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Critical Behavior of Magnets with Lattice Coupling
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The exact spin Hamiltonian, induced by linear exchange coupling to a harmonic lattice with fixed
periodic boundary conditions, is considered in the framework of renormalization-group recursion
relations. Neglecting irrelevant variables, the H~~t~tonian amounts to a replacement of the four-spin
amplitude uo by a(T —T,), with T, proportional to the lattice compressibility. Hence the system
exhibits a critical point with unrenormalized exponent values when T, & T, , but presumably a
first-order transition for T, & T, , where T, Tl. The point T, = T, is expected to be a classical
tricritical point. Experiments on NH~C1 are considered briefly.

I. INTRODUCTION

The critical behavior of a system which has
additional "hidden" variables, such as a com-
pressible ferromagnet, has been the subject of
considerable controversy in recent years. The
general effects of constraints upon the critical
behavior of thermodynamic systems were first
investigated systematically by Fisher. ' For the
compressible ferromagnet, Fisher's arguments
suggested that only for zero pressure (or zero
external forces) would the system behave pre-
cisely as in the rigid model; in most other cases
the transition remains continuous, but with re-
normalized exponents. '

Indeed, Baker and Essam have recently con-
structed a soluble model of a compressible Ising
lattice, but without shear forces, which exhibits
Fisher's renormalized behavior for the con-
straint of constant volume. This model was la-
ter extended by Gunther, Bergman, and Imry'
to include other types of constraints, and then
exhibited renormalized critical behavior for pos-
itive pressures or fixed volume, but a first-or-
der transition for negative pressures. A first-
order transition is also found by Baker and Es-
sam in an approximate treatment of a model with
nonzero shearing forces. Similar conclusions
are obtained by Larkin and Pikin, ' who use a
continuum model for the elastic lattice terms.

Since the Baker-Essam model is oversimpli-
fied, it is interesting to consider a Hamiltonian
with a somewhat more realistic representation
of the lattice degrees of freedom, as studied by
Wagner. By integrating exactly over the har-
monic-lattice degrees of freedom, for the con-
straint of zero external forces, Wagner generat-
ed an exact effective-spin Hamiltonian, with
long range four-spin interactions. To analyze
this spin Hamiltonian, Wagner applied the ap-
proach of Fisher's droplet model. ' He conclud-
ed, in contradistinction to Fisher's renormaliza-
tion theory, that the critical behavior differed

significantly from that of the rigid lattice.
With the aid of Wilson' s renormalization-group

approach, ' one is now able to treat Wagner' s
Hamiltonian by more precise methods. In this
note we report the result of such a treatment, and
show that under the constraint of zero pressure
(or zero external forces) one may obtain either
nonrenormalized second-order transition, as
predicted by Fisher (without Wagner' s modifica. -
tions) or an instability which may lead to a first-
order transition. The latter may be related to
the behavior found (at negative pressures) by
Gunther, Bergman, and Imry on the basis of the
Baker-Essam model. These results are clearly
in disagreement with Larkin and Pikin, and we
shall discuss this later.

II. WAGNER HAMILTONIAN

The actual calculation starts with the Wagner-
Swift Hamiltonian,

K= 4+ @ —K~r" + +"u" + (l/2M)gg

where u is the displacement of the ion at the
lattice point r [defined by the lattice equilibrium
condition 4'" (r„)=@],P is the conjugate mo-
mentum, M is the atomic mass, @' is the har-
monic potential, and

e= ——,'Q J(r' —r„')s s„

is the magnetic exchange Hamiltonian, in which
s is the single-component spin variable of the
ion at the site r . All our calculations may be
repeated with s replacing s; thus the results
also apply to compressible Heisenberg magnets.
The subscript on +" means S'k/Sr", and 4"
and @""are defined similarly. The external
force on the ion at r is denoted by K . A sum-
mation over repeated indices is implied every-
where. Following Wagner and Swift, ' we shift
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u„so that the term 4 g in (1) is eliminated.
This shift amounts to finding the local equilibrium
positions of the ions. After this transformation
X becomes exactly

3C=C'++-K"r"„+ 2+" &""+"+(1/2M)p"p"

wave vector q and polarization vector e,.(q)
(j=1, 2, . . .d), and fs denotes (2v) "times an in-
tegral over the first Brillouin zone. With these
assumptions Wagner obtained a complete separa-
tion between the lattice and the spin Hamiltonians,
with the exact effective-spin Hamiltonian

+ an(@ vv++vv)av

where the Green' s function S~ is defined by

Xv
ml+ ml)~(n 5mn5nv ' (4)

