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The t-matrix perturbation method developed in the preceding paper is applied to the calculation of
low-energy-electron-difFraction spectra for difFerent beams on different faces of aluminum for a wide

range of angles of incidence. The dynamical model used in the theoretical method is illustrated in

detail and efFects of dynamical factors are analyzed. Comparisons between theory and experiment of the
spectra indicate good agreement for all beams for Al(001) for a wide range of incident angles.
Reasonable agreement is obtained for the (110) face although some discrepancies are observed in peak
positions and in peak profiles at low energies.

I. INTRODUCTION

A low-energy electron, typically in the energy
range between a few eV to a few hundred eV above
the vacuum level, incident on a crystal, penetrates
only a few surface layers of the solid. ' This small
penetration distance is the consequence of strong
electron-electron interaction between the incident
electron and valence electrons of the solid. The
mean free path of the incident electron is inversely
proportional to the imaginary part of the optical
potential of the solid. ~'s In principle, such local-
ization of the incident-electron wave field to the
surface region makes low-energy-electron diffrac-
tion (LEED) a powerful means for the study of sur-
face properties of target materials. However,
since real surfaces are highly nonhomogeneous and
irregular on an atomic scale, interactions in the
surface region are predominantly nonlocal and re-
quire an approach leading to a many-body self-con-
sistent solution. There have been encouraging im-
provements in recent years in the modeling of sur-
faces, ' mainly in the use of one-body local Hamil-
tonians applied to the self-consistent solution of
surface valence charge densities and surface po-
tentials for free-electron metals. In comparison
to such recent theoretical surface models, the
usual surface model used in LEED calculations ap-

pears rather simple and almost exude. The usual
surface model used in LEED theory consists of
planes of bulk ion cores stacked in bulk spacings
and terminated at a given surface plane. A uniform
electron gas with charge density corresponding to
that of a jellium model for the valence electrons of
the material extends throughout the planes of ion
cores. The uniform electron gas is terminated in
terms of a step function at a given distance beyond
the centers of surface ion cores. Beyond this sur-
face plane, there is assumed to be a vacuum region
extending to infinity. Such a surface model gives
erroneous results for the surface potential and the
charge density of valence eiectrons at the interface,
since in real solids both the charge density and the
surface potential vary smoothly and rapidly from
their bulk values to their values in vacuum. Also,
this simple surface model gives drastic results if
applied to chemisorption since the lack of self-con-
sistency in surface valence-electron wave functions
and the oversimplified assumption of a uniform
surface which neglects strong localized interac-
tions, leads to unphysical predictions both in the
binding energy and in the amount of charge trans-
fer. However, a number of recent microscopic
calculations in LEED using such a model for the
surface have been surprisingly successful, never-
theless, in obtaining good agreement between theory
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and experiment for the intensity-energy spectra
for clean surfaces of different materials. Why then
would such a simple surface model do so well in
low-energy- electron-diff raction calculations in
view of the previous considerations'P The answer
relates to the fact that in low-energy-electron dif-
fraction, we are primarily dealing with backscat-
tering properties of the solid in the surface region.
It is electrons in the ion cores that turn the inci-
dent electrons around, and the exact nature of the
interface is not of primary importance. In most
materials, electrons in ion cores are not that much
perturbed by the presence of the surface. The va-
lence electrons, on the other hand, contribute
largely to forward scattering processes, which in
turn contribute to LEED spectra through multiple
scattering events. The use of a uniform-electron-
gas model neglects the tail of the valence charge
density at the interface region. Fortunately, the
effect of this tail on the average charge density per
unit cell is small. It is significant only for indi-
vidual valence wave functions at the interface. For
present purposes, it is therefore sufficient to note
that this simple model for the surface seems to
work well in terms of scattering properties of low-
energy-electron diffraction from solids. This ob-
servation brings out the important concept that the
apparent insensitivity of LEED spectra to local de-
tails of surface valence charge densities and their
strong dependence on electron ion cores make low-
energy-electron diffraction an effective way to
study /ovations of surface atoms, both on clean
surfaces and in adsorbed layers. Whereas a host
of surface phenomena such as chemisorption,
resonance field emission, ' photoemission, ' '"
ion-neutralization spectroscopy, "'"and inelastic
LEED' ' reflect mainly electronic properties in
the surface region, elastic low-energy-electron
diffraction, on the other hand, is unique in its
suitability for structural analysis of surface atoms.
However, one must exercise a degree of caution in
that certain dynamical factors can indeed have im-
portant effects in a LEED calculation. Such fac-
tors and their effects on the determination of sur-
face structure from LEED spectra are analyzed
and discussed in Secs. II and III of this paper.

