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The critical behavior in zero field above T, of ferromagnets or ferroelectrics with a H~grliltonian of
cubic symmetry is studied, to order c, by exact renorm~»~~tion-group techniques in d = 4 —e
dimensions with n-component spins. For e = 1, n & 3, a crossover from isotropic (Heisenberg) to
characteristic cubic behavior occurs, with the new value 2v~ = 1+ [(n —1)/3n]c
+ [(n —1)/324n ') (17n

' + 290n —424)e' + O(e'), and cubic symmetry appearing in the four-spin

correlation function. Experiments on structural phase transitions are considered briefly.

Many magnetic materials have single-ion terms
in the Hamiltonian which reflect the lattice sym-
metry and so break full rotational invariance. '
Such terms are also needed to describe structural
phase transitions. For a lattice of cubic sym-
rnetry, the lowest-order single-ion terms have the
form

30,=v, Z Z (S-„)', (1)

where S-„(ct= 1, 2, . . . , n) is the tr component of
the spin vector S g at the lattice point R, while v,
is a constant. The sign of v, determines whether
the spine tend to align along the cubic axis (v, (0),
or in the diagonal (1, 1, 1, . . . ) directions (v t &0).
We discuss here mainly the case v, )0, since for
v, ( 0 a first-order transition is indicated in zero
field, and a different approach may be needed.

With the aid of Wilson's renormalization-group
approach, and the e= 4 —d expansion technique, '
this problem may, for the first time, be attacked
seriously. In fact, Wilson and Fisher considered
the Hamiltonian (1) for n = 2, and concluded that in
this case there exists an additional Ising-like fixed
point. As we shall emphasize in the present note,
the casen=2 is special, and for alln )2 this addi-
tional fixed point leads to a new cubic-symmetry-
dominated critical behavior. Although the present
study, to order e, leads to small changes in the
critical exponents for n = 3 and e = 1 [see Etl. (15)
below], it shows that there are appreciable changes
in the behavior of the four-spin correlation func-
tion, and emphasizes the possible existence of
distinct exponents for systems with only cubic
symmetry. The accuracy of the & expansion is
probably not very great when e= 1, and the actual
values of these new exponents should be sought
by experiment. In other studies, Cowley and
Bruce (for n = 3) and Wegner (for general n) have
studied the stability of the Heisenberg fixed point
(with v, = 0) with respect to perturbations of the
form (1). To order e, they conclude that the fixed
point is stable for n = 3. As we shall see in the
present note, the problem of stability is compli-

cated, and to order & the new cubic fixed point
becomes stable and determines the critical be-
havior. None of the previous studies considered
this cubic critical behavior.

Terms of cubic symmetry may also enter the
Hamiltonian through exchange interactions. To
second order in the momentum q, the exchange
terms have the general form

Q[g g, q J(q )]S,S, . (2)
Q a

The parameter J~ evidently measures departures
from full rotational invariance. It is related to
v i via the renormalization-group recursion rela-
tions which generate terms like (1) and (2), even
if vi vanishes initially. Since the J& term couples
space and spin coordinates, one must take n =d
= 4 —c. However J~ then turns out to be an ir-
relevant variable for all u„v, &0 (where u, is the
coefficient of ga SS), which decays very slowly
(with exponent of order c', if u„v, are of order
e). The parameter which leads to instabilities of
the fixed point is v„accordingly, we restrict the
remainder of the discussion to K, given by (1)
(with general n) However, . since Js decays so
slowly, it may affect many experimental measure-
ments.