(5)

where p is the mass density of the lattice, (d(q)
is the dispersion relation for the lattice mode of

If one sets +""=0, which is equivalent, for
cubic lattices, to assuming J(r) to be a fznear
function of Ir I, then (4) can be solved using the
known lattice potentials. If, in addition, one as-
sumes fixed Periodic boundary conditions, the
solution becomes

The appearance of +~v in (3) is shown by Wag-
ner and Swift to be important for retaining the
symmetry properties of the elastic constants.
They actually estimate the contribution of 4""
to the elastic constants by using an average (~""),
calculated with (6), and so obtain renormalized
values for the elastic constants. Note that if
+" =0, the elastic constants, and the complete
phonon spectrum v„(q), remain as in the nonmag-
netically coupled lattice.

III. CONTINUOUS-SPIN 1VIODFL

We now consider a continuous spin model, with
a weighting fa.ctor exp(- —,so —uso —vso —... ).
On Fourier transforming the variables in (6), we
finally arrive at a reduced Hamiltonian of the
form

3C= —
2 f (r+q.)o-o"—f ff „U( q„4q»q&, -q&, —q2, —q3)(7 0 t7 o

~1 ~2 ~3 -~1-~2-~3

f, f, f, f, f V(„,.. . . , q„-q, -".-q,);.,o,;;..-;„;-;„-„;.. . ,

where the integrals now run over 0& Iql & w (the equilibrium lattice spacing a has been chosen as 1), and
the spine are rescaled by a factor so=(2d@T/cJa~ )'~, in which J'is the equilibrium nearest-neighbor
exchange parameter, and c is the coordination number. The four-spin coupling potential, using (5), is

A A

,~&(4) ~,(i ~ ~)&,(4,) ~'(4 ~*))U qs qo qs q4 = soa a+
2~ TMa y&q1+ q2&

where M, the atomic mass, replaces pa~, and

iJ;(q) =iq "[cd„+O(q')] (9)

is the Fourier transform of ~J(r)/Sr" [we assume
that J(r) is a function of IrI, and we sum only
over nearest neighbors]. The parameter y„ is
d 'din J/dlnr —dlnJ/din V, with the derivative cal-
culated at the nearest-neighbor site. The six-
spin coupling potential is simply proportional to
the parameter v of the weighting function. More
generally, V could include six-spin terms from
the spin Hamiltonian. ' We shall assume V=vo.

For small q, we follow Wagner in approximat-
ing &,(q) by vlql, where v is an average phonon
velocity. [The simplification that V is indepen-
dent of j may easily be avoided. Similarly, the
assumption that &u&(q) depends only on the mag-

nitude of q may be lifted, and angular variation
characteristic of cubic symmetry may be in-
troduced. ] Thus, we obtain the crucial expres-
sion

kT
U(q&, q» q&, q4) =r&(2d)'a

y„c~]

k~T q' q3 O+2M—o
( )2 (q()

in which we do not need the explicit forms of the
O(q, ) terms, since they are irrelevant in the re-
normalization group sense near four dimensions.
[Their exponent is e —2+O(e ) & 0for & =4 —d«1. ]

Since the integral in (7) is symmetric under per-
mutations of q„q2, q3, q4, we may replace
U(q~, ~ ~ ~, q4) by an average over all these twelve
permutations. Using the constraint q, + q2+ q3+ q4



4316 AMNON AHARONY

=0, simple algebra yields

ft(q&, qp, q&, q4) =y'„(2d)'a' '

which leads precisely to the Wilson Hamiltonian,
with

up=(2d') a4 (cd) uTks(T —Tq),

where

ksT, =y„'(cJ)P/SMv u=y'„(cJ) nor/Su,

(12)

(13)

in which n is the number density, while lt:~ is the
13ttiee compressibility.

IV. RENORMALIZATION GROUP NEAR FOUR
DIMENSIONS

We now consider the renormalization-group
recursion relations near four dimensions. If T,
& T„ then uo is positive near the critical point,
and the iterations lead to the usual fixed points.
For c +0 we obtain exactly the same nontrivial
fixed point, and hence the same exponents, as
found for the rigid lattice. Since the Fisher re-
normalization of critical exponents' involves a
factor (1 —n), and n is of order p, we thus pre-
dict a nonrenormalized behavior already in order