In the preceding paper, "we presented the theo-
retical formalism of a third-order perturbation
method within the microscopic approach to LEED.
In this paper, we shall apply this method to the cal-
culation of LEED spectra for a simple metal. The
organization of the body of this paper is as follows.
In Sec. II, we describe and list the model of dy-
namical factors used in this calculation. In Sec.
III, we analyze the effects of such dynamical fac-
tors on the accuracy with which theoretical values
may be meaningfully compared with experimental
results. In Sec. IV, we describe the computation

procedure of the t-matrix method, and in Sec. V,
we present results of a detailed comparison of
LEED intensity spectra between theory and experi-
ment for a wide range of incident angles and for
different reflected beams and different faces of
aluminum. Finally, in Sec. VI, we summarize
our findings and give a critique of our results.

II. DYNAMICAL MODEL IN LEED THEORY

In this section we list and describe the dynamical
quantities in our model. While the discussion in
this section is presented with reference to the spe-
cific dynamical model we chose for this calcula-
tion, the general physical concepts are, in most
cases, applicable to all microscopic approaches in
LEED.

A. Crystal Potential

In our model, the solid is divided into Wigner-
Seitz cells containing nonoverlapping muffin-tin
spheres. Scattering between the incident electron
and each signer-Seitz unit cell of the solid is de-
scribed in terms of energy-dependent phase shifts.
The phase shifts are obtained by integrating the
radial part of Schrodinger's equation containing the
single-site scattering potential in the muffin-tin
approximation for each partial wave and at each
energy. This means that multiple scattering events
within each muffin-tin site are included to infinite
order. For the single-site muffin-tin potential, we
use a full Hartree-Fock potential constructed by
Pendry ' which does not use the local-exchange ap-
proximation. The use of such a potential is well
documented in other materials. ' In Fig. 1, we
show the first six partial-wave phase shifts calcu-
lated from this potential for aluminum in the energy
range 0-200 eV measured with respect to the muf-
fin-tin zero of energy. In this energy range, the
dominant partial wave is the (& =2) d wave. '0 ~e
limit ourselves in this calculation to six partial
waves mainly because in this given energy range,
higher partial waves are small and have nonconse-
quential contributions to the intensity-energy spec-
tra. Our method, on the other hand, is so fast that
we can handle many additional partial waves, if
necessary, with relative ease.

8. Model for the Surface

The main features of the surface model used in
this calculation are described briefly in the Intro-
duction. The bu1k muffin-tin potential is assumed
to extend unperturbed up to the surface plane. A
uniform electron gas made up from the valence
charge density of each ion core extends slightly be-
yond the plane of surface ion cores. In this calcu-
lation, we have put the cutoff plane of the uniform
electron gas at a distance equal to the bulk inter-
layer spacing from the centers of the surface ion
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cores. Schematic illustrations of this surface
model for the (001) and (110)faces of aluminum are
shown in Fig. 2. Following this model, surface
ion cores in the (110)face are just covered by the
electron gas [Fig. 2(b)], while in the (001) face,
the uniform electron gas extends a distance of
0. 591 A beyond the surface layer of muffin-tin
spheres [Fig. 2(a)]. The incident electrons, when
passing through the uniform electron gas, lose flux
from the elastic beam owing to inelastic excitation
processes. Thus, where one places the cutoff
plane for the electron gas determines the over-all
absolute ref lectivity of the calculated spectra. In
Sec. III, we shall discuss magnitudes for absolute
ref lectivities in terms of different positions of the
electron cutoff plane.