The relative magnitude of the anisotropic terms
can be measured by

ex

v = v t)t T/4 (3)

where J is an average exchange coupling [see (2)].
The relative shift of the critical temperature, with
respect to its "isotropic" value, is expected to be
of order v, and if v «1, the usual isotropic be-
havior should be observed when T is not close to
T,. However, since the Hamiltonian (1) breaks
rotational invariance, it is reasonable to expect'
some new, characteristically cubic-symmetric,
behavior to appear for t= (T —T,)/T, ~ t"=v't',
where P is an appropriate crossover exponent. "

The main computation uses the exact renormaliza-
tion- group equations for a reduced Hamiltonian
of the form
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(r+ q ) Q S;~ S;—Q (u + v 5 z )2 3q~ e e8

(4)

where f; means (2v) fd q .As usual, r is pro-
portional to (T —To), while the coefficient of q is

fixed at unity by a spin recaling.
Assuming a small momentum cutoff, b ', one

may ignore all the "mass-renormalization" Feyn-
man graphs and all the irrelevant parameters,
and keep only terms of order lnb in the recursion
relations. The recursion relations for u and for
v now become

u'=b' "[u —4K~ lnb(1+ ~club)[(n+8)u +6uv]+ 16K~in b[(n + 6n+ 20)u + 9(n+4)u v+ 27uv ]

+ 32K4 lnb(1+ lnb)[(5n+ 22)u + 36u v+ Quv ]),
v'=b' "{v—4K~lnb(1+ ~club)(12uv+ 9v )+ 16K4ln2b(36u v+ 54uv +27v )

+ 32K4lnb(1+ lnb) [3(n+ 14)u v+ 72uv + 27v ]),

(5)

(6)

where

q= 8K4[(n+ 2)u +6uv+3v ].
These recursion relations have four fixed points:

Gaussian:

u —v —0.G G

Ising:

u =0, v = (1++me)+O(e );
d

Heisenberg:
s „s e 3(3n+ 14) s

Cubic.

(n —1) (106—19n )
12Kd n 27n

n —4 (n —1)(17n + 110n —424)
12Kdn 3 8 ln~

+O(e ) .
Note that the Gaussian and Ising fixed points are
independent of n.

The (eigenvalue) exponents X„and X„[Wegner's
(d -x2, ) and (d —xo, )] for the first three fixed
points are"

Gaussian:

Ising:

x„= Se —
Sg e +O(e ), X„=—e+ge +O(e );

Heisenberg:

X„=—e+ 2 e +O(e ),
9n+ 42 2 s
n+8

H n 4
e

5n'+14n+152 e2, 0,3

n+ 8 (n+ 8)

Note that for n = 1, we have v = u and X„=)", as

I

expected. The exponent X„"is related to the lead-
ing correction to scaling, discussed by Wegner
to order c. We now consider the values of these
exponents at e= 1 (d= 3). Although e expansions
usually give reasonable results at e= 1 on trunca-
tion at order c, this approach is not always clear-
ly justified; we shall return to this question later.
For E= 1, the Gaussian and the Ising fixed points
are clearly unstable (X &0). The stability of the
Heisenberg fixed point depends on n: For large
values of n it is clear that X„&0, and the Heisen-
berg fixed point is unstable with respect to the
cubic perturbation. Thus, the spherical-model
limit (n -~) of the usual isotropic fixed point is
also unstable, and it would be interesting to study
a new type of a "cubic spherical model. " The
borderline of stability of the Heisenberg fixed
point depends on the order of the truncated series
used for X„". Using the order-E result, the Heisen-
berg fixed point is stable for n &4. This explains
Cowley and Bruce's result for n = 3. Using the
order-e expression, given above, one finds that
X„"&0for n &2, and X„=0 atn= 2. Recently, Ketley
and Wallace" calculated the order-e term in X„,
using a Feynman-graph expansion near the Heisen-
berg fixed point. To that order, they find the
borderline goes up and lies close to n = 4. Ketley
andWallace conclude that forn=3 the radiusof con-
vergence of the series for X"„is smaller than 1,
and that no conclusions may be drawn. We con-
clude tentatively that X„ is either positive or very
small in magnitude, so that it is important to study
other possible fixed points and other types of criti-
cal behavior. '

We thus discuss the stability of the cubic fixed
point. We must linearize Eqs. (5) and (6) around
the fixed-point values, and diagonalize the 2x 2
matrix of the coefficients. The results are

(n —1) (17n —4n+ 212)

and
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For n= 3, e= 1, 1// =18, and hence one should ob-
serve cubic symmetric behavior only for rather
small values of f,, unless v- 1. Even when X„&0
and IX„ l«1, one will approach the real Heisen-
berg critical region only for very small values of
t, and feel the cubic effects for a1.1 other values.

