed curves, magnetic excitations; dash-dotted curves,
excitations of electrons within the band.
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correctly predicts the change in the magnetic or-
dering from FM to AFM-I observed at the moment-
jump transition of NpC. This may be because the
number of conduction electrons zg is larger in NpC
than in UP, so that the RKKY exchange, which in-

1.6-
I I I

I2- tp
z i -150

(p.Qcrn)
-100

1.2

0.8-
of

0.4-

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

it~ P+P

0 t40
T'

I

80
T( K)

120 160

FIG. 11. Theoretical number w of band electrons per
uranium ion of UP as a function of temperature T. Dashed
curve, present theory with parameters from Table II,
column A; solid curve, present theory with parameters
from Table II, columns B or C.
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FIG. 12. Relative sublattice magnetization 0 (top) and
conduction electron number g+ p (bottom) per Np-ion as
functions of temperature T for NpC() 83 T~ =—220'K. Top:
Circles, experiment of Lander et al. , Ref. 4; dashed
line, theory with parameters from Table II, columns D

or E; solid line, theory with parameters from Table II,
column F; Bottom: Dashed line, theory with parameters
from Table II, columns D or E; solid line, theory with
parameters from Table II, column F: Insert: Specific
resistivity vs temperature from experiment of Ref. 8 on
another sample, NpCO ~6, showing the localization transi-
tion at T~ =—200'K.
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quantitative calculation of p(T) does not seem jus-
tified at this time in view of the unknown contribu-
tions of scattering from defect sites, phonons,
magnons, and spin fluctuations.

As can be surmised from the decrease in o(T)
with increasing T in both the delocalized (FM) and
localized AFM-I phases, the entropy of magnetic
excitations plays a more important role in the
theory of the transition at T= T in NpC than in the
case of UP. There is a more delicate balance be-
tween the various components of the free energy,
a,nd the simple picture of Sec. II is no longer ade-
quate.

V. DISCUSSION

The electron delocalization model developed
herein represents a drastic break from previous
theories of the magnetic phase transitions of acti-
nide compounds, in which the actinide ion is as-
sumed to have a well-defined integral number of
5f electrons localized on it. By representing the
complicated interactions and electronic states of
these materials in terms of several phenomeno-
logical parameters, we obtain a theory well suited
for practical applications. This theory makes it
possible to explain the complicated magnetic phase
transitions of the metallic actinide compounds with-
in the framework of a single model, as is shown

by the applications to UP and NpC presented here
and as will be shown in a subsequent paper II by
applications to UAs, US, and solid solutions of ac-
tinide compounds such as UP& „S„and UAs& „P„.
The theory of Sec. III is also directly applicable to
materials where the crystal field is negligible so
that the ionic configurations i (i=0, l) are mag-
netic manifolds of multiplicity 2J, +1 and magnetic
moment p, , = p,~g~J, . This may describe several
rare earth metals and semiconductors such as
EuO ' and Li„Mn, pe, where the RKKY theory is
probably adequate for predicting J(p).

This theory may be critized on the grounds that
a large number of parameters are introduced to
explain only two curves: the magnetization and
susceptibility, and the heats of transition. It
should be borne in mind, however, that the large
number of parameters enters the theory not be-
cause of some ad hoc assumptions, but because of
the special properties of the actinide compounds.
As was already pointed out by Koelling and Free-
man, ~3 in the actinides, in contrast to the other
groups of magnetic elements, several different in-
teractions of the same order of magnitude compete
with each other. Each of these interactions is
characterized by its own parameters, and it would

be entirely unphysical to eliminate some of these
parameters for the sake of simplicity.

Although the theory explains the rather compli-
cated magnetization and susceptibility data, its

validity may remain questionable due to the large
number of parameters referred to above. Also,
the values of the parameters listed in Tables II and
IG are not uniquely determined, because different
sets of parameters yield a good fit to the data.

As will be shown in paper II, the same set of
parameters as used here provides a good explana-
tion of data on other actinide compounds. In a sit-
uation like this, we only hope that the theory will
be subjected to further crucial tests in future ex-
yeriments. For examyle, the low-temperature
electronic specific heat, the heat capacity, and Hall
effect measurements on NpC would be very helpful.
Similar experiments are currently underway for
UAs, USb, and UP. " A determination of the effect
of an applied magnetic field and of elastic deforma-
tion (pressure) on the first-order transitions in
the metallic actinide compounds would be interest-
ing, especially if single crystals become available.

A suspicious feature of the theory is that it pre-
dicts an eLectron-delocalization transition; but, as
pointed out in Sec. IVA, it is unable to predict
whether or not this transition will be accompanied
by a volume change of the crystal. Since UP and
NpC show no significant volume change, whereas
certain rare-earth compounds show such changes
when electron delocalization occurs, one may ques-
tion whether we are dealing with an electron de-
localization transition at aLL in the actinide com-
pounds.

It should be realized that neither the examples
citing volume changes at delocalization transitions
nor the counter-examples cited in Sec. IV A can
decide this question. A decision based on these
examples would be tantamount to a conclusion
based on analogy, instead of on direct evidence.
We feel that the actinides are so different from
both iron and rare-earth group compounds that
analogies cannot be drawn. The data on resistivity
changes as well as the lack of any other quantita-
tively successful ~odel make us believe that a
delocalization transition does indeed occur. We
hope that other, direct experimental evidence in
the future will decide about the validity of our model.

We plan to extend the theory to include the ef-
fects of the hybridization in quantum-mechanically
admixing the band and localized states along the
lines followed by Anderson. ' This modification
may be necessary to explain the properties of UN,
which is thought to show itinerant-electron antifer-
romagnetism, resulting presumably from strong
hybridization and a Fermi level located in the nar-
row f band. Compared to the other NaC1-type
uranium compounds listed in Table I, UN has an
anomalously smaLL ordered magnetic moment and
a significantly small lattice constant. ~ The for-
mer property indicates an effect of strong hybrid-
ization and the latter property may be the reason.
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why the hybridization is stronger i.n UN than in the
other actinide compounds. On the other hand, the
neutron-diffraction results, 3 the Curie-Weiss be-
havior of the paramagnetic susceptibility, ~~ and the
value (3.1 p~j of the paramagnetic moment are
best explained by the assumption of localized mag-

netic electrons. Another advantage of considering
hybridization is that in principle both long-range
and short-range magnetic interactions can be re-
lated to the hybridization parameter by a fourth-
order perturbation calculation, as has been shown
for certain band shapes by da Silva and Falicov. '
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