C. Surface Barrier

+z direction

+z direction

vacuufn-solid interface

dz
ii

dz

(a): {001{ surface

vacuum- solid interface

(b): {I I OI surface

'
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In this calculation, we shall assume no back re-
flection at the interface between vacuum and the
uniform electron gas. Although the incident elec-
tron does undergo a Snell's refraction at the inter-
face owing to the presence of an inner potential, ~~

we shall assume no back reflection at the interface.
In other words, all physical scatterings are as-
sumed to come from the muffin-tin potentials. Our
assumption is based on the fact that in real sur-
faces, the surface-barrier potential varies rather
smoothly from its bulk value inside the solid to the
vacuum level outside. This smooth variation of the
barrier potential cuts down drastically, surface
reflections at the interface. " Thus, the nonreflec-
tion model is a rather good approximation of the
true reflection conditions at real surfaces. This
model has been applied with considerable success
in the case of aluminum. ' In a more realistic
model for the surface barrier, one should not elim-
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FIG. 1. First six phase shifts of aluminum expressed
modulo 7l., plotted in the energy range 0-200 eV measured
with respect to the muffin-tin zero. A Hartree-Fock po-
tential, Ref. 21, is used to calculate the phase shifts.

FIG. 2. Surface model (a) for the Al(001) face and (b)
for the Al(110) face. The positive Z direction is mea-
sured inwards from the vacuum-solid interface.

inate all reflections at the barrier, but should in-
stead calculate surface reflections from some
smoothly varying shape of the surface-barrier po-
tential.

D. Inelastic Electron Damping

Inside the solid, the incident electron interacts
with the electron gas and excites a series of inelas-
tic processes. These inelastic processes remove
energy from the incident-electron beam and trans-
fer electrons from the elastic flux into inelastically
scattered electrons. The two most important in-
elastic processes inside the solid are single-parti-
cle excitations and bulk-plasmon emissions.
In the surface region and at large angles of inci-
dence, surface-plasmon emissions are also be-
lieved to be important. In our present treatment,
we do not, however, include effects of surface
plasmons. Inclusion of such a relatively unknown
dynamical factor in our present model would nec-
essarily introduce an adjustable parameter into
our discussion. In this calculation, damping ef-
fects due to single-particle and bulk-plasmon exci-
tations are included in terms of the imaginary part
of an effective electron self-energy. ' A complete
calculation for the self-energy of a uniform electron
gas was done numerically by Lundqvist' in the ran-
dom-phase approximation for a set of metallic den-
sities and for energies and momenta ranging from
zero to a few hundred eV above the Fermi level. If
we write the self-energy of a uniform electron gas
as M(k, E)=M, (k, E)+iMs(k, E), then the effective
self-energy Z(R, E)=Z, (k, E)+iZs(K, E) used in our
model has the same imaginary part, i. e. , Zs(jt, E)
=Ms(k, E). We define the real part of Z(K, E) as
the inner potential of our model. It is related to
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If k /2m =E M(k-, E- eo). (2)

For fixed k, one may expand M(k, E) to first order
in the difference E- eo- ff k /2m and obtain

K k /2m = E-M*(k, K k /2m)

where

(3)

M*(k, & k'/2m) = Z(k) M(k, II k /2m)+ so[1 —Z(k)].
(4)

In Eqs. (2) and (4), we have put

(~) (i
BM(k, E)

eE

a]

g~h k /2m

the real part of M(k, E) by~~Ized(k,

E)I= (M, (k, E)I+ ID I- 6,
where I DI is the self-consistent solution of the di-
pole potential at the surface and 6 = V„-1 is the
difference between the muffin-tin average V„of the
crystal and the bottom of the conduction band I'.

The self-energy M(k, E)=M(k, E) of a uniform
electron gas satisfies the dispersion relation'
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where k~ is the Fermi momentum. One should
note that by the use of the complex quasiparticle
renormalization factor Z(k), the renormalized self-
energy M*(k, K~ka/2m) depends only on momentum
k. The dispersion relation given in Eq. (3}may be
solved self-consistently for given values of E.
Using Eqs. (1) and (4), we can define a Z*(k, Pf~k~/

2m) as

I z*(k, &'k'/2~)
I
= IM*(k, &'k'/2~) I+ IDI- 6

and

Z~ (k, 5 k /2m)=M~(k, If k /2m). (6)

In Fig. 3, we show the values of M(k, 5 k /2m) and

Z(k) as functions of k/kr for an electron density
corresponding to that of metallic aluminum. The
variation in energy of M(k, If k /2m) corresponds
to the sum of the energy dependences of both ex-
change and correlation effects of the electron gas.
In Fig. 3, we see that at near the Fermi level,
M, (k, g k /2m) is almost constant with energy.
This is due to near cancellations in the energy de-
pendences of exchange and correlation energies at
near "band- structure " energies, i. e. , E =E~. '~

However, we see from Fig. 3 that at k «1. '7k~, the
sum of exchange and correlation energies begins to
increase as a whole with energy. The sum is nega-
tive, so the absolute value of the sum actually de-
creases as the energy increases.