To find the critical exponent v we turn to the
recursion formula for the temperature parameter

With the same assumptions as before Eq. (5),
this recursion formula is

r' = b "(r+ 4 Kz [(n + 2) u + 3 v]A (r )

—32K4[(n+2)u +6uv+3v ]B(r)+~ ~ },(12)

where A(r) and B(r) are the usual integrals over
the propagator. Substituting these integrals, and

linearizing about a fixed point, yield the exponent

V,

=2 —q —4Kz[(n+ 2)u" + 3v*]1 lnA
v lnb

+ 48Kz[(n+ 2)u* + 6u'zv*+ 3vz' ]. (13)

For the cubic fixed point we now find, from (7)
and (13),

(n+ 2) (n —1) z
17 =

54 z e +Os (14)

2 v = 1+ e+ z (17n + 290n —424)e

+ O(e ). (15)

c 4-n
X~--

3n

(n —1) (19n —72n —660n+ 848)
+

81nz (n+2)
e +O(e ).

(9)
Note that for n = 1 the cubic fixed point is degener-
ate with the Gaussian fixed point, with X~ = X = e.
For n = 2 it is degenerate with the Ising fixed point
X, = X„, Xz

——X„), as predicted by Wilson and Fisher.
For n = 3 we find

X,= —e+ 0. 581''+ O(ez),

Xz=$ e —0. 232e'+O(e').

Thus, to order e, the cubic fixed point is stable
for n = 3 at e= 1. It is clearly also stable for all
'Pl & 3.

Near the Heisenberg fixed point, the correlation
length f(t, v) scales with v/t, with the crossover
exponent

These may be compared with the Heisenberg-like
exponents given in Refs. 5 and 12.

Unfortunately, for n= 3 and &= 1 one finds v

=0.680 and v =0.678, so that to order e it is
very difficult to distinguish between these two ex-
ponents. The most important conclusion, however,
is that a crossover and new values of the expo-
nents are to be expected. In addition, the criti-
cal correlation functions should display some fea-
tures of cubic symmetry arising in part from
terms like Jz in (2) (which may have a nonzero
fixed-point value, of order e ). The fact that v has
a nonzero fixed-point value is directly detectable
in the four-spin correlation function, which, to
lowest order, now has the form

(Sz Sz S S ) ~ (u +v 5 )f' ' (16)

These new exponents, and the cubic features of
the correlations, should be looked for experimen-
tally. Experiments on the structural phase transi-
tion in SrTi03 give v = 0. 63+ 0. 07, but the errors
are too large for a meaningful comparison. Other
experiments give P = 0. 333+ 0. 10, ' which might
be significantly different from the Heisenberg val-
ue P = 0. 37 + 0. 01." Note that the experiments
give P & P, while we predict P &P . This may
be due to the truncation of our results at c~.

Another cause for a possible disagreement of
the theory with the results on SrTiO3 lies in the
experimentally large value of Zz. Zz/Z~ is of the
order unity. For small values of 4'z/J„ it has
been demonstrated" that J~ is irrelevant and that
its exponent is of order e2. For large values of
Zz/J„Cowley and Bruce also indicate that Jz is
irrelevant. 6 Thus, one has to be very close to T,
for J, to decay to zero.

In any event, we believe the present theory
should be more appropriate for the problem of
structural phase transitions than the n = 2 Heisen-
berg model suggested by Stanley, since it di-
rectly uses the lattice symmetry of the Hamil-
tonian.
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