We expect more generally that the second-
order transition for the Wagner Sguift Hami-ltonian

has nonrenormalized exponents to all orders in e.
If T, & T„ then for temperatures in the range T,

u() is negative. If vo & I uo I, then the v f

term in the recursion relation for u, may build up
a positive u„which will still go to the usual non-
trivial fixed point. However, if Iuol »vo, this will
not happen, since v, is an irrelevant parameter
for d ~3, and hence decays to zero, while u, will
grow exponentially to -~. Numerical studies on
the approximate recursion relations suggest that
such a situation usually leads to an effective Ham-
iltonian with two minima, and hence to a first-or-
der transition. We are thus led to the conclusion
that there exists a tricritical point, with T, dif-
fering from T, by terms of order T,vo, such that
for T, & T, one finds a first order transition. -Note
that in all the above discussion we must have vo&0,
since otherwise the Hamiltonian K of (7) is un-
stable (the partition function is undefined). Clear-
ly one can always choose v in the weighting factor
so that this will be the case. (If the Hamiltonian
includes six-spin terms with large negative co-
efficients, then one will have to go to higher-or-
der terms. )

The situation with uo& 0, vo &0 was studied by
Riedel and Wegner, who found that the point r*
=u*=v*=0 is a fixed point, which, for d~3, cor-

responds to the Blume-Emery-Griffiths" tricriti-
cal point with classical exponents (with logarithmic
corrections at d= 3). Thus, for appropriate val-
ues of rp up and vp (which give the actual value
of T, ) the recursion relations will lead to the above
fixed point. We thus expect classical tricritical
behavior at T,.

V. COMPARISON WITH EXPERIMENTS AND DISCUSSION

To estimate T&, we need a value for u; but this
is a feature of the particular physical model con-
sidered. For d = 3, we expect reasonable values
of u to be of order unity. Thus, using cJ= 2k~T, '4

we find T,/T, = p ks T,nor. y„Fo.r Wagner' s il-
lustrative values T, =100'K, n=10 cm ', ~~
=10 ' cm /dyn, y„=l, one finds T,/T, = 10 '. Our
model thus predicts that typical Ising-like systems
will behave exactly as rigid lattices. Indeed, the
data for P-brass' is not inconsistent with this con-
clusion.

The above numbers change appreciably for a
highly compressible lattice, like NH4Cl. For this
material, which seems to be well described by a
compressible Ising model, Garland and Weiner'
indeed find a change from a first-order to a sec-
ond-order transition at T, = 250'K and p, = 1500
bar. Although the assumptions of zero external
forces and of harmonic lattice coupling may not
be justified at this pressure, it is instructive to
examine the value of T, for this case. As we noted
after (6), the elastic constants of Wagner' s model
are the same as for the rigid lattice, unless one
takes into account some average magnetic contri-
bution. From the Weiner-Garland' results, the
rigid-lattice compressibility (far from T,) is I4r
=5.91&10 bar . The value of y~ may be esti-
mated from the variation of the critical tempera-
ture with the volume. From the Renard-Garland
measurements~~ one finds y„= —10.7. Together
with n= 1.7~10 cm we find T&/T, =0.2. Re-
membering (i) that u might well be equal to 0. 1,
(ii) that we do not know the order-v contribution
to (T, —T,), and (iii) that the actual compressibil-
ity is larger than the above value, because of the
average magnetic contribution, this is an encour-
aging order -of -magnitude agreement.

Another positive indication concerns the specifie-
heat exponent a, for which Weiner and Garland
find a value which is quite consistent with the clas-
sical tricritical e = ~. On the other hand, mea-
surements near the tricritical point in ND4Cl '
give 2P=O. 36+0.01, which seems significantly
lower than the classical tricritical 2P = ~. How-
ever, this discrepancy may be related to the
Wegner-Riedel' logarithmic corrections at d = 3.

The main difference between the present model
and that of Larkin and Pikin' lies in our assump-
tion of fixed periodic boundary conditions, which
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led to (5). Under this assumption, it is impos-
sible to obtain the nonzero uniform deformations
indicated by Larkin and Pikin, which lead in their
work to a first-order transition whenever the
magnetic specific heat becomes large enough. Al-
though it is not clear if this assumption is justi-
fied, the observation on NH4Cl suggests quite
strongly that a real tricritical point can in fact
occur. Since the specific-heat exponent near the
tricritical point is relatively large, one might ex-
pect a strong divergence of the specific heat, and
hence the Larkin-Pikin theory would predict a first-
order transition instead of the observed behavior.

Note added in Proof. The important role of
boundary conditions for the present problem has
been demonstrated in one dimension by S. R. Sa-

linas [J. Phys. A (to be published) and private corn
municationj, who also, independently, derived the
result (12).
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