Our use of a momentum- and energy-dependent
inner potential is different from that used in other
calculations, a ' ' but is consistent with the objec-
tive of achieving a parameter-free model. From

-1.0

0.5- iI M(kgk )i/

0.0 I I s l

I 2 4
Relative Momentum "/gF

FIG. 3. Electron self-energy M(jh, K2k2/2m) and com-
p1.ex quasiparticle renormalization factor Z(t) plotted as
a function of relative momentum k/k~.

band-structure calculations, ' ~~ it is known that
metallic aluminum has free-electron-like valence
electrons. One would then expect the electron-gas
calculation for the self-energy' used here to have
some validity. For example, from Eq. (4), we
find that at the Fermi level, IM,*(kz, if~k~z/2m) I

=0. 815E~, where E~ denotes the Fermi energy. If
we take values of E~=11.4 eV, 5=2. 6 eV, and
IDI=6. 8 eV, we obtain IM,*(kr, Kmka~/2m)I=9. 29
eV. Using Eq. (5), the inner potential, I Z,*(kr,
II'km~/2m) I = 13.5 eV. Also, using the relationship
[see Fig. (4}]

E.+e = IMl(k. . &'k'/2~)l+ IDI, (7)

where P is the work function of the so)id, we obtain
(Ie} = 4.69 eV. This is to be compared to the exp..ri-
mentally measured value of 4. 2 eV obtained from a
polycrystalline aluminum surf ace.

E. Phonons

Phonon excitations at finite temperatures con-
stitute quasielastic processes. This is because
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FIG. 4. Schematic presentation of the inner potential
l~~ %~, kz/2m) I at the Fermi level. ID ) is t'tie sur-

face dipole, P is the work function, E+ is the Fermi
energy, and )Mq (kz, 5 Az/2m) ) is the renormalized ex-
change-correlation potential. g is the difference in ener-
gy between the muffin-tin zero and the bottom of the con-
duction band.

phonons have energies much smaller than the initial
energy spread of the incident-electron beam. Elec-
trons, after undergoing phonon scatterings, are
still collected in the elastically backscattered flux.
However, phonons can scatter electrons away from
two-dimensional Bragg spots through momentum
transfer. This effect is commonly known as ther-
mal diffuse scattering. The process of thermal
diffuse scattering removes elastically backscattered
electrons from Bragg spots and transfers them into
other areas of the fluorescent screen. The de-
crease in intensity in Bragg spots at finite tempera-
tures is usually expressed in terms of a Debye-
%aller factor with a chosen Debye temperature
representing characteristic vibrational properties
of the solid. In real surfaces, phonon modes at the
surface are highly anisotropic, 38~4 with vibrations
of ion cores perpendicular to the surface larger
than those parallel to the surface. Moreover, vi-
bration amplitudes for phonon modes at surface
layers are in general larger than corresponding
modes in the bulk. ' ' In a realistic model for
surface vibrations, one should take into account
the anisotropic properties of surface phonons as
well as their larger vibration amplitudes. Also,
ion cores in different surface layers have different
mean vibration amplitudes. However, except for
the simplest cases, "' such surface-phonon effects
are difficult to include. In this calculation, we
assume an isotropic model for phonon excitations
and express their average effects in terms of a
single effective Debye temperature. In principle,
one can phenomenalogically include effects of
larger surface vibration amplitudes by picking a
smaller effective Debye temperature„But, in the
absence of a reliable value for the mean surface
Debye temperature, we simply use a bulk value of
O~ = 426 K in this calculation. Since the isotropic
model for surface phonon modes is an extremely

crude one, we retain only the first partial-wave
expansion of the Debye-%aller factor. 46 It is ob-
vious that our model for surface vibrations is too
crude for any detailed study of temperature effects
of LEED spectra. 44'4' However, for the purpose
of determining the energy dependence of diffraction
spectra, our present phonon model is adequate.
This is true because the Debye-%aller factor has
little effect on position of diffraction peaks. Its
main effect is to decrease relative intensities of
diffraction peaks at higher energies.

III. LIMITS ON COMPARISON BETT%EN THEORY AND
EXPERIMENT

In Sec. II, details of dynamical factors important
in a microscopic calculation of LEED spectra are
discussed. Such dynamical factors contain uncer-
tainties which would limit the extent to which theo-
ry can be meaningfully compared with experiment.
In a LEED-spectra comparison between theory and
experiment, one is primarily concerned with com-
paring the following quantities: absolute and rela-
tive intensities; and the shape, width, and position
of diff raction peaks. Different dynamical factors
affect such features in different degrees. The
value of the inner potential Z,*(k, 5 k /2m) and the
one-electron crystal potential determine primarily
positions of calculated peaks. The damping
strength, Zf(k, I k /2m), and the position of the
electron-vacuum interface affect the calculated
absolute ref lectivity. The former quantity also
affects widths of diffraction peaks. The shape of
the surface barrier affects peak intensities and
peak shapes at low energies (e. g. , below 50 eV
for aluminum). The choice of the surface-phonon
model affects peak intensities and shapes at high
energies. Finally, the crystal potential affects the
shape and intensity of diffraction peaks in the whole
energy range.

Let us first examine the accuracy to which peak
positions may be determined in present theoretical
models. From the energy dependence of M, (k,
k k /2m) shown in Fig. 3, we note using Eqs. (4)
and (5) that for aluminum, the inner potential Z~ (k,
k k /2m) changes about 6 eV in the energy range
from 0 to 200 eV. Also, different crystal poten-
tials place peak positions 3-5 eV differently. 47

For a conservative estimate, present dynamical
models have an energy uncertainty for peak posi-
tions of 5-'7 eV in the range 0-200 eV. The mag-
nitude of this uncertainty may appear large, since
a purely kinematical model would place Bragg
peaks within this same energy range as the experi-
mental peak positions with a properly chosen inner
potential. However, a kinematical model totally
fails to produce multiple scattering peaks, which
from experimental studies of many materials are
known to be large. 4 ~ It should also be borne in
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mind that LEED peaks are generally 8-18 eV
wide, '0 hence, even with this large uncertainty in

the determination of exact peak positions, it is in
most cases not difficult to correlate each calcu1.ated
peak with the appropriate experimental peak. A

more reliable way to identify peaks between theory
and experiment is of course to compare spectra
for a set of angles of incidence and to examine
similarities in the angular evolution of peak pro-
files with systematic variations in angular orienta-
tion.

As for the absolute reQectivity, experimentally
measured values for most materials are in the
range of a few percent 8'4 of the incident flux. The
calculated ref lectivity, on the other hand, depends
sensitively on the magnitude of electron damping
and on where one places the electron-vacuum in-
terface. However, if one chooses damping values
either from self-energy calculations, " or by
fitting to experimentally measured half-widths; and

if one places the electron-vacuum interface at
physically plausible positions like those shown in

Fig. 2, one does obtain calculated ref lectivities of
a few percent for most materials ao,u, 2e.4e The
agreement in absolute ref lectivities for these mate-
rials in not precise but one obtains order-of-mag-
nitude agreements. The crucial test for contribu-
tions of dynamical factors in terms of absolute re-
flectivities is in the ability to rnatch theory and ex-
periment for absolute ref lectivities of different re-
flected beams and for a set of incident angles.
other test is to obtain good agreement with pre-
dicted and experimental absolute ref lectivities for
rr ..re than one face of the same material for differ-
ent beams.

There is general agreement between theory and

experiment for peak widths and relative intensities
to w'ithin a factor of 2. The poorest known and

perhaps the most uncertain quantity in the calcula-
tion of LEED spectxa is the exact shape of peaks.
The reason for this is that almost all dynamical
factors discussed earlier and particularly the crys-
tal potential, affect the shape of diffraction peaks.
The models for surface barriex and surface pho-
nons affect shapes of peaks at low- and high-energy
regions, respectively. From discussions in Sec.
II, present models for these two dynamical quanti-
ties are relatively crude. One may eliminate con-
tributions from these quantities by concentrating
on high-energy peaks (e. g. , above 50 eV for alu-
minum) at low temperatures. However, peak
shapes are also affected by the damping strength,
the propagator renormalization factox, and the
crystal potential. Thus it is rather difficult to
separate unambiguously effects of one dynamical
factor from another. For these reasons in terms
of present calculations, it seems best not to place
too much emphasis on details of peak shapes.

In this section, we have discussed some of the
important features in LEED spectra and their
relative dependences on different dynamical fac-
tors. Reliability tests of a dynamical model lie
not in being able to match details of a single spec-
tra for a given angle of incidence in a limited en-
ergy range; but in being able to use the same set
of dynamical quantities to obtain over-all agree-
ment between theory and experiment for a wide

range of energies and incident angles, for many
reflected beams as well as for more than one crys-
tal face.

IV. COMPUTATION PROCEDURE OF THE t-MATRIX
METHOD

In the preceding paper, the formalism of the t-
rnatrix method was presented. This method keeps
to only finite orders multiple scattering events of
the incident electron inside the solid. The physical
justification of this approach is that in the presence
of strong electron damping, electrons that have un-

dergone a number of scatterings no longer contrib-
ute significantly to the intensity of the backscat-
tered elastic current. In the present calculation,
we keep multiple scattering events only to third
order in the individual ion-core scattering matrix.
In other words, we evaluate all the terms given in
Eg. (25) of the preceding paper. The complex
propagator renormalization factor F(ko) defined in
Eg. (14) of the preceding paper is rewritten in the
for IIl

ko-

and evaluated for an electron density corresponding
to that of metallic aluminum. A plot of real and

imaginary parts of E(ko) used in this calculation as
a function of electron energy measured with re-
spect to the vacuum level is shown in Fig. 5. Par-
tial convergence tests of the t-matrix method by

comparing scattered intensities containing infinite
orders of multiple scattering events in the plane
with those including up to third-order scattering
events are reported elsewhere. ~' The results
showed good convergence. It is clear that the t-
matrix method will begin to fail in the limit of
strong ion-core scattering and relatively small in-
elastic damping. This is because in the pxesence
of strong ion-core scattering and weak damping,
the incident electron has a large penetration dis-
tance and higher-order scattering events become
significant. Orl the other hand, truncation ex'rors
are not serious as long as their magnitudes are
small compared with contributions from uncertain-
ties in the many critical dynamical factors dis-



436 TONG, RHODIN, AND T AIT

0.6—

2ko
~ "o~ "

[pk +/2m'l ~5(k+,E)]

0.8—

I.O 0.0 30,0 60.0

eF(k, )

Incident Electron Energy (eV)

90.0 I 20.0 I 50.0 W

-0.2—

-0.4—

FIG. 5. Energy dependence of the complex propagator
renormalization factor K(kp) ~ The energy scale is mea-
sured with respect to the vacuum level.

cussed in Sec. IG. Also, a great deal is gained by
this finite truncation of multiple scattering events.
The t-matrix method for the computation of LEED
spectra is very fast and the computation core size
is small. This leaves plenty of room for the fuller

incorporation of other physical quantities important
in a microscopic model. One such factor is in the
inclusion of the crystal potential in terms of many
partial-wave phase shifts. Another example is that
inside the crystal, the incident electron scatters
into a large number of Bloch wave states. In order
to obtain convergence in the representation of the
scattered states inside the solid, it is desirable to
include a large number of Bloch waves inside the
solid. This is one of the most troublesome features
in a microscopic approach. In this calculation, be-
cause of the small core-size requirement of the t-
matrix method, it is possible to include up to 49
Bloch waves in the sums over scattered states.
This number of Bloch waves included is significant-
ly larger than any number used before. Neverthe-
less, these calculations using six partial waves for
the scattering potential and 49 Bloch waves~2 take,
on the average, only 18 sec per energy point on an
IBM 360/65 computer.

V. COMPARISON BETWEEN THEORY AND EXPERIMENT
ON Al(001) AND Al(110) FACES

A I (OOI) (00) Beam p=o
T=300 K

We have calculated LEED spectra in absolute re-
flectivities for the (001) and (110)faces of aluminum
for specular and nonspecular beams for a wide
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angles of incidence. Theoretical curves (solid lines) are
in absolute reflectivities calculated using six phase shifts
at T=300 K. Experimental curves (broken lines) are
taken from room-temperature results of Ref. 53 in arbi-
trary intensity units.
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FIG. 7. Comparisons between theory and experiment
for Al(001) with reference to the (11) beam, for different
angles of incidence. Other conditions are the same as in
Fig. 6.
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range of angles of incidence in the energy range
0-160 eV. Our theoretical results are compared
with experimental measurements made by Jona. '
Calculations for the spectra were made in 5-eV
intervals. The comparisons are shown in Figs.
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FIG. 8. Comparisons between theory and experiment
for Al(001) with reference to the (02) beam, for different
angles of incidence. Other conditions are the same as in
Fig. 6.

A. Al(001) Face

Comparisons for the (00) beam for five angles of
incidence are shown in Fig. 6. The calculated
spectra are of the order of 1% in absolute reflectiv-
ities. The experimental measurements were not
made on the absolute scale. There is good agree-
ment, however, in peak widths, relative intensities,
and angular evolution of peak profiles. The biggest
discrepancy between theory and experiment occurs
for the beam at 8= 15', where the experiment shows
a split peak at 26 eV which is absent in the theo-
retical curve. Also, the experimental peak at 137
eV is not split, although the calculation indicates a
split structure there. It is interesting to note that
a more recent measurement by Quinto and Robert-
son' for Al(001) at the same azimuth and angle of
incidence shows the peak at 137 eV to be markedly
split. More detailed theoretical and experimental
investigations are needed before any definite conclu-
sions can be drawn on this point.

The agreement between theory and experiment

is also good on this face for the (11) and (02) beams
for different angles of incidence (Figs. 7 and 8).
Looking at high-energy peaks, e. g. , at around 130
eV for the (00) beam, 105 eV for the (11) beam,
and 152 eV for the (02) beam, the experimental
peaks are consistently lower in intensity than the
corresponding theoretical peaks for all angles of
incidence. This may not be surprising if one re-
calls that in our dynamical model, we have used a
high (bulk) Debye temperature of ca=426 'K. This
value of the effective Debye temperature is definite-
ly a lower limit of surface-phonon vibration ampli-
tudes. A smaller effective Debye temperature
corresponding to larger and more realistic phonon
vibration amplitudes will improve the agreement in
intensities in the high-energy region.

LEED intensity spectra for Al(001) face have
been also calculated by Jepsen et al. ~~ and Lara-
more et al. They obtained similar degrees of
general good qualitative agreement with experi-
ment. In calculations done by Jepsen et al. , they
used a self-consistent band-structure potential by
Snow, "which is a stronger bulk potential than the
one we used here. On account of this, Jepsen
et al. obtained somewhat more prominent secon-
dary features in the intensity spectra. However,
it is difficult at this stage to draw any more definite
conclusions on the superiority of different bulk po-
tentials used by Jepsen et al. , Laramore et al. ,

'
and others in their application to LEED calcula-
tions. Perhaps the most significant difference in
terms of input parameters between these other cal-
culations and those of this study is our inclusion
of an energy-dependent complex propagator re-
normalization factor F(ke}. We find by using F(ke)
evaluated from electron-gas calculation for alumi-
num, the qualitative features of the LEED spectra
are generally improved.

B. Al(110) Face

The agreement between theory and experiment is
not as good for this face as for the (001) face. It
is found necessary to shift the energy scale of the
experimental curves or to change the value of the
inner potential in the theoretical model to obtain
good correspondence in peak positions. For the
(00}beam, shown in Fig. 9, we have shifted the
experimeatal curves to lower values by 7 eV with
respect to the theoretical curves. ~ Otherwise, the
same (energy-dependent) inner-potential values
used for the (001) face are used here for the (110)
face in the theoretical model. In other words, the
relatively small change in work function on differ-
ent crystal faces is neglected here. With the 7-eV
downshift, while the peaks at 68. 6 eV are in agree-
ment with experiment, the lower-energy peaks at
26 eV are off in position. In a rec"nt work by Jep-
sen et al. , ' they also concluded that a shift in en-
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FIG. 9. Comparisons between theory and experiment
for Al(110) with reference to the (00) beam, for different
angles of incidence. The experimental curves are shifted
down in energy by 7 eV. Other conditions are the same
as in Fig. 6.

(E=50 eV) is poor. The agreement is generally
good for higher energies.

Finally, in Fig. 12, we show the (01), (10), and

Al (IIO) (lO) Beam / =90
T= 300 K

FIG. 10. Comparisons between theory and experiment
for Al(110) with reference to the (11) beam, for different
angles of incidence. The experimental curves are shifted
down in energy by 3 eV. Other conditions are the same
as in Fig. 6.

ergy produces better agreement in peak positions.
They used an upshift of their theoretical curves of
3.V eV. This is because in their work, they chose
to line up the peaks at 26 eV. An interesting analy-
sis suggesting steps in the crystal surface was re-
cently proposed to explain this effect. ' It is also
interesting to note that the experimental peak at
68. 6 eV stays almost constant in energy as the
angle of incidence increases from 8= 5 to 8=25'.
The corresponding theoretical peak, on the other
hand increases in energy with increasing incident

~ ~ ~ spangle. This is because the theoretical Bragg
energy increases with increasing angle.

Comparisons for the (1 1) and (10) beams for
Al(110) are shown in Figs. 10 and 11. The experi-
mental curves in the (11)beam are shifted down in
energy by a constant 3 eV while those in the (10)
beam are shifted down by f eV. For the (11)beam,
the experimental curves show a much larger peak
at low energies (E=35 eV). Similarly, for the (10)
beam, the agreement for peaks at low energies
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FIG. 11. Comparisons between theory and experiment
for Al(110) with reference to the (10) beam, for different
angles of incidence. The experimental curves are shifted
down in energy by 7 eV. Other conditions are the same
as in Fig. 6.
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gies (E = 55 eV) for this beam is rather poor.

VI. SUMMARY
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FIG. 12. Comparisons between theory and experiment
for Al(110) with reference to the (01), (10), (11) beams
at normal incidence. The experimental (01) curve is
shifted down in energy by 7 eV. Curves for (10) and $1)
beams are the same as the corresponding ones shown in
Figs. 11 and 10. Other conditions are the same as in
Fig. 6.

We have used the t-matrix perturbation method
to calculate LEED spectra for the (001) and (110)
faces of aluminum. Agreement between theory and
experiment for different beams and a wide range of
incident angles appears to be good, especially on
the (001) face. On the (110)face, there are some
discrepancies in peak positions and in peak profiles
at low energies. Interpretations of such discrepan-
cies in terms of surface expansion ""and of ran-
dom steps on the surface have been recently pro-
posed. It is also possible that other effects, such
as impurities in the surface region and effects of
surface plasmons may be partly responsible for
such discrepancies.

The t-matrix method as presented here seems to
work well for the dynamical model chosen for alu-
minum. Convergence tests of this method with an
equivalent exact method to establish limits of the
perturbation approach are in progress. These re-
sults will be reported separately. It is significant
that the success of a perturbation approach in
LEED-spectra calculations opens the way to new
practical applications of low-energy-electron dif-
fraction in the study of surface atomic structure.
It seems more feasible for LEED-spectra calcula-
tions to be carried out on a routine and practical
basis for clean metals using the t-matrix approach.
Extension of the perturbation method to clean sur-
faces of transition metals and to chemical over-
layers on metals are also under current investiga-
tion and will be reported separately.
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%'e study the properties of transition-metal surfaces, with particular emphasis on Ni. Using the
renormalized-atom approach, it is argued that the d-state excitations are narrowed at the surface and
the d-hole count is reduced. The magnetic coupling of the surface layer to bulk is investigated in
detail. Spin-dependent surface resonances of the Friedel type can exist and in the magnetic metals, can
cause antiferromagnetic coupling of the surface moment to bulk. Model calculations are presented in an
attempt to describe Ni.

I. INTRODUCTION

Relatively little progress has been made towards
an understanding of the electronic states at the sur-
face of a d transition metal. These states are im-
portant for a determination of many surface proper-
ties, chemisorption, and catalysis. In addition,
recent electron-emission and tunneling experi-

ments~ designed to probe bulk-metal properties
have yieMed results which suggest some partici-
pation of surface states. It is the purpose of this
paper to discuss the eleetronie and magnetic prop-
erties of these states within the framework of ex-
isting theories of transition metals, with particular
emphasis on ¹i.

In See. II, the eleetronie properties of the para-


